Skip to main content

Resources for Reverse Genetics Approaches in Brassica Species

  • Chapter
  • First Online:
Genetics and Genomics of the Brassicaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 9))

Abstract

Gene, genomic and genome sequences are being generated with incredible speed, thanks to the advent of cheaper and faster sequencing technologies. For plants, the Arabidopsis thaliana (Col-0) genome was sequenced in its entirety in 2000, and a number of whole-genome sequences in additional A. thaliana ecotypes have been completed since then, providing an amazing resource for functional genomics in this species. Although Arabidopsis is still the only genus of the Brassicaceae family to have its genome completely sequenced, a multinational effort is currently ongoing to obtain first the sequence of the A genome (Brassica rapa) and ultimately all the cultivated Brassicas of the “U triangle”. The obvious challenge is therefore what to do with this massive amount of information. How does these data expand our knowledge of plant biology or aid in the development of tools for crop improvement? In this chapter we will describe the current status of the principal resources available for reverse genetics approaches in the Brassica genus, TILLING and RNAi, and discuss their advantages and disadvantages for the study of plant biology and the development of tools for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso JM, Stepanova AN (2003) T-DNA mutagenesis in Arabidopsis. Methods Mol Biol 236:177–188

    CAS  PubMed  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A et al (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    Article  CAS  PubMed  Google Scholar 

  • Bartlett JG, Alves SC, Smedley M et al (2008) High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4:22

    Article  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE 1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004a) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004b) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  CAS  PubMed  Google Scholar 

  • Bleys A, Van Houdt H, Depicker A (2006a) Down-regulation of endogenes mediated by a transitive silencing signal. Rna-a Publication of the Rna Society 12:1633–1639

    CAS  Google Scholar 

  • Bleys A, Vermeersch L, Van Houdt H et al (2006b) The frequency and efficiency of endogene suppression by transitive silencing signals is influenced by the length of sequence homology. Plant Physiol 142:788–796

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB et al (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Schiff M, Liu Y et al (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142:21–27

    Article  CAS  PubMed  Google Scholar 

  • Byzova M, Verduyn C, De Brouwer D et al (2004) Transforming petals into sepaloid organs in Arabidopsis and oilseed rape: implementation of the hairpin RNA-mediated gene silencing technology in an organ-specific manner. Planta 218:379–387

    Article  CAS  PubMed  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P et al (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150

    Article  CAS  PubMed  Google Scholar 

  • Carmell MA, Xuan Z, Zhang MQ et al (2002) The Argonaute family:tentacles that reach into RNAi, developmental control, stem cell maintainance, and tumorigenesis. Genes Dev 16:2733–2742

    Article  CAS  PubMed  Google Scholar 

  • Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990

    Article  CAS  PubMed  Google Scholar 

  • Cooper JL, Till BJ, Laport RG et al (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9

    Article  PubMed  Google Scholar 

  • Craft J, Samalova M, Baroux C et al (2005) New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J 41:899–918

    Article  CAS  PubMed  Google Scholar 

  • Dalmais M, Schmidt J, Le Signor C et al (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 9:R43

    Article  PubMed  Google Scholar 

  • Dalmay T, Hamilton A, Rudd S et al (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553

    Article  CAS  PubMed  Google Scholar 

  • Duan CG, Wang CH, Fang RX et al (2008) Artificial MicroRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11095

    Article  CAS  PubMed  Google Scholar 

  • Eamens A, Wang MB, Smith NA et al (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    Article  CAS  PubMed  Google Scholar 

  • Eason JR, Ryan DJ, Watson LM et al (2005) Suppression of the cysteine protease, aleurain, delays floret senescence in Brassica oleracea. Plant Mol Biol 57:645–657

    Article  CAS  PubMed  Google Scholar 

  • Ecker JR, Davis RW (1986) Inhibition of gene expression in plant cells by expression of antisense RNA. Proc Natl Acad Sci USA 83:5372–5376

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Fusaro AF, Matthew L, Smith NA et al (2006) RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7:1168–1175

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist EJ, O’Neil NJ, Rose AM et al (2006) TILLING is an effective reverse genetics technique for Caenorhabditis elegans. BMC Genomics 7:262

    Article  PubMed  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    CAS  PubMed  Google Scholar 

  • Hamilton A, Voinnet O, Chappell L et al (2002) Two classes of short interfering RNA in RNA silencing. Embo J 21:4671–4679

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2:110–119

    Article  CAS  PubMed  Google Scholar 

  • Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30:289–295

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Waterhouse PM (2005) Constructs and methods for hairpin RNA-mediated gene silencing in plants. Methods Enzymol 392:24–35

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Wesley SV, Wielopolska AJ et al (2002) High-throughput vectors for efficient gene silencing in plants. Funct Plant Biol 29:1217–1225

    Article  CAS  Google Scholar 

  • Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636

    Article  CAS  PubMed  Google Scholar 

  • Hirai S, Oka S, Adachi E et al (2007) The effects of spacer sequences on silencing efficiency of plant RNAi vectors. Plant Cell Rep 26:651–659

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi G (2004) RNA silencing in plants: a shortcut to functional analysis. Differentiation 72:65–73

    Article  CAS  PubMed  Google Scholar 

  • Jadhav A, Katavic V, Marillia EF et al (2005) Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metabolic Eng 7:215–220

    Article  CAS  Google Scholar 

  • Jones L, Hamilton AJ, Voinnet O et al (1999) RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11:2291–2301

    Article  CAS  PubMed  Google Scholar 

  • Kasschau KD, Fahlgren N, Chapman EJ et al (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5:e57

    Article  PubMed  Google Scholar 

  • Koornneef M (2002) Classical mutagenesis in higher plants. In: Gilmartin PM, Bowler C (eds) Molecular plant biology, vol 1, pp 1–11. Oxford, GB, Oxford University Press

    Google Scholar 

  • Koornneef M, Dellaert LMW, van der Veen JH (1982) EMS-induced and radiation-induced mutation frequencies at individual loci in Arabidopsis-thaliana (L) Heynh. Mutat Res 93:109–123

    CAS  PubMed  Google Scholar 

  • Liljegren SJ, Roeder AH, Kempin SA et al (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116:843–853

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Ruan X, Anderson MG et al (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 33:4527–4535

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002a) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Marathe R et al (2002b) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Singh SP, Green AG (2002) High-stearic and High-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol 129:1732–1743

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Martin-Hernandez AM, Peart JR et al (2003) Virus-induced gene silencing in plants. Methods 30:296–303

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A et al (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  CAS  PubMed  Google Scholar 

  • McCallum CM, Comai L, Greene EA et al (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  CAS  PubMed  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  PubMed  Google Scholar 

  • Mietkiewska E, Hoffman TL, Brost JM et al (2008) Hairpin-RNA mediated silencing of endogenous FAD2 gene combined with heterologous expression of crambe abyssinica FAE gene causes an increase in the level of erucic acid in transgenic Brassica carinata seeds. Mol Breed 22:619–627

    Article  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone syntahse gene into petunia results in revesible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  Google Scholar 

  • Niu QW, Lin SS, Reyes JL et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Oleykowski CA, Bronson Mullins CR, Godwin AK et al (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602

    Article  CAS  PubMed  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  CAS  PubMed  Google Scholar 

  • Østergaard L, Kempin SA, Bies D et al (2006) Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol J 4:45–51

    Article  PubMed  Google Scholar 

  • Østergaard L, King GJ (2008) Standardized gene nomenclature for the Brassica genus. Plant Methods 4:10

    Article  PubMed  Google Scholar 

  • Penmetsa RV, Cook DR (2000) Production and characterization of diverse developmental mutants of Medicago truncatula. Plant Physiol 123:1387–1398

    Article  CAS  PubMed  Google Scholar 

  • Perry JA, Wang TL, Welham TJ et al (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871

    Article  CAS  PubMed  Google Scholar 

  • Petersen BO, Albrechtsen M (2005) Evidence implying only unprimed RdRP activity during transitive gene silencing in plants. Plant Mol Biol 58:575–583

    Article  CAS  PubMed  Google Scholar 

  • Pflieger S, Blanchet S, Camborde L et al (2008) Efficient virus-induced gene silencing in Arabidopsis using a “one-step” TYMV-derived vector. Plant J 56:678–690

    Article  CAS  PubMed  Google Scholar 

  • Piccin A, Salameh A, Benna C et al (2001) Efficient and heritable functional knock-out of an adult phenotype in Drosophila using a GAL4-driven hairpin RNA incorporating a heterologous spacer. Nucleic Acids Res 29:E55–55

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, He X, Wang XJ, Kohany O, Jurka J, Hannon GJ (2006) Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443:1008–1012

    Article  PubMed  Google Scholar 

  • Ratcliff FG, MacFarlane SA, Baulcombe DC (1999) Gene silencing without DNA. RNA-mediated cross-protection between viruses. Plant Cell 11:1207–1216

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M et al (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M et al (2005) Specific effects of MicroRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Shivaprasad PV, Rajeswaran R, Blevins T, Schoelz J, Meins F Jr, Hohn T, Pooggin MM (2008) The CaMV transactivator/viroplasmin interferes with RDR6-dependent trans-acting and secondary siRNA pathways in Arabidopsis. Nucleic Acids Res 36:5896–5909

    Article  CAS  PubMed  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D et al (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  CAS  PubMed  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Small I (2007) RNAi for revealing and engineering plant gene functions. Curr Opin Biotechnol 18:148–153

    Article  CAS  PubMed  Google Scholar 

  • Stoutjesdijk PA, Singh SP, Liu Q et al (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731

    Article  CAS  PubMed  Google Scholar 

  • Sundaresan V, Springer P, Volpe T et al (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 15:1797–1810

    Article  Google Scholar 

  • Till BJ, Cooper J, Tai TH et al (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    Article  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA et al (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    Article  CAS  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Weil C et al (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12

    Article  PubMed  Google Scholar 

  • Turnage MA, Muangsan N, Peele CG et al (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. Plant J 30:107–114

    Article  CAS  PubMed  Google Scholar 

  • van der Krol AR, Lenting PE, Veenstra J et al (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866–869

    Article  Google Scholar 

  • van der Krol AR, Mur LA, Beld M et al (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to suppression of gene expression. Plant Cell 2:291–299

    Article  PubMed  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Wang Y, Tian F et al (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180:751–765

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  CAS  PubMed  Google Scholar 

  • Watson JM, Fusaro AF, Wang M et al (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987

    Article  CAS  PubMed  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  • Wielopolska A, Townley H, Moore I et al (2005) A high-throughput inducible RNAi vector for plants. Plant Biotechnol J 3:583–590

    Article  CAS  PubMed  Google Scholar 

  • Winkler S, Schwabedissen A, Backasch D et al (2005) Target-selected mutant screen by TILLING in Drosophila. Genome Res 15:718–723

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM et al (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104

    Article  PubMed  Google Scholar 

  • Xu P, Zhang Y, Kang L et al (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol 142:429–440

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Lydiate DJ, Young LW et al (2008) Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res 17:573–585

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Ghabrial SA (2006) Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 344:401–411

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yang C, Whitham SA et al (2009) Development and Use of an Efficient DNA-Based Viral Gene Silencing Vector for Soybean. Mol Plant Microbe Interact 22:123–131

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wood, T., Stephenson, P., Østergaard, L. (2011). Resources for Reverse Genetics Approaches in Brassica Species. In: Schmidt, R., Bancroft, I. (eds) Genetics and Genomics of the Brassicaceae. Plant Genetics and Genomics: Crops and Models, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7118-0_20

Download citation

Publish with us

Policies and ethics