Skip to main content

The Genetics of Brassica napus

  • Chapter
  • First Online:
Genetics and Genomics of the Brassicaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 9))

Abstract

Brassica napus L. belongs to the Brassicaceae family of the Kingdom Plantae and is considered to be a newly formed species (5,000–10,000 mya) probably originating from independent and spontaneous inter-specific hybridizations between genotypes of turnip rape (Brassica rapa; AA, 2n = 20) and cabbage/Kale (Brassica oleracea; CC, 2n = 18). Genetically, B. napus is an allopolyploid (AACC, 2n = 38) exhibiting disomic inheritance. Within the species, two botanical varieties have been defined: B. napus L. var rapifera (DC) Metzger (2n = 4×= 38) and B. napus L. var oleifera Delile (2n = 4×= 38). The latter has taken much of the attention and has become the second most cultivated oilseed crop (rapeseed) worldwide, after soybean. The appearance of annual and biannual rapeseed lines with low erucic acid (<2% in the oil) and low glucosinolates (<30 mg/g in the meals) has granted rapeseed CanOLA (Canadian Oil Low Acid) status as an excellent source for edible vegetable oil. The lipid profile of CanOLA oil is extremely well balanced (low in saturated fats, high in monosaturated fats, and rich in omega-3 fatty acids) making it the oil of preference by nutritionists worldwide. In this context, the commercial interest for rapeseed CanOLA has launched an impressive amount of genetics and genomics research which has made possible to make genetic gains in agronomical and quality traits through modern plant breeding. In fact, rapeseed ranks among the top crops for which molecular tools have been developed. To date, over 30 molecular linkage maps have been published using a range of different molecular marker types, population structures, and parental lines exhibiting different flowering time behaviors. These maps have proved extremely useful in order to dissect the genetic nature of the traits underlying the genetic variation found in rapeseed. This chapter will focus on the genetics and genomics aspects of rapeseed breeding describing the current knowledge on the origin of B. napus, genetics/genomic tools for the species, and specific target traits affecting B. napus oil production and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFLP:

Amplified fragment length polymorphisms

ANF:

Antinutritional factors

CanOlA:

Canadian oil low acid

CO:

Constans

DH:

Doubled haploid

DNA:

Deoxyribonucleic acid

ESTs:

Expressed sequence tags

F1:

First filial generation

F2:

Second filial generation

FA:

Fatty acid

FAD:

Fatty acid desaturase

FAE:

Fatty acid elongase

FISH:

Fluorescence in situ hybridization

FLC:

Flowering locus C

FRI:

Frigida

GCA:

General combining ability

GISH:

Genomic in situ hybridization

Gly3P:

Glycerol-3-phosphate

HEAR:

High erucic acid rapeseed

HNRTs:

Homoeologous non-reciprocal translocations

HO:

High oleic

HRTs:

Homoeologous reciprocal translocations

HS:

High stearic

LEAR:

Low erucic acid rapeseed

LL:

Low linolenic

MAS:

Marker-assisted selection

MGS:

Microarray-based genomic selection

MMT:

Million metric tons

mRNA:

messenger Ribonucleic Acid

NGS:

Next generation sequencing

NIRS:

Near-infrared reflectance spectroscopy

NRTs:

Non-reciprocal translocations

OP:

Open pollinated

PCR:

Polymerase chain reaction

QTL:

Quantitative trait loci

RAPD:

Randomly amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphisms

RIL:

Recombinant inbred lines

RT:

Reciprocal translocation

SAD:

Stearoyl-acyl desaturase

SCA:

Specific combining ability

SCAR:

Sequenced characterized amplified regions

SNP:

Single nucleotide polymorphisms

SRAP:

Sequence-related amplified polymorphism

SSR:

Simple sequence repeats

References

  • Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X, Richmond TA, Middle CM, Rodesch MJ, Charles J, Packard CJ, Weinstock GM, Gibbs RA (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905

    Article  CAS  PubMed  Google Scholar 

  • Allard RW (1999) Principals of plant breeding, 2nd edn. Wiley, New York, NY

    Google Scholar 

  • Allender C, Evered C, Lynn J, King G (2005) Tracing the origins of Brassica napus using chloroplast microsatellites. In: Plant and Animal Genomes XIII Conference. Book of Abstract p. 411

    Google Scholar 

  • Altenbach SB, Kuo CC, Staraci LC, Pearson KW, Wainwright C, Georgescu A, Townsend J (1992) Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol Biol 26:1115–1124

    Google Scholar 

  • Amar S, Ecke W, Becker HC, Möllers C (2008) QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with two erucic acid genes. Theor Appl Genet 116:1051–1061

    Article  CAS  PubMed  Google Scholar 

  • Amasino RM (2005) Vernalization and flowering time. Curr Opin Biotechnol 16:154–158

    Article  CAS  PubMed  Google Scholar 

  • Applequist LA, Ohlson R (1972) Rapeseed. Elsevier, MO, USA

    Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Auld DL, Heikkinen MK, Erickson DA, Sernyk JL, Romero JE (1992) Rapeseed mutants with reduced levels of polyunsaturated fatty acids and increased levels of oleic acid. Crop Sci 32:657–662

    Article  CAS  Google Scholar 

  • Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros CF, Sadowski J (2003) Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: complexity of the comparative map. Mol Genet Genomics 268:656–665

    CAS  PubMed  Google Scholar 

  • Barker GC, Larson TR, Graham IA, Lynn JR, King GJ (2007) Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and quantitative trait loci analysis of the Brassica C Genome. Plant Phys 144:1827–1842

    Article  CAS  Google Scholar 

  • Barret P, Delourme R, Brunel D, Jourdren C, Horvais R, Renard M (1999) Low linolenic acid level in rapeseed can be easily assessed through the detection of two single base substitution in fad3 genes. In: Proceeding of the 10th International Rapeseed Congress, Canberra, Australia pp. 26–29.

    Google Scholar 

  • Basunanda P, Spiller TH, Hasan M, Gehringer A, Schondelmaier J, Lühs W, Friedt W, Snowdon RJ (2007) Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background. Plant Breed 126:581–587

    Article  Google Scholar 

  • Becker HC, Engqvist GM, Karlsson B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor Appl Genet 91:62–67

    Article  CAS  Google Scholar 

  • Bell JM (1993) Factors affecting the nutritional value of canola meal. Can J Anim Sci 73:679–697

    Article  CAS  Google Scholar 

  • Best MM, Duncan CH, van Loon EJ, Wathens JD (1954) Lowering of serum cholesterol by the administration of plant sterol. Circulation 10:201–206

    CAS  PubMed  Google Scholar 

  • Bhinu VS, Schäfer UA, Li R, Huang J, Hannoufa A (2009) Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in Brassica napus. Transgenic Res 18:31–44

    Article  CAS  PubMed  Google Scholar 

  • Boys EF, Roques SE, Evans N, Latunde-Dada AO, West JS, Fitt BDL (2007) Resistance to infection by stealth: Brassica napus (winter oilseed rape) and Pyrenopeziza brassicae (light leaf spot). Eur J Plant Pathol 118:307–321

    Article  Google Scholar 

  • Bradshaw JE, Griffiths DW (1990) Sugar content of swedes for stock-feeding. J Sci Food Agric 50:167–172

    Article  CAS  Google Scholar 

  • Brandle JE, McVetty PBE (1989) Heterosis and combining ability in hybrids derived from oilseed rape cultivars and inbred lines. Crop Sci 29:1191–1195

    Article  Google Scholar 

  • Brown G, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS (2003) The radish Rfo restorer gene of ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    Article  CAS  PubMed  Google Scholar 

  • Bundessortenamt (2005) Beschreibende Sortenliste 2005: Getreide, Mais, Ölfruchte, leguminosen (Groβkörnig) Hackfrucht (auβer Kartoffeln) Deutscher Landwirtschaffsverlag GmbH, Hannover, Germany.

    Google Scholar 

  • Burns MJ, Barnes SR, Bowman JG, Clarke MHE, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity 90:39–48

    Article  CAS  PubMed  Google Scholar 

  • Butruille DV, Guries RP, Osborn TC (1999a) Increasing yield of spring oilseed rape hybrids through introgression of winter germplasm. Crop Sci 39:1491–1496

    Article  Google Scholar 

  • Butruille DV, Guries RP, Osborn TC (1999b) Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics 153:949–964

    CAS  PubMed  Google Scholar 

  • Buzza GC (1995) Plant breeding. In: Kimber DS, McGregor DI. (eds) Brassica oilseeds: production and utilization. CABI Publishing, Wallingford, CT, pp. 153–175

    Google Scholar 

  • Cai CC, Tu J, Fu TD, Chen BY (2008) The genetic basis of flowering time and photoperiod sensitivity in rapeseed Brassica napus L. Russ J Genet 44:326–333

    CAS  Google Scholar 

  • Chen X, Li M, Shi J, Fu D, Qian W, Zou J, Zhang C, Meng J (2008) Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Theor Appl Genet 117:1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhang Y, Xueping Liu X, Baoyuan Chen B, Tu J, Tingdong F (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet 115:849–858

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Cheung WY, Champagne G, Hubert N, Landry BS (1997) Comparison of the genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet 94:569–582

    Article  CAS  Google Scholar 

  • Choi SR, Teakle GR, Prikshit P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park B-S, Lim YP (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792

    Article  CAS  PubMed  Google Scholar 

  • Cloutier S, Cappadocia M, Landry BS (1995) Study of microspore-culture responsiveness in oilseed rape (Brassica napus L.) by comparative mapping of a F2 population and two microspore-derived populations. Theor Appl Genet 91:841–847

    Article  CAS  Google Scholar 

  • Collins FS, Brooks LD, Chakravarti A (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 8:1229–1231

    CAS  PubMed  Google Scholar 

  • Damania AB, Valkoun J, Willcox G, Qualset CO (1997) The origins of agriculture and crop domestication: the harlan symposium. ICARDA, IPGRI, FAO and UC/GRCP Publishers, California, CA

    Google Scholar 

  • Delourme R, Bouchereau A, Hubert N, Renard M, Landry BS (1994) Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet 88:741–748

    Article  CAS  Google Scholar 

  • Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345

    Article  CAS  PubMed  Google Scholar 

  • Diederichsen E, Frauen M, Linders Enrico GA, Hatakeyama K, Hirai M (2009) Status and perspectives of clubroot resistance breeding in crucifer crops. J Plant Growth Regul 28:265–281

    Article  CAS  Google Scholar 

  • Diers BW, McVetty PBE, Osborn TC (1995) Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (Brassica napus L.). Crop Sci 36:79–83

    Article  Google Scholar 

  • Diers BW, Osborn TC (1994) Genetic diversity of oilseed Brassica napus germplasm based on restriction fragment length polimorphisms. Theor Appl Genet 88:662–668

    Article  Google Scholar 

  • Downey RK, Craig BM (1964) Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L.). J Am Oil Chem Soc 41:475–478

    Article  CAS  Google Scholar 

  • Duvick DN (1984) Genetic contributions to yield gains of US hybrid maize. In Fehr WR (ed) Genetic contributions to yield gains of five major crop plants. Crop Science Society of America. Madison, WI, American Society of Agronomy, pp 1930–1980

    Google Scholar 

  • Ecke W, Uzunova M, Weissleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977

    Article  CAS  Google Scholar 

  • Falentin C, Brégeon M, Lucas MO, Deschamps M, Leprince F, Fournier MT, Delourme R, Renard M (2007) Identification of fad2 mutations and development of allele-specific markers for high oleic acid content in rapeseed (Brassica napus L.) In: Proceeding of the 12th International Rapeseed Congress, Wuhan, China, pp. 117–119

    Google Scholar 

  • Feng F, Liu P, Hong D, Yang G (2009) A major QTL associated with preharvest sprouting in rapeseed (Brassica napus L.). Euphytica 169:57–68

    Article  Google Scholar 

  • Ferreira ME, Williams PH, Osborn TC (1994) RFLP mapping of Brassica napus using doubled haploid lines. Theor Appl Genet 89:615–621

    Article  CAS  Google Scholar 

  • Foisset N, Delourme R, Barret P, Hubert N, Landry BS, Renard M (1996) Molecular-mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled haploid progeny. Theor Appl Genet 93:1017–1025

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2008) Food Outlook June 2008: Oilseeds, Oils and Meals, (http://ftp://ftp.fao.org/docrep/fao/010/ai466e/ai466e00.pdf).

  • Food and Drug Administration (1995) Code of Federal Regulations, Title 21, Food and Drugs, Part 184, “Direct Food Substances Affi rmed as Generally Recognized as Safe”, Sections 1555, as of April 1, 1995. US Government Printing Office, Washington, DC

    Google Scholar 

  • Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D (1998) The two genes homologous to Arabidopsis FAE1 cosegregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858

    Article  CAS  Google Scholar 

  • Fray MJP, Puangsomlee P, Goodrich J, Coupland G, Evans EJ, Arthur AE, Lydiate DJ (1997) The genetics of stamenoid petal production in oils seed rape (Brassica napus) and equivalent variation in Arabidopsis thaliana. Theor Appl Genet 94:731–736

    Article  CAS  Google Scholar 

  • Fu TD (1995) Breeding and utilization of rapeseed hybrid. Hubei Science and Technology Press, Wuhan, pp 42–135

    Google Scholar 

  • Fu FY, Liu LZ, Chai YR, Chen L, Yang T, Ma AF, Qu CM, Jiang L, Zhang ZS, Li JN (2007) Localization of QTLs for husk proportion and lignin content using a high-density genetic linkage map of Brassica napus. Korean J Genet 29:343–353

    CAS  Google Scholar 

  • Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60:1319–1332

    Article  CAS  PubMed  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotypic variation. Plant Cell 19:3403–3417

    Article  CAS  PubMed  Google Scholar 

  • Gan Y, Malhi SS, Brandt SA, McDonald CL (2008) Assessment of seed shattering resistance and yield loss in five oilseed crops. Can J Plant Sci 88:267–270

    Google Scholar 

  • Ganal MW, Altmann T, Röder M (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Li G, Bo Yang B, Qiu D, Farnham M, Quiros C (2007) High-density Brassica oleracea linkage map: identification of useful new linkages. Theor Appl Genet 115:277–287

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Campo C (1999) Biology of Brassica coenospecies. Elsevier, The Netherlands

    Google Scholar 

  • Graef GL, Fehr WR, Hammond EG (1985) Inheritance of three stearic acid mutants of soybean. Crop Sci 25:1076–1079

    Article  Google Scholar 

  • Grant I, Beversdorf WD (1985) Heterosis and combining ability estimates in springplanted oilseed rape (Brassica napus L.). Can J Genet Cytol 27:472–478

    Google Scholar 

  • Grundy SM (1994) Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am J Clin Nutr 60:986–990

    Google Scholar 

  • Guerche P, De Almeida ER, Schwarztein MA, Gander E, Krebbers E, Pelletier G (1990) Expression of the 2S albumin from Bertholletia excelsa in Brassica napus. Mol Gen Genet 221:306–314

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Pratap A (2007) History, origin and evolution. In: Gupta SK (ed) Advances in botanical research, incorporating advances in plant pathology, rapeseed breeding, vol 45. Academic Press-Elsevier, London, UK, pp 2–17

    Google Scholar 

  • Harvey BL, Downey RK (1964) The inheritance of erucic acid content in rapeseed (Brassica napus L.). Can J Plant Sci 44:104–111

    Article  CAS  Google Scholar 

  • Hasan V, Friedt W, Pons-Kühnemann J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116:1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Hawkins DJ, Kridl JC (1998) Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. Plant J 13:743–752

    Article  CAS  PubMed  Google Scholar 

  • He J, Ke L, Hong D, Xie Y, Wang G, Liu P, Yang G (2008) Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theor Appl Genet 117:11–18

    Article  CAS  PubMed  Google Scholar 

  • Hougen FW, Stefansson BR (1983) Rapeseed, in advances in cereal science and technology, vol 5. American Association of Cereal Chemists, St. Paul, pp 261–289

    Google Scholar 

  • Howell PM, Marshall DF, Lydiate DJ (1996) Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 39:348–358

    Article  CAS  PubMed  Google Scholar 

  • Howell PM, Sharpe AG, Lydiate DJ (2003) Homoelogous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome 46:454–460

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Li G, Struss D, Quiros C (1999) SCAR and RAPD markers associated with 18-carbon fatty acids in rapeseed, Brassica napus. Plant Breed 118:145–150

    Article  CAS  Google Scholar 

  • Hu X, Sullivan-Gilbert M, Gupta M, Thompson S (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113:497–507

    Article  CAS  PubMed  Google Scholar 

  • Hüsken A, Baumert A, Strack D, Becker HC, Möllers C, Milkowski C (2005) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus L.) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breed 16:127–138

    Article  CAS  Google Scholar 

  • Iniguez-Luy FL, Lukens L, Farnham MW, Amasino RM, Osborn TC (2009) Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and Brassica oleracea. Theor Appl Genet 120:31–43

    Article  CAS  PubMed  Google Scholar 

  • Iniguez-Luy FL, Sass ME, Jung G, Johns MA, Nienhuis J (2006) Development of SCAR markers that distinguish the six cultivated Brassica species and sub-species of the U-triangle. American society of horticultural sciences. J Amer Soc Hort Sci 131:424–432

    CAS  Google Scholar 

  • Iniguez-Luy FL, Van de Voort A, Osborn TC (2008) Development of a set of SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet 117:977–985

    Article  CAS  PubMed  Google Scholar 

  • International HapMap Consortium, Frazer K, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbolo P, et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  CAS  PubMed  Google Scholar 

  • Jiang JJ, Zhao XX, Tian W, Li TB, Wang YP (2009) Intertribal somatic hybrids between Brassica napus and camelina sativa with high linolenic acid content. Plant Cell Tiss Organ Cult 99:91–95

    Article  Google Scholar 

  • Jourdren C, Barret P, Brunel D, Delourme R, Renard M (1996a) Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theor Appl Genet 93:512–518

    Article  CAS  Google Scholar 

  • Jourdren C, Barret P, Horvais R, Delourme R, Renard M (1996b) Identification of RAPD markers linked to linolenic acid genes in rapeseed. Euphytica 90:351–357

    Article  CAS  Google Scholar 

  • Kelly AL, Sharpe AG, Nixon JH, Evans EJ, Lydiate DJ (1997) Indistinguishable patterns of recombination resulting from male and female meiosis in Brassica napus (oilseed rape). Genome 40:49–56

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Chung TY, King GJ, Jin M, Yang T-J, Jin Y-M, Kim H-I, Park B-S (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39

    Article  CAS  PubMed  Google Scholar 

  • Kimber DS, McGregor DI (1995) The species and their origins, cultivation and world production. In: Kimber DS, McGregor DI. (eds) Brassica oilseeds: production and utilization. CABI Publishing, Wallingford, CT, pp 1–9

    Google Scholar 

  • Knutzon DS, Thompson GA, Radke SE, Johnson WB, Knauf VC, Kridl JC (1992) Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Nat Acad Sci USA 89:2624–2628

    Article  CAS  PubMed  Google Scholar 

  • Kohno-Murase J, Murase M, Ichiwaka H, Imamura J (1994) Effects of an antisense napin gene on seed storage compounds in transgenic Brassica napus seeds. Plant Mol Biol 26:1115–1124

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Thormann CE, Karlsson BH, Palta JP, Gaffney P, Yandell B, Osborn TC (2002) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and Brassica napus. Mol Breed 9:201–210

    Article  CAS  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Peeters AJM (1997) Genetic approaches in plant physiology. New Phys 137:1–8

    Article  Google Scholar 

  • Kozlowska H, Naczk M, Shahidi F, Zadernowski R (1990) Phenolic acids and tannins in rapeseed and canola. In: Shahidi F (ed) Canola and rapeseed. production chemistry, nutrition and processing technology. Van Nostrand Reinhold, New York, NY, pp 193–210

    Google Scholar 

  • Kramer CC, Polewicz H, Osborn TC (2009) Evaluation of QTL alleles from exotic sources for hybrid seed yield in the original and different genetic backgrounds of spring-type Brassica napus L. Mol Breed 24:419–431

    Article  Google Scholar 

  • Kumar R, Raclaru M, Schϋsseler T, Gruber J, Sadre R, Lϋhs W, Zharhloul KM, Friedt W, Enders D, Frentzen M, Weier D (2005) Characterization of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett 579:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosomes fusions and frequent rearrangements. Genetics 150:1217–1228

    CAS  PubMed  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative mapping in Brassica. Genetics 144:1903–1910

    CAS  PubMed  Google Scholar 

  • Lagercrantz U, Putterill J, Coupland G, Lydiate DJ (1996) Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9:13–20

    Article  CAS  PubMed  Google Scholar 

  • Landry BS, Hubert N, Etoh T, Harada J, Lincoln S (1991) A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 34:543–552

    CAS  Google Scholar 

  • Law M (2000) Plant sterol and stanol margarines and health. Br Med J 320:861–864

    Article  CAS  Google Scholar 

  • Li M, Chen X, Meng J (2006) Intersubgenomic heterosis in rapeseed production with a partial new-typed Brassica napus containing subgenome Ar from Brassica rapa and Cc from Brassica carinata. Crop Sci 46:234–242

    Article  CAS  Google Scholar 

  • Li G, Gao M, Yang B, Quiros CF (2003) Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet 107:168–180

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ma C, Fu T, Yang G, Tu J, Chen Q, Wang T, Zhang X, Li C (2006) Construction of a molecular functional map of rapeseed (Brassica napus L.) using differentially expressed genes between hybrid and its parents. Euphytica 152:25–39

    Article  CAS  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507

    Article  CAS  Google Scholar 

  • Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B-S, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with arabidopsis. Genetics 177:2433–2444

    CAS  PubMed  Google Scholar 

  • MacKay T (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:30–39

    Article  Google Scholar 

  • Malabat C, Atterby H, Chaudhry Q, Renard M, Guéguen J (2003) Genetic variability of rapeseed protein composition. In: Sorensen H, Sorencen JC, Sorencen S, Bellostas Muguerza N, Bjegegaard C (eds) 11th international rapeseed congress. The Royal Veterinary and Agricultural University, Copenhagen, DNK, pp 205–208

    Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  Google Scholar 

  • Mariani C, De Beuckeler M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Science 347:737–741

    CAS  Google Scholar 

  • Mariani C, Gossele V, De Beuckeler M, De Block M, Golberg RB, De Greef W, Leemans J (1992) A chimaeric ribonuclease inhibitor gene restores fertility to male sterile plants. Nature 357:384–387

    Article  CAS  Google Scholar 

  • Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal V, Good A, Parkin I (2005) Complexities of chromosome landing in a highly duplicated genome: towards map based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics 171:1977–1988

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN (2008) Genome wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369

    Article  CAS  PubMed  Google Scholar 

  • McNaughton IH, Thow RF (1972) Swedes and turnips. Field Crop Abs 25:1–12

    Google Scholar 

  • Mei DS, Wang HZ, Hu Q, Li YD, Xu YS, Li YC (2009) QTL analysis on plant height and flowering time in Brassica napus. Plant Breed 128:458–465

    Article  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  Google Scholar 

  • Nesi N, Delourme R, Brégeon M, Falentin C, Renard M (2008) Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. CR Biologies 331:763–771

    Article  CAS  Google Scholar 

  • Nissinen M, Gylling H, Vuoristo M, Miettinen TA (2002) Micellar distribution of cholesterol and phytoesterols after duodenal plant stanol ester infusion. Am J Physiol Gastrointest Liver Physiol 282:1009–1015

    Google Scholar 

  • Okou DT, Steinberg KM, Middle C, Cutler CD, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for highthroughput resequencing. Nat Methods 4:907–909

    Article  CAS  PubMed  Google Scholar 

  • Olson M (2007) Enrichment of super-sized resequencing targets from the human genoma. Nat Methods 4:891–892

    Article  CAS  PubMed  Google Scholar 

  • Osborn TC, Butruille DV, Sharpe AG, Pickering KJ, Parkin IAP, Parker JS, Lydiate DJ (2003a) Detection and effects of a homoeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577

    CAS  PubMed  Google Scholar 

  • Osborn TC, Kole C, Parkin IAP, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1123–1129

    CAS  PubMed  Google Scholar 

  • Osborn TC, Kramer CC, Graham E, Braun CJ (2007) Insights and innovations from wide crosses: examples from canola and tomato. Crop Sci 47:S228–S237

    Article  Google Scholar 

  • Osborn TC, Lukens L (2003) The molecular genetic basis of flowering time variation in Brassica species. In: Nagata T, Tabata S (eds) Biotechnology in agriculture and forestry. Brassica and legumes: from gene structure to breeding. Springer-Verlag, Berlin, pp. 69–86

    Google Scholar 

  • Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee H-S, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003b) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    Article  CAS  PubMed  Google Scholar 

  • Osorio J, Fernandez-Martinez J, Mancha M, Garces R (1995) Mutant sunflowers with high concentration of saturated fatty acids in the oil. Crop Sci 35:739–742

    Article  CAS  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  Google Scholar 

  • Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    CAS  PubMed  Google Scholar 

  • Perez-Vich B, Leon AJ, Grondona M, Velasco L, Fernandez-Martinez JM (2006) Molecular analysis of the high stearic acid content in sunflower mutant CAS-14. Theor Appl Genet 112:867–875

    Article  CAS  PubMed  Google Scholar 

  • Pilet ML, Delourme R, Foisset N, Renard M (1998a) Identification of loci contributing to quantitative Weld resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. et de Not., in winter rapeseed (Brassica napus L.). Theor Appl Genet 96:23–30

    Article  Google Scholar 

  • Pilet ML, Delourme R, Foisset N, Renard M (1998b) Identification of QTL involved in field resistance to light leaf spot (Pyrenopziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theor Appl Genet 97:398–406

    Article  CAS  Google Scholar 

  • Pilet ML, Duplan G, Archipiano M, Barret P, Baron C, Horvais R, Tanguy X, Lucas MO, Renard M, Delourme R (2001) Stability of QTL for Weld resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Sci 41:197–205

    Article  CAS  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassica, a review. Opera Bot 55:1–57

    Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    Article  CAS  PubMed  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  CAS  PubMed  Google Scholar 

  • Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. IdentiWcation of genomic regions from winter germplasm. Theor Appl Genet 113:549–561

    Article  CAS  PubMed  Google Scholar 

  • Raclaru M, Gruber J, Kumar R, Sadre R, Lϋhs W, Zarhloul KM, Friedt W, Frentzen M, Weier D (2006) Increase of the tocochromanol content in transgenic Brassica napus seeds by overexpression of key enzymes involved in prenylquinone biosynthesis. Mol Breed 18:93–107

    Article  CAS  Google Scholar 

  • Radoev M, Becker H, Ecke W ((2008)) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558

    Article  CAS  PubMed  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  CAS  PubMed  Google Scholar 

  • Rahman MH (2001) Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breeding 120:463–472

    Article  Google Scholar 

  • Rajcan I, Kasha K, Kott LS, Beversdorf WD (1999) Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica 105:173–181

    Article  CAS  Google Scholar 

  • Rakow G (1973) Selektion auf Linol- und Linolensäuregehalt in Rapssamen nach mutagener Behandlung. Z Planzen 69:205–209

    Google Scholar 

  • Ramsay LD, Bradshaw JE, Griffiths DW, Kearsey MJ (2001) The inheritance of quantitative traits in Brassica napus ssp. rapifera (Swedes): augmented triple test cross analyses of production characters. Euphytica 121:65–72

    Article  Google Scholar 

  • Rana D, Van den Boogaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733

    Article  CAS  PubMed  Google Scholar 

  • Renard M, Delourme R, Pierre J (1997) Market introduction of rapeseed hybrid varieties. GCIRC Bulletin 14:114–119

    Google Scholar 

  • Robert LS, Robson F, Sharpe A, Lydiate DJ, Coupland G (1998) Conserved structure and function of the Arabidopsis. flowering time gene CONSTANS in Brassica napus. Plant Mol 37:763–772

    Article  CAS  Google Scholar 

  • Ryder CD, Smith LB, Teakle GR, King GJ (2001) Contrasting genome organization: two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome. Genome 44:808–817

    Article  CAS  PubMed  Google Scholar 

  • Rygulla W, Snowdon RJ, Friedt W, Happstadius I, Cheung WY, Chen D (2007) Identification of quantitative trait loci for resistance against verticillium longisporum in oilseed Rape (Brassica napus). Phytopathology 98:215–221

    Article  CAS  Google Scholar 

  • Schierholt A, Becker HC, Ecke W (2000) Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet 101:897–901

    Article  CAS  Google Scholar 

  • Schierholt A, Rϋcker B, Becker HC (2001) Inheritance of high oleic acid mutations in winter oilseed rape (Brassica napus L.). Crop Sci 41:1444–1449

    Article  CAS  Google Scholar 

  • Schmitz RJ, Sung S, Amasino RM (2008) Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana. Proc Natl Acad Sci USA 105:411–416

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Osborn TC (2000) Novel flowering time variation in the resynthesized polyploid Brassica napus. J Hered 91:242–246

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Quijada P, Sung S-B, Lukens L, Amasino RM, Osborn TC (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162:1457–1468

    CAS  PubMed  Google Scholar 

  • Sebastian RL, Howell EC, King GJ, Marshall DF, Kearsey MJ (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor Appl Genet 100:75–81

    Article  CAS  Google Scholar 

  • Sernyk JL, Stefansson BR (1983) Heterosis in summer rape (Brassica napus L.). Can J Plant Sci 63:407–413

    Article  Google Scholar 

  • Shahidi F (1990) Rapessed and canola: global production and distribution. In: Sahidi F (ed) Canola and rapeseed: production, chemistry and processing technology. Van Nostrand Reinhold, New York, NY, pp 3–13

    Google Scholar 

  • Shahidi F, Naczk M (1992) An overview of the phenolics of canola and rapeseed: chemical, sensory and nutritional significance. J Am Oil Chem Soc 69:917–924

    Article  CAS  Google Scholar 

  • Sharpe AG, Lydiate DJ (2003) Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding. Genome 46:461–468

    Article  CAS  PubMed  Google Scholar 

  • Sharpe AG, Parkin IAP, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38:1112–1121

    CAS  PubMed  Google Scholar 

  • Shewmaker C, Sheehy J, Daley M, Colburn S, Ke D (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  CAS  PubMed  Google Scholar 

  • Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, Nordborg M, Dean C (2005) Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time in Arabidopsis accessions. Plant Physiol 138:1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Simbaya J, Slominski BA, Rakow G, Campbell LD, Downey RK, Bello JM (1995) Quality characterisitics of yellow seeded Brassica seed meals: protein, carbohydrates, and dietary fiber components. J Agric Food Chem 43:2062–2066

    Article  CAS  Google Scholar 

  • Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8

    Article  CAS  Google Scholar 

  • Snydera CL, Yurchenkoa OP, Silotoa R, Chena X, Liua Q, Mietkiewskaa E, Weselake RJ (2009) Acyltransferase action in the modification of seed oil biosynthesis. New Biotechnol 26:11–16

    Article  CAS  Google Scholar 

  • Somers DJ, Rakow G, Prabhu VK, Friesen KRD (2001) Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome 44:1077–1082

    Article  CAS  PubMed  Google Scholar 

  • Song KM, Osborn TC (1992) Polyphylatic origins of B. napus: new evidence based on organelle and nuclear RFLP analysis. Genome 35:992–1001

    Google Scholar 

  • Song KM, Osborn TC, Williams PH (1988a) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 1. Genome evolution of diploid and amphidiploid species. Theor Appl Genet 75:784–794

    Article  CAS  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1988b) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 2. Preliminary analysis of subspecies within B. rapa (syn. campestris) and B. oleracea. Theor Appl Genet 76:593–600

    Article  CAS  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1997) Taxonomy based on nuclear RFLP analysis. In: Kalia HR, Gupta SK (eds) Recent advances in oilseed Brassicas. Kalyani Publishers, New Delhi, pp 12–24

    Google Scholar 

  • Song KM, Tang KL, Osborn TC (1993) Development of synthetic Brassica amphidiploids by reciprocal hybridization and comparison to natural amphidiploids. Theor Appl Genet 86:811–821

    Article  Google Scholar 

  • Starmer KP, Brown J, Davis JB (1998) Heterosis in spring canola hybrids grown in Northern Idaho. Crop Sci 38:376–380

    Article  Google Scholar 

  • Stiewe G, Witt U, Hansen S, Theis R, Abel WO, Röbbelen G (1995) Natural and experimental evolution of CMS for rapeseed breeding. Adv Plant Breeding 18:89–110

    Google Scholar 

  • Stringam GR, Ripley VL, Love HK, Mitchell A (2003) Transgenic herbicide tolerant canola. The Canadian experience. Crop Sci 43:1590–1593

    Article  CAS  Google Scholar 

  • Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Wang Z, Tu J, Zhang J, Yu F, McVetty PBE, Li G (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet 114:1305–1317

    Article  CAS  PubMed  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164

    Article  CAS  PubMed  Google Scholar 

  • Sung S, He Y, Eshoo TW, Tamada Y, Johnson L, Nakahigashi K, Goto K, Jacobsen SE, Amasino RM (2006) Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nature Genetics 38:706–710

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hiria M, Matsumoto S (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the origin of clubroot resistance. Genetics 173:309–319

    Article  CAS  PubMed  Google Scholar 

  • Tadage M, Sheldon CC, Helliwell CA, Stoutjesdijk P, Dennis ES, Peacock WJ (2001) Control of flowering time by FLC orthologues in Brassica napus. Plant J 28:545–553

    Article  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Zhang J, Ma C, Tang W, Gao C, Li F, Wang X, Liu Y, Fu T (2009) CAPS and SCAR markers linked to maintenance of selfincompatibility developed from SP11 in Brassica napus L. Mol Breeding 24:245–254

    Article  CAS  Google Scholar 

  • Tanhuanpää P, Vilkki J, Vilkki HJ (1995) Association of a RAPD marker with linolenic acid concentration in the seed oil of rapeseed (Brassica napus L.). Genome 38:414–416

    Article  PubMed  Google Scholar 

  • Teutonico RA, Osborn TC (1994) Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to linkage maps of B. napus, B. oleracea and Arabidopsis thaliana. Theor Appl Genet 89:885–894

    Article  CAS  Google Scholar 

  • Thormann CE, Romero J, Mantet J, Osborn TC (1996) Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93:282–286

    Article  CAS  Google Scholar 

  • Trautwein EA, Duchateau G, Lin Y, Melcnikov SM, Molhuizen H, Ntanios FY (2003) Proposed mechanisms of cholesterol-lowering action of plant sterols. Eur J Lipid Sci Technol 105:171–185

    Article  CAS  Google Scholar 

  • Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotech J 7:334–346

    Article  CAS  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapessed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113:597–609

    Google Scholar 

  • Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979

    Article  CAS  PubMed  Google Scholar 

  • United States Department of Agriculture (2009) Oilseeds: world market and trade. Foreign Agricultural Service Circular Series 11–09, November.

    Google Scholar 

  • Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204

    Article  CAS  Google Scholar 

  • Vigeolas H, Waldeck P, Zank T, Geigenberger P (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by overexpression of a yeast glycerol-3-phophate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441

    Article  CAS  PubMed  Google Scholar 

  • Vignal A, Milan D, Sancristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305

    Article  CAS  PubMed  Google Scholar 

  • Walker KC, Booth EJ (2001) Agricultural aspects of rape and other Brassica products. Eur J Lipid Sci Technol 103:441–446

    Article  CAS  Google Scholar 

  • Wang R, Ripley VL, Rakow G (2007) Pod shatter resistance evaluation in cultivars and breeding lines of Brassica napus, B. juncea and Sinapis alba. Plant Breed 126:588–595

    Article  Google Scholar 

  • Warwick SI, Black LD (1993) Molecular relationships in subtribe Brassicinae (Cruciferar, tribe Brassiceae). Can J Botany 71:906–918

    CAS  Google Scholar 

  • Weier D, Mittasch J, Strack D, Milkowski C (2007) The genes BnSCT1 and BnSCT2 from Brassica napus encoding the final enzyme of sinapine biosynthesis: molecular characterization and suppression. Planta 227:375–385

    Article  PubMed  CAS  Google Scholar 

  • Westermeier P, Wenzel G, Moler V (2009) Development and evaluation of single-nucleotide polymorphism markers in allotetraploid rapeseed (Brassica napus L.). Theor Appl Genet 119:1301–1311

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen Y-J, Makhijani V, Roth GT, Gomes X, Tartaro K, et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876

    Article  CAS  PubMed  Google Scholar 

  • Wittkop B, Snowdon RJ, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170:131–140

    Article  Google Scholar 

  • Wu G, Wu Y, Xiao L, Li X, Changming L (2008) Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor Appl Genet 116:491–499

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Derr J, Etherton TD, Kris-Etherton PM (1995) Plasma cholesterol-predictive equations demonstrate that stearic acid is neutral and monounsaturated fatty acids are hypocholesterolemic. Am J Clin Nutr 61:1129–1139

    CAS  PubMed  Google Scholar 

  • Zarhloul MK, Stoll C, Lϋhs W, Syring-Ehemann A, Hausmann L, Töpfer R, Friedt W (2006) Breeding high-stearic oilseed rape (Brassica napus) with high- and low-erucic background using optimized promoter-gene constructs. Mol Breed 18:241–251

    Article  CAS  Google Scholar 

  • Zhao J, Becker H, Zhang D, Zhang Y, Ecke W (2005) Oil content in an European x Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci 45:51–59

    Article  CAS  Google Scholar 

  • Zhao J, Becker H, Zhang D, Zhang Y, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 133:33–38

    Article  CAS  Google Scholar 

  • Zhao J, Meng J (2003) Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed 122:19–23

    Article  CAS  Google Scholar 

  • Zhao H, Shi L, Duan X, Xu F, Wang Y, Jinling Meng J (2008) Mapping and validation of chromosome regions conferring a new boron-efficient locus in Brassica napus. Mol Breed 22:495–506

    Article  CAS  Google Scholar 

  • Zum Felde T, Becker HC, Möllers C (2006) Genotype x environment interactions, heritability and trait correlations of sinapate ester content in winter rapeseed (Brassica napus L.). Crop Sci 46:2195–2199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Agri aquaculture Nutritional Genomic Center (CGNA) for support on the development of a B. napus breeding program and Fondecyt 1090726 and 1100732 for supporting the research related to carotenoid content enhancement and SNP discovery in B. napus, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico L. Iniguez-Luy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Iniguez-Luy, F.L., Federico, M.L. (2011). The Genetics of Brassica napus . In: Schmidt, R., Bancroft, I. (eds) Genetics and Genomics of the Brassicaceae. Plant Genetics and Genomics: Crops and Models, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7118-0_10

Download citation

Publish with us

Policies and ethics