Skip to main content

Bowed Strings

  • Chapter
  • First Online:
The Science of String Instruments

Abstract

In the next eight chapters, we consider some aspects of the science of bowed string instruments, old and new. In this chapter, we present a brief discussion of bowed strings, a subject that will be developed much more thoroughly in Chap. 16. Chapters 13–15 discuss the violin, the cello, and the double bass. Chapter 17 discusses viols and other historic string instruments, and Chap. 18 discusses the Hutchins–Schelleng violin octet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    On the Crumb score the following note is given: “Pedal tones are produced by moving bow very slowly while exerting great pressure. Since various ‘partials’ are obtainable, the player should calculate carefully [the] distance from [the] bridge and bow pressure in order to produce the lower octave.”

References

  • X. Boutillon (1991) Analytical investigations of the flattening effect: The reactive power balance rule, J. Acoust. Soc. Am. 90, 745–763.

    Article  ADS  Google Scholar 

  • L. Cremer (1981) Physik der Geige. Hirtzel Verlag, Stuttgart. English translation by J.S. Allen, MIT Press, Cambridge, MA (1984).

    Google Scholar 

  • N. H. Fletcher and T. D. Rossing (1998) The Physics of musical instruments 2nd ed, Springer, New York.

    Google Scholar 

  • J. Gold (1995) Paganini: virtuoso, collector, and dealer, J. Violin Soc. Am. XIV, 67–88.

    Google Scholar 

  • K. Guettler (1994) Wave analysis of a string bowed to anomalous low frequencies, Catgut Acoust. Soc. J. 6(II), 8–14.

    Google Scholar 

  • R. J. Hanson, F. W. Halgedahl, and A. J. Schneider (1994) Anomalous low-pitched tones from a bowed violin string, Catgut Acoust. Soc. J. 6(II), 1–7. Copies are obtainable from Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA.

    Google Scholar 

  • M. Kimura (1999) How to produce subharmonics on the violin, J. New Music Res. 28(2), 178–184.

    Article  Google Scholar 

  • M. Kondo, and H. Kubota (1985) A new identification expression of Helmholtzian waves and their formation mechanism, Proc. SMAC 83, Stockholm, Royal Swedish Academy of Music 245–261.

    Google Scholar 

  • O. Krigar-Menzel, and A. Raps (1891) Aus der Sitzungberichten, Ann. Phys. Chem. 44, 613–644.

    Google Scholar 

  • B. Lawergren (1983) Harmonics of S-motion on bowed strings. J. Acoust. Soc. Am. 73, 2174–2179.

    Google Scholar 

  • M. E. McIntyre, and J. Woodhouse (1978) The acoustics of stringed musical instruents. Interdisciplinary Science Reviews 3, 157–173.

    Google Scholar 

  • R. Neuwirth (1994) From Sciarrino to subharmonics, Strings 44(September/October), 60–66.

    Google Scholar 

  • R. Pitteroff (1994) Modelling of the bowed string taking into account the width of the bow. In: Proc. SMAC 93, eds. A. Friberg, J. Ewarsson, E. Janson, and J. Sundberg, Royal Swedish Academy of Music, Stockholm.

    Google Scholar 

  • C. V. Raman (1918) On the mechanical theory of the vibrations of bowed stringsand of musical instruments of the violin family, with experimental verification of the results, Bull. 15, The Indian Association for the Cultivation of Science.

    Google Scholar 

  • T. D. Rossing, F. R. Moore, and P. A. Wheeler (2002) Science of Sound, 3rd ed. Addison-Wesley, San Francisco.

    Google Scholar 

  • J. C. Schelleng (1973) The bowed string and the player. J. Acoust. Soc. Am. 53, 26–41.

    Google Scholar 

  • J. C. Schelleng (1974) The physics of the bowed string, Sci. Am. 230(1), 87–95.

    Article  ADS  Google Scholar 

  • R. T. Schumacher (1994) Measurements of some parameters of bowing, J. Acoust. Soc. Am. 96, 1985–1998.

    Article  ADS  Google Scholar 

  • H. L. F. von Helmholtz (1877) On the Sensations of Tone, 4th ed., Translation by A.J. Ellis, Dover, New York (1954).

    Google Scholar 

  • J. Woodhouse (1995). Self-sustained musical oscillators. In: Mechanics of Musical Instruments, eds. A. Hirschberg, J. Kergomard, and G. Weinreich, Springer-Verlag, Wien.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Rossing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rossing, T.D., Hanson, R.J. (2010). Bowed Strings. In: Rossing, T. (eds) The Science of String Instruments. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7110-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7110-4_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7109-8

  • Online ISBN: 978-1-4419-7110-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics