Skip to main content

Transformation Technology in the Brassicaceae

  • Chapter
  • First Online:
Genetics and Genomics of the Brassicaceae

Abstract

With the accelerating advances in Brassicaceae genetics and genomics, transformation technologies are now routinely being exploited to elucidate gene function as well as contributing to the development of novel enhanced crops. Agrobacterium-mediated transformation remains the most broadly used approach for the introduction of transgenes into Brassicaceae. For Arabidopsis thaliana, in planta transformation is now routinely employed using the relatively low-tech approach of floral dipping. The relative ease of producing independent transgenic lines using this approach has been exploited to create T-DNA insertion mutants or knockout lines for most Arabidopsis genes. In Brassica, transformation relies mainly on in vitro transformation methods, and yet despite the significant progress made towards enhancing transformation efficiencies, some genotypes remain recalcitrant to transformation. Advances in our understanding of the genetics behind transformation have enabled researchers to identify more readily transformable genotypes for use in routine high-throughput systems. These developments open up exciting new avenues to exploit model Brassica genotypes as resources for understanding gene function in complex genomes. Although many other Brassicaceae have served as model species for improving plant regeneration and transformation systems, this chapter focuses on the recent technologies employed for both Arabidopsis and Brassica transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    N.B the efficiencies reported in this section are based on either the percentage of explants giving rise to viable transgenic shoots or the percentage of explants giving rise to transgenic rooted plants. All methods successfully generated fertile transgenic plants.

  2. 2.

    This was the case as of 2008 within the EU, but still remains a contentious issue.

References

  • Alaska-Kennedy Y, Yoshida H, Takahata Y (2005) Efficient plant regeneration from leaves of rapeseed (Brassica napus L.): the influence of AgNO3 and genotype. Plant Cell Rep 24:649–654

    Article  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ (2003) Genomewide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Altmann T, Damm B, Frommer WB, Martin T, Morris PC, Schweizer D, Willmitzer L, Schmidt R (1994) Easy determination of ploidy level in Arabidopsis thaliana plants by means of pollen size measurement. Plant Cell Rep 13: 652–656

    Google Scholar 

  • An, G, Watsen BD, Chiang CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305

    Article  CAS  PubMed  Google Scholar 

  • Babic V, Datla RS, Scoles GJ, Keller WA (1998) Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Rep 17:183–188

    Article  CAS  Google Scholar 

  • Bailey MA, Boerma HR, Parrott WA (1994) Inheritance of Agrobacterium tumefaciens-induced tumorigenesis of soybean. Crop Sci 34:514–519

    Article  Google Scholar 

  • Barfield DG, Pua EC (1991) Gene transfer in plants of Brassica juncea using Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep 10:308–314

    Article  CAS  Google Scholar 

  • Barsby TL, Yarrow SA, Shepard JF (1986) A rapid and efficient alternative procedure for the regeneration of plants from hypocotyl protoplasts of Brassica napus. Plant Cell Rep 5:101–103

    Article  Google Scholar 

  • Bartholmes C, Nutt P, Theiβen G (2008) Germline transformation of Shepherd’s purse (Capsella bursa-pastoris) by the ‘floral dip’ method as a tool for evolutionary and developmental biology. Gene 409:11–19

    Article  CAS  PubMed  Google Scholar 

  • Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA (2008) High throughput agrobacterium-mediated barley transformation. Plant Methods 4:22

    Article  PubMed  CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptes Rendus de l’Académie des Sciences, Sciences de la Vie 316:1194–1199

    CAS  Google Scholar 

  • Bent A (2006) Arabidopsis thaliana floral dip transformation method. In: Wang K (ed) Agrobacterium Protocols, 2nd edn. Humana press, Totowa, NJ

    Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  CAS  PubMed  Google Scholar 

  • Bhalla PL, Singh M (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 2:181–189

    Article  CAS  Google Scholar 

  • Bhalla PL, Smith N (1998) Agrobacterium-mediated transformation of Australian cultivars of cauliflowers, Brassica oleracea var botrytis. Mol Breed 4:531–541

    Article  CAS  Google Scholar 

  • Bliss FA, Almehdi AA, Dandekar AM, Schuerman PL, Bellaloui N (1999) Crown gall resistance in accessions of 20 Prunus species. HortScience 34:206–209

    Google Scholar 

  • Burnett L, Arnoldo M, Yarrow S, Huang B (1994) Enhancement of shoot regeneration from cotyledon explants of Brassica rapa ssp. oleifera through pretreatment with auxin and cytokinin and use of ethylene inhibitors. Plant Cell Tissue Organ Cult 37:253–256

    CAS  Google Scholar 

  • Byzova M, Verduyn C, de Brouwer D, de Block M (2004) Transforming petals into sepaloid organs in Arabidopsis and oilseed rape: implementation of the hairpin RNA mediated gene silencing technology in an organ-specific manner. Planta 218:379–387

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED (1999) Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Mol Breed 5:131–141

    Article  CAS  Google Scholar 

  • Cardoza V, Stewart N (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599–604

    CAS  PubMed  Google Scholar 

  • Cardoza V, Stewart N (2004) Invited review: Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev Biol Plant 40:542–551

    Article  CAS  Google Scholar 

  • Cardoza V, Stewart N (2006) Canola (Brassica napus L.). In: Wang K (ed) Agrobacterium protocols, 2nd edn. Methods in molecular biology 343, vol 1. Humana Press, Totowa, NJ

    Google Scholar 

  • Chandler J, Corbesier L, Spielmann P, Dettendorfer J, Stahl D, Apel K, Melzer S (2005) Modulating flowering time and preventing pod shatter in oilseed rape. Mol Breed 15:87–94

    Article  Google Scholar 

  • Chi GL, Barfield DG, Sim GE, Pua EC (1990) Effect of AgNO3 and aminovinylglycine on in vitro shoot and root organogenesis from seedling explants of recalcitrant Brassica genotypes. Plant Cell Rep 9:195–198

    Article  CAS  Google Scholar 

  • Chi GL, Pua EC (1989) Ethylene inhibitors enhanced de novo shoot regeneration from cotyledons of Brassica campestris ssp. chinensis (Chinese cabbage) in vitro. Plant Sci 64:243–250

    Article  CAS  Google Scholar 

  • Cho H, Cao J, Ren J, Earle E (2001) Control of lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. Pekinensis) transformed with a synthetic bacillus thuringiensis cry1C gene. Plant Cell Rep 20:1–7

    Article  CAS  Google Scholar 

  • Christey MC (2001) Use of RI-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700

    Article  CAS  Google Scholar 

  • Christey MC, Braun RH (2007) Vegetable Brassicas. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants. Vegetable crops, vol 7. Wiley-Blackwell

    Google Scholar 

  • Christey MC, Braun RH, Reader JK (1999) Field performance of transgenic vegetable Brassicas (B. oleracea and B. rapa) transformed with Agrobacterium rhizogenes. Sabrao. J Breed Genet 31:93–108

    Google Scholar 

  • Christey MC, Earle ED (1991) Regeneration of Brassica oleracea from peduncle explants. HortScience 26:1069–1072

    Google Scholar 

  • Christey MC, Sinclair BK (1992) Regeneration of transgenic kale (Brassica oleracea var. acephala), rape (B. napus) and turnip (B. campestris var. rapifera) plants via Agrobacterium rhizogenes mediated transformation. Plant Sci 82:161–192

    Article  Google Scholar 

  • Christey MC, Sinclair BK, Braun RH, Wyke L (1997) Regeneration of transgenic vegetable brassicas (Brassica oleracea and B. campestris) via Ri-mediated transformation. Plant Cell Rep 16:587–593

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cogan NOI, Newbury HJ, Oldacres AM, Lynn JR, Kearsey MJ, King GJ, Phuddephat IJ (2004) Identification and characterization of QTL controlling Agrobacterium mediated transient and stable transformation of Brassica oleracea. Plant Biotechnol J 2:59–69

    Article  CAS  PubMed  Google Scholar 

  • Collier R, Fuchs B, Walter N, Lutke WK, Taylor CG (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449–457

    Article  CAS  PubMed  Google Scholar 

  • Damm B, Scmidt R, Willmitz L (1989) Efficient transformation of Arabidopsis thaliana using direct gene transfer to protoplasts. Mol Gen Genet 217:6–12

    Article  CAS  PubMed  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  CAS  PubMed  Google Scholar 

  • David C, Tempe J (1988) Genetic transformation of cauliflower (Brassica oleracea L. var. Botrytis) by Agrobacterium rhizogenes. Plant Cell Rep 7:88–91

    Article  CAS  Google Scholar 

  • De Block M, Tenning P, de Brouwer D (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol 91:694–701

    Article  PubMed  Google Scholar 

  • DeCook R, Lall S, Nettleton D, Howell S (2006) Genetic regulation of gene expression during shoot development in Arabisopsis. Genetics 172:1155–1164

    Article  CAS  PubMed  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895–904

    Article  CAS  PubMed  Google Scholar 

  • Dhinrga A, Portis AR, Daniell H (2004) Enhanced translation of a chloroplast expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. Proc Natl Acad Sci USA 101(6315):6320

    Google Scholar 

  • Eapen S, George L (1996) Enhancement in shoot regeneration from leaf discs of Brassica juncea L. Czern and Coss by silver nitrate and silver thiosulfate. Physiol Mol Biol Plants 2:83–86

    Google Scholar 

  • Eapen S, George L (1997) Plant regeneration from peduncle segments of oil seed Brassica species: influence of silver nitrate and silver thiosulfate. Plant Cell Tissue Organ Cult 51:228–232

    Article  Google Scholar 

  • Eason JR, Ryan DJ, Watson LM, Hedderley D, Christey MC, Braun RH, Coupe SA (2005) Suppression of the cysteine protease, aleurain, delays floret and leaf senescence in Brassica oleracea. Plant Mol Biol 57:645–657

    Article  CAS  PubMed  Google Scholar 

  • Ecker JR, Davis RW (1986) Inhibition of gene-expression in plant-cells by expression of antisense RNA. Proc Natl Acad Sci USA 83:5372–5376

    Article  CAS  PubMed  Google Scholar 

  • Eimert K, Siegemund F (1992) Transformation of cauliflower (Brassica oleracea L. var. botrytis) – an experimental survey. Plant Mol Biol 19:485–490

    Article  CAS  PubMed  Google Scholar 

  • Feldman KA, Marks MD (1987) Agrobacterium mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208:1–9

    Article  Google Scholar 

  • Ferrándiz C, Liljegren SJ, Yanofky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436–438

    Article  PubMed  Google Scholar 

  • Fobis-Loisy I, Chambrier P, Gaude T (2007) Genetic transformation of Arabidopsis lyrata: specific expression of the green fluorescent protein (GFP) in pistil tissues. Plant Cell Rep 26:745–753

    Article  CAS  PubMed  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulating microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Gasic K, Korban SS (2006) Indian mustard [Brassica juncea (L.) Czern]. In: Wang K (ed) Agrobacterium Protocols, 2nd edn. Humana Press, Totowa, NJ

    Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  PubMed  Google Scholar 

  • Glimelius K (1984) High growth rate and regeneration capacity of hypocotyl protoplasts in some Brassicaceae. Physiol Plant 61:38–44

    Article  CAS  Google Scholar 

  • Gupta V, Lakshmi Sita G, Shaila MS, Jagannathan V (1993) Genetic transformation of Brassica nigra by Agrobacterium based vector and direct plasmid uptake. Plant Cell Rep 12:418–421

    Article  CAS  Google Scholar 

  • Halfhill M, Millwood RJ, Raymer PL, Stewart C Jr (2002) Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa. Environ Biosafety Res 1:19–28

    Article  PubMed  Google Scholar 

  • Hellens R, Mullineaux P, Klee H (2000) Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5(10):446–451

    Article  CAS  PubMed  Google Scholar 

  • Hoekema A, Hirsch P, Hooykaas P, Schilperoort R (1983) A binary plant vector strategy based on separate vir and T region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T DNA. J Bacteriol 168:1291–1301

    CAS  PubMed  Google Scholar 

  • Horiguchi G (2004) RNA silencing in plants: a shortcut to functional analysis. Differentiation 72:65–73

    Article  CAS  PubMed  Google Scholar 

  • Hou B, Zhou Y, Wan L, Zhang Z, Shen G, Chen Z, Hu, Z (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111–114

    Article  CAS  PubMed  Google Scholar 

  • James C (2007) Global status of commercialized biotech/GM crops: Brief No. 37. ISAAA, Ithaca, NY

    Google Scholar 

  • Jin RG, Liu YB, Tabashnik BE, Borthakur D (2000) Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by Agrobacterium tumefaciens-mediated transformation. In Vitro Cell Dev Biol Plant 36:231–237

    Article  CAS  Google Scholar 

  • Jones JDG, Shlumukov L, Carland F, English J, Scofield SR, Bishop GJ, Harrison K (1992) Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res 1:285–297

    Article  CAS  PubMed  Google Scholar 

  • Kamal GB, Lllich KG, Asadollah A (2007) Effects of genotype, explant type and nutrient medium components on canola (Brassica napus L.) shoot in vitro organogenesis. Afr J Biotechnol 6:861–867

    CAS  Google Scholar 

  • Keller WA, Armstrong KC (1977) Embryogenesis and plant regeneration in Brassica napus anther cultures. Can J Bot 55:1383–1388

    Article  Google Scholar 

  • Ketaeva NV, Alexandrova IG, Butenko RG, Dragavtceva EV (1991) Effect of applied and internal hormones on vitrification and apical necrosis of different plants cultured in vitro. Plant Cell Tissue Organ Cult 27:149–154

    Article  Google Scholar 

  • King GJ (2006) Utilization of Arabidopsis and Brassica genomic resources to underpin genetic analysis and improvement of Brassica crops. In: Varshney RK, Koebner RMD (eds) Model plants: crop improvement. CRC Press, Boca Raton, FL

    Google Scholar 

  • Klimazewska K, Keller WA (1985) High frequency plant regeneration from thin cell layer explants of Brassica napus. Plant Cell Tissue Organ Cult 4:83–197

    Article  Google Scholar 

  • Kojima M, Sparthana P, Teixeira da Silva JA, Nogawa M (2006) Development of in planta transformation methods using Agrobacterium tumefaciens. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol II, 1st edn. Global Science Books, Isleworth, UK

    Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  CAS  PubMed  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Kuvshinov V, Koivu K, Kanera A, Perhu E (1999) Agrobacterium tumefaciens mediated transformation of greenhouse-grown Brassica rapa ssp. Oleifera. Plant Cell Rep 18:733–777

    Article  Google Scholar 

  • Lall S, Nettleton D, Decook R, Che P, Howell S (2004) Quantitative trait loci associated with adventitious shoot formation in tissue culture and the program of shoot development in Arabidopsis. Genetics 167:1883–1892

    Article  CAS  PubMed  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation−competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Kim HS, Kim JS, Kim SH, Park YD (2004) Agrobacterium-mediated transformation system for large-scale production of transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) plants for insertional mutagenesis. J Plant Biol 47:300–306

    Article  CAS  Google Scholar 

  • Lee JH, Park SH, Lee JS, Ahn JH (2007) A conserved role of SHORT VEGETATIVE PHASE (SVP) in controlling flowering time of Brassica plants. Biochim Biophys Acta 1769:455–461

    CAS  PubMed  Google Scholar 

  • Leyman B, Avonce N, Ramon M, Van Dijck P, Iturriaga G, Thevelein JM (2006) Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. J Biotechnol 121:309–317

    Article  CAS  PubMed  Google Scholar 

  • Litcher R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Plant Physiol (formally Z. Pflanzenphysiol) 105:427–434

    Google Scholar 

  • Liu F, Cao MQ, Yao L, Robaglia C, Tourneur C (1998) In Planta transformation of pakchoi (Brassica campestris L. ssp. chinensis) by infiltration of adult plants with Agrobacterium. Acta Hortic 467:187–192

    Google Scholar 

  • Liu C, Lin C, Chen JJW, Tseng M (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733–1744

    Article  CAS  PubMed  Google Scholar 

  • Lloyd AM, Barnason AR, Rogers SG, Byrne MC, Fraley RT, Horsch RB (1986) Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens. Science 234:464–466

    Article  CAS  PubMed  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  CAS  PubMed  Google Scholar 

  • Mauro AO, Pfeiffer TW, Collins GB (1995) Inheritance of soybean susceptibility to Agrobacterium tumefaciens and its relationship to transformation. Crop Sci 35:1152–1156

    Article  Google Scholar 

  • Mehra S, Pareek A, Bandyopadhyay P, Sharma P, Burma PK, Pental D (2000) Development of transgenics in Indian oilseed mustard (Brassica juncea) resistant to herbicide phosphinothricin. Curr Sci 78:1358–1364

    CAS  Google Scholar 

  • Metz T, Roush R, Tang J, Shelton A, Earle E (1995) Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies. Mol Breed 1:309–317

    Article  CAS  Google Scholar 

  • Mietkiewska E, Hoffman TL, Brost JM (2008) Hairpin-RNA mediated silencing of endogenous FAD2 gene combined with heterologous expression of crambe abyssinica FAE gene causes an increase in the level of erucic acid in transgenic Brassica carinata seeds. Mol Breed 22:619–627

    Article  CAS  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  CAS  PubMed  Google Scholar 

  • Moloney MM, Walker JM, Sharma KK (1989) High-efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238–242

    Article  CAS  Google Scholar 

  • Mukhopadhyay A, Topfer R, Pradhan AK, Sodhi YS, Steinbiss HH, Schell J, Pental D (1991) Efficient regeneration of Brassica oleracea hypocotyl protoplasts and high frequency genetic transformation by direct DNA uptake. Plant Cell Rep 10:375–379

    CAS  Google Scholar 

  • Murata M, Orton TJ (1987) Callus initiation and regeneration capacities in Brassica species. Plant Cell Tissue Organ Cult 11:111–123

    Article  Google Scholar 

  • Nam J, Mysore KS, Zheng C, Knue MK, Matthysse G, Gelvin SB (1999) Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol Gen Genet 261:429–438

    Article  CAS  PubMed  Google Scholar 

  • Nam J, Matthysse AG, Gelvin SB (1997) Diferences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9:317–333

    Google Scholar 

  • Narasimhulu SB, Chopra VL (1988a) Species specific shoot regeneration response of cotyledonary explants of Brassicas. Plant Cell Rep 7:104–106

    Article  Google Scholar 

  • Narasimhulu SB, Kirti PB, Mohapatra T, Prakash S, Chopra VL (1992) Shoot regeneration in stem explants and its amenability to Agrobacterium tumefaciens mediated gene transfer in Brassica carinata. Plant Cell Rep 11:359–362

    CAS  Google Scholar 

  • Narasimhulu SB, Prakash S, Chopra VL (1988b) Comparative shoot regeneration responses of diploid brassicas and their synthetic amphidiploid products. Plant Cell Rep 7:525–527

    Article  Google Scholar 

  • Nugent GD, Coyne S, Ngyuen TT, Kavanagh TA, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci 170:135–142

    Article  CAS  Google Scholar 

  • Ono Y, Takahata Y (2000) Genetic analysis of shoot regeneration from cotyledonary explants in Brassica napus. Theor Appl Genet 100:895–898

    Article  Google Scholar 

  • Ono Y, Takahata Y, Kaizuma N (1994) Effect of genotype on shoot regeneration from cotyledonary explants of rapeseed (Brassica napus L). Plant Cell Rep 14:13–17

    Article  CAS  Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol 1:12–20

    Google Scholar 

  • Østergaard L, Kempin SA, Bies D, Klee HJ, Yanofsky MF (2006) Pod shatter resistant fruit produced by ectopic expression of the FRUITFULL gene in Brassica juncea. Plant Biotechnol 4:45–51

    Article  CAS  Google Scholar 

  • Østergaard L, Yanofsky MF (2004) Establishing gene function by mutagenesis in Arabidopsis thaliana. Plant J 39:682–696

    Article  PubMed  CAS  Google Scholar 

  • Palmer CE (1992) Enhanced shoot regeneration from Brassica campestris by silver nitrate. Plant Cell Rep 11:541–545

    Article  CAS  Google Scholar 

  • Peng J, Hodes TK (1989) Genetic analysis of plant regeneration in rice (Oryza sativa). In Vitro Cell Dev Biol Plant 25:91–94

    Article  Google Scholar 

  • Phogat SK, Burma PK, Pental D (2006) High frequency regeneration of Brassica napus varieties and genetic transformation of stocks containing fertility restorer genes of two cytoplasmic male sterility systems. Plant Biochem Biotechnol 9:73–79

    Google Scholar 

  • Phogat SK, Burma PK, Pental D (2000) High frequency regeneration of Brassica napus varieties and genetic transformation stocks containing fertility restorer genes for two cytoplasmic male sterility systems. J Plant Biochem Biotechnol 9:73–79

    Google Scholar 

  • Price JS, Hobson RN, Neale MA, Bruce DM (1996) Seed losses in commercial harvesting of oilseed rape. J Agric Eng 65:83–191

    Google Scholar 

  • Pua EC, Chi GL (1993) De novo shoot morphogenesis and plant growth of mustard (Brassica juncea) in vitro in relation to ethylene. Physiol Plant 88:467–474

    Article  CAS  Google Scholar 

  • Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DAC (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol Breed 7:229–242

    Article  CAS  Google Scholar 

  • Puddephat IJ, Thompson N, Robinson HT Sandhu P, Henderson J (1999) Biolistic transformation of broccoli (Brassica oleracea var. Italica) for transient expression of the β-glucuronidase gene. J Hortic Sci Biotechnol 74:714–720

    CAS  Google Scholar 

  • Purity RS, Gautam K, Singla-Pareek SL (2008) Towards salinity tolerance in Brassica: an overview. Physiol Mol Biol Plants 14:39–49

    Article  Google Scholar 

  • Qing CM, Fan L, Lei Y, Bouchez D, Tourneur C, Yan L, Robaglia C (2000) Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol Breed 6:67–72

    Article  CAS  Google Scholar 

  • Radchuck V, Ryschka U, Schumann G, Klocke E (2002) Genetic transformation of cauliflower (Brassica oleracea var. botrytis) by direct DNA uptake into mesophyll protoplasts. Physiol Plant 114:429–438

    Article  Google Scholar 

  • Radke SE, Turner JC, Facciotti D (1992) Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens. Plant Cell Rep 11:499–505

    Article  Google Scholar 

  • Ramachandran S, Buntin G, All J, Raymer P, Stewart C Jr (1998a) Greenhouse and field evaluations of transgenic canola against diamondback moth, Plutella xylostella, and corn earworm, Helicoverpa zea. Entomol Exp Appl 88:17–24

    Article  Google Scholar 

  • Reed J, Privalle L, Luann Powell M, Meghji M, Dawson J, Dunder E, Sutthe J, Wenck A, Launis K, Kramer C, Chang YF, Hansen G, Wright M (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol Plant 37:127–132

    CAS  Google Scholar 

  • Schiantarelli E, De la Pena A, Candela M (2001) Use of recombinant inbred lines (RILs) to identify, locate and map major genes and quantitative trait loci involved with in vitro regeneration ability in Arabidopsis thaliana. Biomed Life Sci 102:335–341

    CAS  Google Scholar 

  • Schmidt R, Willmitzer L (1988) High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants. Plant Cell Rep 7:583–586

    Article  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial micoRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed  Google Scholar 

  • Sciaky D, Montoya AL, Chilton MD (1978) Fingerprints of Agrobacterium Ti plasmids. Plasmid 1:238–253

    Article  CAS  PubMed  Google Scholar 

  • Sikdar S, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24

    Article  CAS  Google Scholar 

  • Smith RH, Hood EE (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301–309

    Article  Google Scholar 

  • Somerville C, Koorneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3:883–889

    Article  CAS  PubMed  Google Scholar 

  • Sparrow PAC, Dale PJ, Irwin JA (2004a) The use of phenotypic markers to identify Brassica oleracea genotypes for routine high-throughput Agrobacterium-mediated transformation. Plant Cell Rep 23:64–70

    Article  CAS  PubMed  Google Scholar 

  • Sparrow PAC, Dale PJ, Irwin JA (2006b) Brassica oleracea. In: Wang K (ed) Agrobacterium Protocols, 2nd edn. Methods in molecular biology 343, vol 1. Humana Press, Totowa, NJ

    Google Scholar 

  • Sparrow PAC, Irwin JA, Goldsack CM, Østergaard L (2007) Brassica transformation: commercial application and powerful research tool. Transgenic Plant J 1:330–339

    Google Scholar 

  • Sparrow PAC, Snape JW, Dale PJ, Irwin JA (2006a) The rapid identification of B. napus genotypes, for high-throughput transformation, using phenotypic tissue culture markers. Acta Hortic 706:239–247

    Google Scholar 

  • Sparrow PAC, Townsend T, Dale PJ, Irwin JA (2004b) Genetic analysis of Agrobacterium tumefaciens susceptibility in Brasssica oleracea. Theor Appl Genet 108:664–650

    Google Scholar 

  • Sparrow PAC, Townsend T, Morgan CL, Arthur AE, Dale PJ, Irwin JA (2004c) Genetic analysis of in vitro shoot regeneration from cotyledonary petioles of Brassica oleracea. Theor Appl Genet 108:1249–1255

    Article  CAS  PubMed  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828–8833

    Article  CAS  PubMed  Google Scholar 

  • Stewart C Jr, Adang M, All J, Raymer P, Ramachandran S, Parrott W (1996) Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol 112:115–120

    Article  CAS  Google Scholar 

  • Stewart CN Jr, All JN, Raymer PL, Ramachandran S (1997) Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Mol Ecol 6:773–779

    Google Scholar 

  • Szegedi E, Kozma P (1984) Studies on the inheritance of resistance to crown gall disease of grapevine. Vitis 23:121–126

    Google Scholar 

  • Tang GX, Zhou WJ, Li HZ, Mao BZ, He ZH, Yoneyama K (2003) Medium, explant and genotype factors influencing shoot regneration in oilseed Brassica spp. J Agron Crop Sci 189:351–358

    Article  Google Scholar 

  • Taylor CG, Fuchs B, Collier R, Lutke WK (2006) Generation of composite plants using Agrobacterium rhizogenes. In: Wang K (ed) Agrobacterium Protocols, vol 1, 2nd edn. Humana press, Totowa, NJ

    Google Scholar 

  • Trick M, Bancroft I, Lim Y-P (2007) The Brassica rapa genome sequencing initiative. Genes Genomes Genomics 1:35–39

    Google Scholar 

  • Tzfira T, Frankman LR, Vaidya M, Citovsky V (2003) V site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol 133:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Valvekens D, Van Montagu, M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540

    Article  CAS  PubMed  Google Scholar 

  • Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol 43:383–403

    Article  CAS  Google Scholar 

  • Verma SS, Chiinnusarny V, Bansal KC (2008) A simplified floral dip method for transformation of Brassica napus and B-carinata. J Plant Biochem Biotechnol 17:197–200

    CAS  Google Scholar 

  • Verma R, Singh RR (2007) Regeneration and in vitro flowering in Brassica Campestris (L.) Var. Bhavani. Our Nature 5:21–24

    Google Scholar 

  • Wahlroos T, Susi P, Tylkina L, Malyshenko S, Zvereva S, Korpela T (2003) Agrobacterium-mediated transformation and stable expression of the green fluorescent protein in Brassica rapa. Plant Physiol Biochem 41:733–778

    Article  CAS  Google Scholar 

  • Wang WC, Menon G, Hansen G (2003) Development of a novel Agrobacterium mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Rep 22:274–281

    Article  PubMed  CAS  Google Scholar 

  • Xiang Y, Wong WKR, Ma MC, Wong RSC (1999) Agrobacterium-mediated transformation of Brassica campestris ssp. parachinensis with synthetic Bacillus thuringiensis cry1Ab and cry1Ac genes. Plant Cell Rep 19:251–256

    Google Scholar 

  • Xiang Y, Wong WKR, Ma MC, Wong RSC (2000) Agrobacterium-mediated transformation of Brassica campestris ssp. Parachinensis with synthetic Bacillus thuringiensis cry1Ab and cry1Ac genes. Plant Cell Rep 19:251–256

    Article  CAS  Google Scholar 

  • Xu ZH, Davey MR, Cocking EC (1982) Plant regeneration from root protoplasts of Brassica. Plant Sci Lett 24:117–121

    Article  Google Scholar 

  • Xu H, Wang X, Zhao H, Liu F (1998) An intensive understanding of vacuum infiltration transformation of pakchoi (Brassica rapa ssp. chinensis). Plant Cell Rep 27:1369–1376

    Article  CAS  Google Scholar 

  • Yan JY, He YK, Cao JS (2004) Factors affecting transformation efficiency by micro-injecting Agrobacterium into flower bud of Chinese cabbage. Agric Sci China 3:44–51

    Google Scholar 

  • Yan JY, HeY K, Cao JS (2003) Transformation of Chinese cabbage (Brassica rapa L. ssp. pekinensis) by Agrobacterium micro-injection into flower bud. Agric Sci China 2:906–911

    Google Scholar 

  • Yang MZ, Jia SR, Pua EC (1991) High frequency of plant regeneration from hypocotyl explants of Brassica carinata A. Br. Plant Cell Tissue Organ Cult 24:79–82

    Article  Google Scholar 

  • Yang ZH, Jin H, Plaha P, Woong BT, Jiang GB, Woo JG, Yun HD, Lim YP, Lee HY (2004) An improved regeneration protocol using cotyledonary explants from inbred lines of Chinese cabbage (Brassica rapa ssp. Pekinensis). J Plant Biotechnol 6:235–239

    Google Scholar 

  • Ye GN, Stone D, Pang SZ, Creely W, Gonzalez K, Hinchee M (1999) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J 19:249–257

    Article  PubMed  Google Scholar 

  • Yu B, Lydiate DJ, Young LW, Scha¨fer UA, Hannoufa A (2008) Enhancing the carotenoid content of Brassica napus seeds by down regulating lycopene epsilon cyclase. Transgenic Res 17:573–585

    Article  CAS  PubMed  Google Scholar 

  • Zhandong Y, Shuangyi Z, Qiwei H (2007) High level resistance to Turnip mosaic virus in Chinese cabbage (Brassica campestris ssp. pekinensis (Lour) Olsson) transformed with the antisense NIb gene using marker-free Agrobacterium tumefaciens infiltration. Plant Sci 172:920–929

    Article  CAS  Google Scholar 

  • Zhang Y, Bhalla PL (2004) In vitro shoot regeneration from commercial cultivars of Australian canola (Brassica napus L.). Aus J Agric Res 55:753–756

    Article  CAS  Google Scholar 

  • Zhang FL, Takahata Y, Watanabe M, Xu JB (2000) Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Rep 19:569–575

    Article  Google Scholar 

  • Ziv M (1991) Quality of micropropagated plants—vitrification. In Vitro Cell Dev Biol Plant 27:64–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penny A.C. Sparrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sparrow, P.A., Goldsack, C.M., Østergaard, L. (2011). Transformation Technology in the Brassicaceae. In: Schmidt, R., Bancroft, I. (eds) Genetics and Genomics of the Brassicaceae. Plant Genetics and Genomics: Crops and Models, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7118-0_18

Download citation

Publish with us

Policies and ethics