Skip to main content

Genetics of Brassica rapa L.

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 9))

Abstract

Brassica rapa (2n = 20, AA) is one among the six economically important cultivated Brassica species of U’s triangle. The presence of wide genetic and morphological diversity in the form of several subspecies in different geographical regions allows growing of this species for producing leafy vegetables, vegetable oils, turnips roots, turnip greens, turnip tops, and fodder turnip. In addition, it is one of the diploid progenitor parental species which contributed A genome to the important oilseed crops, Brassica juncea (2n = 36, AABB) and Brassica napus (2n = 38, AACC). Due to the presence of wide genetic variability, genetic analysis for important traits and improvement in this crop are possible. While conventional genetic analyses and breeding could achieve success in improvement of many traits, but for the majority of the agronomically important traits recent advances in genetic marker techniques supplemented heavily for this crop. Molecular markers have been used to analyze genetic diversity in B. rapa, mapping of different traits in the genome in segregating populations generated for investigations of specific traits of interest. Several mapping studies have led to the identification and tagging of many traits for marker-assisted breeding, and in some cases map-based cloning of the responsible genes have been done, e.g. the flowering time gene FLC. However, traditional mapping of quantitative trait loci (QTL) is often not sufficient to develop effective markers for trait introgression or for identification of the genes responsible. The ongoing sequencing work of B. rapa genome will undoubtedly give great insight into the genetics underlying both simple and complex traits in this crop. Comparative mapping with the closest relative Arabidopsis thaliana and identification of candidate genes, use of EST-derived SSRs and SNPs from Arabidopsis and other Brassica species for high density mapping, isolation, and development of gene-based functional molecular markers would also be very much helpful for this crop. This chapter reviews the current use of available molecular marker technologies in B. rapa genetic analysis and breeding for important morphological, agronomic, quality, abiotic and disease resistance QTL/gene mapping and their utilization in marker-assisted breeding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFLP:

Amplified fragment length polymorphism

BAC:

Bacterial artificial chromosome

B. rapa :

Brassica rapa

CAPS:

Cleaved amplified polymorphic sequence

DH:

Doubled haploid

ESTP:

Expressed sequences tag polymorphism

FISH:

Fluorescence in situ hybridization

QTL:

Quantitative trait locus/loci

RAPD:

Random amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

RIL:

Recombinant inbred lines

SCAR:

Sequence characterized amplified regions

SNP:

Single nucleotide polymorphism

SRAP:

Sequenced-related amplified polymorphism

SSR:

Simple sequence repeat

STS:

Sequence-tagged-site

References

  • Abraham V, Bhatia CR (1986) Development of strains with yellow seedcoat in Indian mustard (Brassica juncea Czern. & Coss.). Plant Breed 97:86–88

    Article  Google Scholar 

  • Ahmed SU, Zuberi MI (1971) Inheritance of seed coat color in Brassica campestris-variety Toria. Crop Sci 11:309–310

    Article  Google Scholar 

  • Ajisaka H, Kuginuki Y, Hida K, Enomoto S, Hirai M (1995) A linkage map of DNA markers in Brassica campestris. Breed Sci 45(Suppl.):195

    Google Scholar 

  • Ajisaka H, Kuginuki Y, Shiratori M, Ishiguro K, Enomoto S, Hirai M (1999) Mapping of loci affecting the cultural efficiency of microspore culture of Brassica rapa L-syn. campestris L using DNA polymorphism. Breed Sci 49:187–192

    CAS  Google Scholar 

  • Ajisaka H, Kuginuki Y, Yui S, Enomoto S, Hirai M (2001) Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L. ssp. Pekinensis syn. campestris L.) using bulked segregant analysis A QTL controlling extreme late bolting in Chinese cabbage. Euphytica 118:75–81

    Article  CAS  Google Scholar 

  • Axelsson T, Shavorskaya O, Lagercrantz U (2001) Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene. Genome 44:856–864

    Article  CAS  Google Scholar 

  • Barker DH, Seaton GGR, Robinson SA (1996) Internal and external photoprotection in developing leaves of the CAM plant cotyledon orbiculata. Plant Cell Environ 20:617–620

    Article  Google Scholar 

  • Beckmann JS, Soller M (1986) Restriction fragment length polymorphisms and genetic improvement of agriculture species. Euphytica 35:111–124

    Article  Google Scholar 

  • Beebe SE, Rojas-Pierce M, Yan XL, Blair MW, Pedraza F, Munoz F et al (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423

    Article  CAS  Google Scholar 

  • Bentsink L, Yuan K, Koornneef M, Vreugdenhil D (2003) The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana using natural variation. Theor Appl Genet 106:1234–1243

    CAS  PubMed  Google Scholar 

  • Bisht NC, Gupta V, Ramchiary N, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2009) Fine mapping of loci involved with glucosinolate biosynthesis in oilseed mustard (Brassica juncea) using genomic information from allied species. Theor Appl Genet. 118(3):413–421

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, Hammond JP, King GJ, Astley D, Bowen HC, Meacham MC, Mead A, Pink DAC, Teakle GR, Hayden RM, Spracklen WP, White PJ (2008) Shoot calcium (Ca) and magnesium (Mg) concentration differ between subtaxa, are highly heritable, and associated with potentially pleitropic loci in Brassica oleracea. Plant Physiol 146:1707–1720

    Article  CAS  PubMed  Google Scholar 

  • Buczacki ST, Toxopeus H, Mattusch P, Johnston TD, Dixon GR, Hobolth LA (1975) Study of physiological specialization in Plasmodiophora brassicae: proposals for attempted rationalization through an international approach. Trans Br Mycol Soc 65:295–303

    Article  Google Scholar 

  • Burdzinski C, Wendell DL (2007) Mapping the Anthocyaninless (anl) locus in rapid-cycling Brassica rapa (RBr) to linkage group R9. BMC Genet 8:64. doi:10.1186/1471–2156–8–64

    Article  PubMed  CAS  Google Scholar 

  • Cavell A, Lydiate D, Parkin IA, Dean C, Trick M (1998) Collinearity between 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62–69

    Article  CAS  PubMed  Google Scholar 

  • Chen H (2001) Atlas of the traditional vegetables in China, pp 123–124. Zhejiang Science and Technology Publishing House, China

    Google Scholar 

  • Chen YP, Cao JS, Miao Y, Ye WZ (2000) Analysis of genetic polymorphism in vegetable crops of Brassica campestris by RAPD markers. J Zhejiang Univ (Agric Life Sci) 26:131–136. in Chinese

    CAS  Google Scholar 

  • Chen BY, Jizirgensen RB, Cheng BF, Heneen WK (1997) Identification and chromosomal assignment of RAPD markers linked with a gene for seed color in a Brassica campestris-aLbogabra addition line. Hereditas 126:133–138

    Article  CAS  Google Scholar 

  • Chevre AM, Delourme R, Eber F, Margale E, Quiros CF, Arus P (1995) Genetic analysis and nomenclature for seven isozyme systems in Brassica nigra, B. oleracea and B. campestris. Plant Breed 114:473–480

    Article  CAS  Google Scholar 

  • Cho KS, Han YH, Lee JT, Hur EJ, Yang TJ, Woo JG (2002) Pathogenic differentiation of Plasmodiophora brassicae and selection of Chinese cabbage cultivars resistant to clubroot disease in highland. Korean J Breed 34(3):168–173

    Google Scholar 

  • Choi SR, Kim JH, Han TH, Piao ZY, Plaha P, Koo DH, Bang JW, King GJ, Teakle GR, Allender CJ, Lydiate DJ, Beynon E, Osborn TC, Lim YP (2004) Joint meeting of the 14th Crucifer Genetics Workshop and the 4th ISHS Symposium on Brassicas 2004, Chungnam National University Daejeon, Korea October 24–28, pp 151

    Google Scholar 

  • Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park BS, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792

    Article  CAS  PubMed  Google Scholar 

  • Chuong PV, Deslauriers C, Kott LS, Beversdorf WD (1987) Effect of donor genotype and bud sampling on microspore culture of Brassica napus. Can J Bot 66:1676–1680

    Google Scholar 

  • Chyi YS, Hoenecke ME, Sernyk JL (1992) A genetic map of restriction fragment length polymorphism loci for Brassica rapa (syn. campestris). Genome 25:746–757

    Google Scholar 

  • Crisp P, Crute IR, Sutherland RA, Angell SM, Bloor K, Burgess H, Gordon PL (1989) The exploitation of genetic resources of Brassica oleracea in breeding for resistance to clubroot (Plasmodiophora brassicae). Euphytica 42:215–226

    Google Scholar 

  • Crute IR, Gray AR, Crips P, Buczacki ST (1980) Variation in Plasmodiophora brassicae and resistance to clubroot disease in brassicas and allied crops -a critical review. Plant Breed Abstr 50:91–104

    Google Scholar 

  • Crute IR, Phelps K, Barnes A, Buczacki ST, Crips P (1983) The relationship between genotypes of three Brassica species and collections of Plasmodiophora brassicae. Plant Pathol 32:405–420

    Article  Google Scholar 

  • Das S, Rajagopal J, Bhatia S, Srivastava PS, Lakshmikumaran M (1999) Assessment of genetic variation within Brassica campestris cultivars using amplified fragment length polymorphism and random amplification of polymorphic DNA markers. J Biosci 24:433–440

    Article  CAS  Google Scholar 

  • Delwiche PA, Williams PH (1974) Resistance to Albugo candida race 2 in Brassica species. Proc Am Phytopathol Soc 1:66

    Google Scholar 

  • Demeke T, Adams RP, Chibbar R (1992) Potential taxonomic use of random amplified polymorphic DNA (RAPD): a case study in Brassica. Theor Appl Genet 84:990–994

    Article  CAS  Google Scholar 

  • Denford KE, Vaughan JG (1977) A comparative study of certain seed isoenzymes in the ten chromosome complex of Brassica campestris and its allies. Ann Bot 41:411–418

    CAS  Google Scholar 

  • Dodd IC, Critchley C, Woodall GS, Stewart GR (1998) Photoinhibition in different colored juvenile leaves of Syzgium species. Exp Bot 49:1437–1445

    Article  CAS  Google Scholar 

  • Downey RK, Robbelen G (1989) Brassica species. In: Oil crops of the world, pp 339–362. McGraw-Hill, New York, NY

    Google Scholar 

  • Downey RK, Stringam GR, McGregor DI, Stefansson BR (1975) Breeding rapeseed and mustard crops. In: Harapiak JT (ed) Oilseeds and pulse crops in Western Canada-A Symposium, Western Crop Fertizres, Calgary, Alberta, Canada, pp 157–183

    Google Scholar 

  • Ebrahimi AG, Delwiche PA, Williams PH (1976) Resistance in Brassica juncea to Peronospora parasitica and Albugo candida race 2. Proc Am Phytopathol Soc 3:273

    Google Scholar 

  • Edwards MD, Williams PH (1987) Selection for minor gene resistance to Albugo candida in a rapid cycling population of Brassica campestris. Phytopathology 77:527–532

    Article  Google Scholar 

  • Edwardson JR, Christie RG (1991). The Potyvirus Group. Volumes I–IV, Florida Agricultural Experiment Station Monograph 16

    Google Scholar 

  • Fahey JW, Stephenson KK, Talalay P (1998) Glucosinolates, myrosinase,and isothiocyanates: three reasons for eating Brassica vegetables. ACS Symp Ser 701:16–22

    Article  CAS  Google Scholar 

  • Ferreira ME, Satagopan J, Yandell BS, Williams PH, Osborn TC (1995) Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 90:727–732

    Article  Google Scholar 

  • Fuchs H, Sacristán MD (1996) Identification of a gene in Arabidopsis thaliana controlling resistance to clubroot (Plasmodiophora brassicae) and characterization of the resistance response. Mol Plant Microbe Interact 9:91–97

    CAS  Google Scholar 

  • Gomez Campo C (1999) Developments in plant genetics and breeding, vol 4. Biology of Brassica coenospecies. Elsevier, Amsterdam, Lausanne, New York, NY, Oxford, Shannon, Singapore, Tokyo

    Google Scholar 

  • Gomez Campo C, Prakash S (1999) Origin and domestication. In: Gomez-Campo C(ed) Biology of Brassica Coenospecies. Developments in plant genetics and breeding, vol 4. Elsevier, Amsterdam

    Google Scholar 

  • Grewal HS, Stangoulis JCR, Potter T, Graham RD (1997) Zinc efficiency of oilseed rape (Brassica napus and B. juncea) genotypes. Plant Soil 191:123–132

    Article  CAS  Google Scholar 

  • Guo JX, Zhou NY, Ma RC, Cao MQ (2002) Genetic diversity in Brassica rapa revealed by AFLP molecular markers. J Agric Biotechnol 10:138–143. in Chinese

    Google Scholar 

  • Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2004) Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theor Appl Genet 108:743–749

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Singh J, Kaur N (2001) Sink development, sucrose metabolising enzymes and carbohydrate status in turnip (Brassica rapa L.). Acta Physiol Plant 23:31–36

    Article  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Ann Rev Plant Biol 57:303–333

    Article  CAS  Google Scholar 

  • Han HP, Sun RF, Li F, Zhang SF, Niu XK (2004) AFLP markers linked to TuMV-resistance gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Sci Agric Sin 37(4):539–544 in Chinese

    CAS  Google Scholar 

  • Harada H, Leigh RA (2006) Genetic mapping of natural variation in potassium concentrations in shoots of Arabidopsis thaliana. J Exp Bot 57:953–960

    Article  CAS  PubMed  Google Scholar 

  • He YT, Tu JX, Fu TD, Li DR, Chen BY (2002) Genetic diversity of germplasm resources of Brassica campestris L. in China by RAPD. Acta Agron Sin 28:697–703

    Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hirai M, Harada T, Kubo N, Tsukada M, Suwabe K, Matsumoto S (2004) A novel locus for clubroot resistance in Brassica rapa and its linkage markers. Theor Appl Genet 108:639–643

    Article  CAS  PubMed  Google Scholar 

  • Hughes SL, Hunter PJ, Sharpe AG, Kearsey MJ, Lydiate DJ, Walsh JA (2003) Genetic mapping of a novel turnip mosaic virus resistance gene in Brassica napus. Theor Appl Genet 107:1169–1173

    Article  CAS  PubMed  Google Scholar 

  • Ignatov AN, Kuginuki Y, Suprunova TP, Pozmogova GE, Seitova AM, Dorokhov DB, Hirai M (2000) RAPD markers linked to locus controlling resistance for race 4 of the black rot causative agent, Xanthomonas campestris pv. Campestris (Pamm.) Dow. in Brassica rapa L. Russ J Genet 36:281–283

    CAS  Google Scholar 

  • James RV, Williams PH, Maxwell DP (1978) Inheritance and linkage studies related to resistance in Brassica campestris L. to Plasmodiophora brassicae race 6. Eucarpia Cruciferae Newsl 3:27

    Google Scholar 

  • Jenner CE, Sanchez F, Nettleship SB, Foster GD, Ponz F, Walsh JA (2000) The cylindrical inclusion gene of turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01. Mol Plant Microbe Interact 13:1102–1108

    Article  CAS  PubMed  Google Scholar 

  • Jenner CE, Tomimura K, Ohshima K, Hughes SL, Walsh JA (2002) Mutations in turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50–59

    Article  CAS  PubMed  Google Scholar 

  • Jenner CE, Wang X, Tomimura K, Ohshima K, Ponz F, Walsh JA (2003) The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant Microbe Interact 16:777–784

    Article  CAS  PubMed  Google Scholar 

  • Jubault M, Lariaagon C, Simon M, Delourme R, Manzanares-Dauleux M (2008) Identification of quantitative trait loci controlling partial clubroot resistance in new mapping populations of Arabidopsis Thaliana. Theor Appl Genet 117(2):191–202

    Article  CAS  PubMed  Google Scholar 

  • Karling JS (1968) The Plasmodiophorales: including a complete host index, bibliography, and a description of diseases caused by species of this order, 2nd edn. Hafner, New York, NY

    Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi M, Ajisaka H, Kuginuki Y, Hirai M (1999) Conversion of RAPD markers for a clubroot resistance gene of Brassica rapa into sequence-tagged Sites (STSs). Breed Sci 49:83–88

    CAS  Google Scholar 

  • Kim HR, Choi SR, Bae J, Hong CP, Lee SY, Hossain MD, Nguyen DV, Jin M, Park BS, Bang JW, Bancroft I, Lim YP (2009) Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics 10:432

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Min YM, Kim H, Park BM (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39

    Article  CAS  PubMed  Google Scholar 

  • Kirk JTO, Hurlstone CJ (1983) Variation and inheritance of erucic acid in Brassica juncea. Z Pflankzenzucht 90:331–338

    CAS  Google Scholar 

  • Klaper R, Frankel S, Berenbaum MR (1996) Anthocyanin content and UVB sensitivity in Brassica rapa. Photochem Photobio 63:811–813

    Article  CAS  Google Scholar 

  • Kliebenstein DJ, Pedersen D, Barker B, Mitchell-Olds T (2002) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161:325–332

    CAS  PubMed  Google Scholar 

  • Kole C, Kole P, Vogelzang R, Osborn TC (1997) Genetic linkage map of a Brassica rapa recombinant inbred population. J Heredity 88:553–557

    CAS  Google Scholar 

  • Kole C, Quijada P, Michaels SD, Amasino RM, Osborn TC (2001) Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor Appl Genet 102:425–430

    Article  CAS  Google Scholar 

  • Kole C, Teutonico R, Mengistu A, Williams PH, Osborn TC (1996) Molecular mapping of a locus controlling resistance to Albugo candida in Brassica rapa. Phytopath 86:367–369

    Article  CAS  Google Scholar 

  • Kole C, Williams PH, Rimmer SR, Osborn TC (2002) Linkage mapping of genes controlling resistance to white rust (Albugo candida) in Brassica rapa (syn. campestris) and comparative mapping to Brassica napus and Arabidopsis thaliana. Genome 45:22–27

    Article  CAS  PubMed  Google Scholar 

  • Kopsell DE, Kopsell DA, LefsrudM G, Curran-Celentano J (2004) Variability in elemental accumulations among leafy Brassica oleracea cultivars and selections. J Plant Nutr 27:1813–1826

    Article  CAS  Google Scholar 

  • Kresovich S, Szewc-McFadden AK, Bilek SM, NcFerson JR (1995) Abundance and characterization of simple sequence repeats SSRs isolated from a size fractionated genomic library of Brassica napus L. rapeseed. Theor Appl Genet 91:206–211

    Article  CAS  Google Scholar 

  • Kubo H, Peeters AJM, Aarts MGM, Pereira A, Koornneef M (1999) ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. Plant Cell 11:1217–1226

    Article  CAS  PubMed  Google Scholar 

  • Kuginuki Y, Ajisaka H, Yui M, Yoshikawa H, Hida K, Hirai M (1997) RAPD markers linked to a clubroot-resistance locus in Brassica rapa L. Euphytica 98:149–154

    Article  CAS  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    CAS  PubMed  Google Scholar 

  • Lee SC, Lim MH, Kim JA, Lee SI, Kim JS, Jin M, Kwon SJ, Mun JH, Kim YK, Kim HU, Hur Y, Park BS (2008) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24 K Oligo Microarray. Mol Cells 26:595–605

    CAS  PubMed  Google Scholar 

  • Li JW (1981) The origins and evolution of vegetable crops in China. Sci Agric Sin 14:90–95

    Google Scholar 

  • Li G, Quiros CF (2002) Genetic analysis, expression and molecular characterization of BoGSL-ELONG, a major gene involved in the aliphatic glucosinolate pathway of Brassica species. Genetics 162:1937–1943

    CAS  PubMed  Google Scholar 

  • Li G, Quiros CF (2003) In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase brassica homolog BoGSL-ALK. Theor Appl Genet 106:1116–1121

    CAS  PubMed  Google Scholar 

  • Lou P, Zhao J, He H, Hanhart C, Pino Del Carpio D, Verkerk R, Custers J, Koornneef M, Bonnema G (2008) Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves. New Phytol 179:1017–1032

    Article  CAS  PubMed  Google Scholar 

  • Lowe AJ, Moule C, Trick T, Edwards TJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in brassica crop species. Theor Appl Genet 108:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Cao JS, Chen H (2002a) Genetic linkage map of Brassica campestris L. using AFLP and RAPD markers. J Zhejiang Univ (Sci) 3:600–605

    Article  CAS  Google Scholar 

  • Lu G, Cao JS, Chen H, Xiang X (2002b) QTL mapping of some horticultural traits of Chinese cabbage. Sci Agric Sin 35:969–974. in Chinese

    CAS  Google Scholar 

  • Lu G, Cao J, Yu X, Xiang X, Chen H (2008) Mapping QTLs for root morphological traits in Brassica rapa L. based on AFLP and RAPD markers. J Appl Genet 49:23–31

    PubMed  Google Scholar 

  • Ma G, Li Y, Jin Y, Du S, Kok FJ, Yang X (2007) Assessment of intake inadequacy and food source of zinc of people in China. Public Health Nutr 10:848–854

    Article  PubMed  Google Scholar 

  • Matsumoto E, Yasui C, Ohi M, Tsukuda M (1998) Linkage analysis of RFLP markers fro clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis). Euphytica 104:79–86

    Article  CAS  Google Scholar 

  • McGrath JM, Quiros CF (1991) Inheritance of isozyme and RFLP markers in Brassica campestris and comparison with B. oleracea. Theo Appl Genet 82:668–673

    CAS  Google Scholar 

  • Mithen R (2001) Glucosinolates – biochemistry, genetics and biological activity. Plant Growth Reg 34:91–103

    Article  CAS  Google Scholar 

  • Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric 80:967–984

    Article  CAS  Google Scholar 

  • Mizushima U, Tsunoda S (1967) A plant exploration in Brassica and allied genera. Tohoku J Agr Res 17:247–277

    Google Scholar 

  • Muangprom A, Osborn TC (2004) Characterization of a dwarf gene in Brassica rapa,including the identification of a candidate gene. Theor Appl Genet 108:1378–1384

    Article  CAS  PubMed  Google Scholar 

  • Muangprom A, Thomas SG, Sun TP, Osborn TC (2005) A Novel Dwarfing Mutation in a Green Revolution Gene from Brassica rapa. Plant Physiol 137:931–938

    Article  CAS  PubMed  Google Scholar 

  • Nishio T, Kusaba M, Watanabe M, Hinata K (1996) Registration of S-alleles in Brassica campestris L. by restriction fragment sizes of SLGs. Theor Appl Genet 92:388–394

    Article  CAS  Google Scholar 

  • Nishio T, Sakamoto K, Yamaguchi J (1994) PCR RFLP of S-Locus for identification of breeding lines in cruciferous vegetables. Plant Cell Rep 13:546–550

    Article  CAS  Google Scholar 

  • Nishioka M, Tamura K, Hayashi M, Fujimori Y, Ohkawa Y, Kuginuki Y, Harada K (2005) Mapping of QTLs for bolting time in Brassica rapa (syn. Campestris) under different environmental conditions. Breed Sci 55:127–133

    Article  CAS  Google Scholar 

  • Nou IS, Watanabe M, Isogai A, Hinata K (1993) Comparison of S- alleles and S-glycoproteins between two wild populations of Brassica campestris in Turkey and Japan. Sex Plant Reprod 6:79–86

    Article  Google Scholar 

  • Novakova B, Salava J, Lydiate D (1996) Construction of a genetic linkage map for Brassica campestris L. (syn. Brassica rapa L.). Genetika Slechteni 32:249–256

    Google Scholar 

  • Nozaki T, Kumazaki A, Koba T, Ishikawa K, Ikehashi H (1997) Linkage analysis among loci for RAPDs isozyme and some agronomic traits in Brassica campestris L. Euphytica 95:115–123

    Article  CAS  Google Scholar 

  • Osborn TC, Kole C, Parkin IAP, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1123–1129

    CAS  PubMed  Google Scholar 

  • O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243

    Article  PubMed  Google Scholar 

  • Padilla G, Cartea ME, Rodrguez VM, Ordas A (2005) Genetic diversity in a germplasm collection of Brassica rapa subsp rapa L. from northwestern Spain. Euphytica 145:171–180

    Article  Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113

    Article  PubMed  CAS  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  Google Scholar 

  • Payne KA, Bowen HC, Hammond JP, Hampton CR, Lynn JR, Mead A, Swarup K, Bennett MJ, White PJ, Broadley MR (2004) Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana. New Phytol 162:535–548

    Article  CAS  Google Scholar 

  • Petrie GA (1988) Races of Albugo candida (white rust and stag head) on cultivated Cruciferae in Saskatchewan. Can J Plant Path 10:142–150

    Article  Google Scholar 

  • Piao ZY, Deng YQ, Choi SR, Park YJ, Lim YP (2004) SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theor Appl Genet 108:1458–1465

    Article  CAS  PubMed  Google Scholar 

  • Piao ZY, Ramchiary N, Lim YP (2009) Genetics of clubroot resistance in Brassica species. J Plant Growth Regul 28:252–264

    Article  CAS  Google Scholar 

  • Pound GS, Williams PH (1963) Biological races of Albugo candida. Phytopathology 53:1146–1149

    Google Scholar 

  • Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassica, a review. Opera Bot 55:1–57

    Google Scholar 

  • Quiros CF, Hu J, Truco MJ (1994) DNA-based marker Brassica maps. In: Phillips RL, Vasil IK(eds) Advances in cellular and molecular biology of plants, Vol 1. DNA based markers in plants, pp 199–222. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Rahman M, McVetty PBE, Li G (2007) Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor Appl Genet 115:1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Sun Z, McVetty PB, Li G (2008) High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted selection in plant breeding. Theor Appl Genet 117:895–904

    Article  CAS  PubMed  Google Scholar 

  • Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2007) QTL analysis reveals context-dependent loci for seed glucosinolate traits in oilseed Brassica juncea: importance of recurrent selection backcross (RSB) scheme for the identification of ‘true’ QTL. Theor Appl Genet 116:77–85

    Article  CAS  PubMed  Google Scholar 

  • Rimmer SR, Mathur S, Wu CR (2000) Virulence of isolates of Albugo candida from western Canada to Brassica species.Can J. Plant Path 22:229–235

    Article  Google Scholar 

  • Rosa EAS, Hesney RK, Fenwick GR, Portas C (1997) Glucosinolates in crop plant. Hortic Rev 19:99–215

    CAS  Google Scholar 

  • Rouhier H, Usuda H (2001) Spatial and temporal distribution of sucrose synthase in the radish hypocotyl in relation to thickening growth. Plant Cell Physiol 42:583–593

    Article  CAS  PubMed  Google Scholar 

  • Rusholme RL, Higgins EE, Walsh JA, Lydiate DJ (2007) Genetic control of broad-spectrum resistance to turnip mosaic virus in Brassica rapa (Chinese cabbage). J Gen Virol 88:3177–3186

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M (2006) Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Theor Appl Genet 114:81–91

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Saito A, Hayashida N, Taguchi G, Matsumoto E (2008) Mapping of isolate-specific QTL for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet. doi:10.1007/s00122-008-0817–0

    Google Scholar 

  • Santos MR, Dias JS, Silva MJ, Ferreira-Pinto MM (2006) Resistance to white rust in pak choi and Chinese cabbage at the cotyledon stage. Comm Agric Appl Biol Sci 71:963–971

    CAS  Google Scholar 

  • Sax K (1923) The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    CAS  PubMed  Google Scholar 

  • Schaad NW, Thaveeschai N (1983) Black rot of crucifers in Thailand. Plant Dise 67:1231–1234

    Article  Google Scholar 

  • Schilling A (1991) Development of a molecular genetic linkage map in Brassica rapa (syn. Campestris) L. M.Sc. Thesis, University of Massachusetts, USA

    Google Scholar 

  • Schmidt R (2002) Plant genome evolution: lessons from comparative genomics at the DNA level. Plant Mol Biol 48:21–37

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Quijada P, Sung SB, Lukens L, Amasino RM, Osborn TC (2002) Characterization and effects of the replicated time gene FLC in Brassica rapa. Genetics 162:1457–1468

    CAS  PubMed  Google Scholar 

  • Shattuck VI (1992) The biology, epidemiology and control of turnip mosaic virus. Plant Breed Rev 14:199–238

    Google Scholar 

  • Singh D (1958) Rape and Mustard. Indian Central Oilseeds Committee. Examiner, Bombay, India, P105

    Google Scholar 

  • Sinskaia EN (1928) The oleiferous plants and root crops of the family Cruciferae. Bull Appl Bot Genet Pl Breed 175:3–166

    Google Scholar 

  • Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8

    Article  CAS  Google Scholar 

  • Soengas P, Vicente JG, Pole JM, Pink DAC (2007) Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet 114:637–645

    Article  CAS  PubMed  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1988a) Brassica taxonomy based on nuclear restriction fragment length polymorphism (RFLPs). 1. Genome evolution of diploid and amphidiploids species. Theor Appl Genet 75:784–794

    Article  CAS  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1988b) Brassica taxonomy based on nuclear restriction fragment length polymorphism (RFLPs). 2. Preliminary analysis of sub-species within B.rapa (syn. campestris) and B. oleracea. Theor Appl Genet 76:593–600

    Article  CAS  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Genet 76:497–506

    Google Scholar 

  • Song K, Slocum MK, Osborn TC (1995) Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. campestris). Theor Appl Genet 90:1–10

    CAS  Google Scholar 

  • Song KM, Suzuki JY, Slocum MK, Williams PH, Osborn TC (1991) A linkage map of Brassica rapa base on restriction fragment length polymorphism loci. Theor Appl Genet 82:296–304

    Article  CAS  Google Scholar 

  • Stringam GR (1980) Inheritance in seed color in turnip rape. Can J Plant Sci 60:331–335

    Article  Google Scholar 

  • Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Iketani H, Nunome T, Ohyama A, Hirai M, Fukuoka H (2004a) Characteristics of microsatellites in Brassica rapa genome and their potentials of utilization for comparative genomics in cruciferae. Breed Sci 54:85–90

    Article  CAS  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Konodo M, Nunome T, Fukuoka H, Hirai M, Matsumoto S (2004b) Joint meeting of the 14th Crucifer Genetics Workshop and the 4th ISHS Symposium on Brassicas 2004, Chungnam National University Daejeon, Korea October 24–28, pp 143

    Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Nunome T, Fukuoka H, Matsumoto S, Hirai M (2003) Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor Appl Genet 107:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319

    Article  CAS  PubMed  Google Scholar 

  • Takahata Y (1997) Microspore culture. In: Kalia HR & Guputa SK (eds) Recent advances in oilseed Brassicas, pp 162–181. Kalyani Publisher, Ludhiana

    Google Scholar 

  • Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131:3027S–3033S

    CAS  PubMed  Google Scholar 

  • Tanhuanpaa PK (2004) Identification and mapping of resistance gene analogs and white rust resistance locus in Brassica rapa ssp. oleifera. Theor Appl Genet 108:1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Tanhuanpaa PK, Schulman A (2002) Mapping of genes affecting linolenic acid content in Brassica rapa ssp. oleifera. Mol Breed 10:51–62

    Article  Google Scholar 

  • Tanhuanpaa PK, Vilkke JP, Vikki HJ (1996b) Mapping a QTL for oleic acid concentration in spring turnip rape (Brassica rapa ssp. oleifera). Theor Appl Genet 92:952–956

    Article  CAS  Google Scholar 

  • Tanhuanpaa P, Vilkki J, Vihinen M (1998) Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape (Brassica rapa ssp. oleifera). Mol Breed 4:543–550

    Article  CAS  Google Scholar 

  • Tanhuanpaa PK, Vilkki JP, Vilkki HJ (1995) Association of RAPD marker with linolenic acid concentration in the seed oil of rapeseed (B. napus L). Genome 38:414–416

    Article  CAS  PubMed  Google Scholar 

  • Tanhuanpaa PK, Vilkki JP, Vilkki HJ (1996a) A linkage map of spring turnip rape based on RFLP and RAPD markers. Agric Food Sci Finl 5:209–217

    CAS  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding. new tools for an old science. Bio/Technology 7:257–264

    Article  CAS  Google Scholar 

  • Taylor JD, Conway J, Roberts SJ, Astley D, Vicente JG (2002) Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92:105–111

    Article  CAS  PubMed  Google Scholar 

  • Teutonico RA, Osborn TC (1994) Mapping of RFLP and quantitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea and Arabidopsis thaliana. Theor Appl Genet 89:885–894

    Article  CAS  Google Scholar 

  • Teutonico RA, Osborn TC (1995) Mapping loci controlling vernalization requirement in Brassica rapa. Theor Appl Genet 91:1279–1283

    Article  CAS  Google Scholar 

  • Thormann CE, Ferreira ME, Carmago LEA, Tivang JG, Osborn TC (1994) Comparison of RFLP and RAPD markers to estimate genetic relationships within and among cruciferous species. Theor Appl Genet 88:973–980

    Article  Google Scholar 

  • Tiwari AS, Petrie GA, Downey RK (1988) Inheritance of resistance to Albugo candida race 2 in mustard (Brassica juncea (L.)Czern.). Can J Plant Sci 68:297–300

    Article  Google Scholar 

  • Tjallingii F (1965) Testing clubroot resistance in turnips in Netherlands and the physiologic specialization of Plasmodiophora brassicae. Euphytica 14:1–22

    Google Scholar 

  • Toxopeus H, Janssen AMP (1975) Clubroot resistance in turnip. II. The slurry screening method and the clubroot races in the Netherlands. Euphytica 24:751–755

    Article  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Vavilov NI (1949) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–364

    Google Scholar 

  • Verma U, Bhowmik TP (1989) Inheritance of resistance to a Brassica juncea pathotype of Albugo candida in B. napus. Can J Plant Pathol 11:443–444

    Article  Google Scholar 

  • Verma PR, Harding H, Petrie GA, Williams PH (1975) Infection and temporal development of mycelium of Albugo candida in cotyledons of four Brassica species. Can J Bot 53: 1016–1020

    Article  Google Scholar 

  • Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3:289–300

    Article  CAS  PubMed  Google Scholar 

  • Walsh JA, Sharpe AG, Jenner CE, Lydiate DJ (1999) Characterization of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor Appl Genet 99:1149–1154

    Article  CAS  Google Scholar 

  • Wang M, Zhang FL, Meng XD, Liu XC, Zhao XY, Fan ZC (2004) A linkage map construction for Chinese cabbage based on AFLP markers using DH population. Acta Agric Boreali-Sin 19:28–33

    Google Scholar 

  • Williams PH (1980) Black rot: a continuing threat to world crucifers. Plant Dis 64:736–742

    Article  Google Scholar 

  • Williams PH, Hill CB (1986) Rapid cycling populations of Brassica. Science 232:1385–1389

    Article  CAS  PubMed  Google Scholar 

  • Wit F (1964) Inheritance of reaction to clubroot in turnips. Hort Res 5:47–49

    Google Scholar 

  • Wit F, Van de Weg M (1964) Clubroot resistance in turnips (Brassica campestris L.) I. Physiological races of the parasite and their identification in mixtures. Euphytica 13:9–18

    Article  Google Scholar 

  • Wu J, Schat H, Sun RF, Koornneef M, Wang XW, Aarts MGM (2007) Characterization of natural variation for zinc, iron and manganese accumulation and zinc exposure response in Brassica rapa L. Plant Soil 291:167–180

    Article  CAS  Google Scholar 

  • Wu J, Yuan YX, Zhang ZW, Zhao J, Song X, Li Y, Li X, Sun R, Koorneef M, Aaarts MGM, Wang XW (2008) Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Soil 310:25–40

    Article  CAS  Google Scholar 

  • Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS (2006) Sequence-Level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Yarnell SH (1956) Cytogenetics of the vegetable crops. Crucifers Bot Rev 22:81–166

    Article  Google Scholar 

  • Yoshikawa H (1981) Breeding for clubroot resistance in Chinese cabbage. In: Talekar NS, Griggs TD (eds) Chinese cabbage. Proceedings of the 1st international symposium, Tsukuba, Japan, pp 405–413

    Google Scholar 

  • Yoshikawa H (1993) Studies on breeding of clubroot resistance in cole crops. Bull Natl Res Inst Veg Ornam Plants Tea Jpn Ser A 7:1–165

    Google Scholar 

  • Yu SC, Wang YJ, Zheng XY (2003a) A genetic linkage map of Brassica campestris L. ssp. pekinensis (syn. B. rapa L. ssp. pekinensis). Agric Sci China 2:49–55

    Google Scholar 

  • Yu SC, Wang YJ, Zheng XY (2003b) Mapping and analysis QTL controlling heat tolerance in Brassica campestris L. ssp. pekinensis. Acta Hortic Sin 30:417–420

    Google Scholar 

  • Yu SC, Wang YJ, Zheng XY (2003c) Mapping and analysis QTL controlling some morphological traits in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Acta Genet Sin 30:1153–1160

    CAS  PubMed  Google Scholar 

  • Zhang LG (1999) Construction of molecular genetic map and location of QTLs in Brassica campestris by F2 population of turnip × Chinese cabbage. Ph.D. Thesis. Northwest Agricultural University, Yangling, Shanxi Province, China

    Google Scholar 

  • Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty PBE, Li G (2008) Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol. doi:10.1007/s11103-008-9437–y

    Google Scholar 

  • Zhang LG, Wang M, Chen H (2000) Construction of RAPDs molecular genetic map of Chinese cabbage. Acta Bot Sin 42(5):485–489

    CAS  Google Scholar 

  • Zhao JY, Becker HC (1998) Genetic variation in Chinese and European oilseed rape (B. napus) and turnip rape (B. campestris) analysed with isozymes. Acta Agron Sin 24:213–220

    Google Scholar 

  • Zhao JJ, Bonnema G, Wang XW, Xu ZY, Sun RF, Vreugdenhil D, Koorneef M(2004a) Genetic dissection of quality traits in Brassica rapa species for improved human health. In: joint meeting of the 14th Crucifer Genetics Workshop and 4th ISHS Symposium on Brassicas, 2004, Chungnam National University, Daejeon, Korea, 24–28 Oct, 2004, P112

    Google Scholar 

  • Zhao J, Wang X, Deng B, Lou P, Wu J, Sun R, Xu Z, Vromans J, Koornneef M, Bonnema G (2005) Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theor Appl Genet 110:1301–1314

    Article  PubMed  Google Scholar 

  • Zhao JJ, Wang XW, Deng B, Lou P, Wu J, Sun RF, Xu ZY, Vroomans J, Koorneef M, Bonnema G (2004b) Phylogenetic relationships within Brassica rapa inferred from AFLP fingerprints. In: joint meeting of the 14th Crucifer Genetics Workshop and 4th ISHS Symposium on Brassicas, 2004, Chungnam National University, Daejeon, Korea, 24–28 Oct, 2004, P128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Pyo Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ramchiary, N., Lim, Y.P. (2011). Genetics of Brassica rapa L.. In: Schmidt, R., Bancroft, I. (eds) Genetics and Genomics of the Brassicaceae. Plant Genetics and Genomics: Crops and Models, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7118-0_8

Download citation

Publish with us

Policies and ethics