Skip to main content

Toxicant-Induced Liver Injury

  • Chapter
  • First Online:
Molecular Pathology of Liver Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 5))

  • 3641 Accesses

Abstract

Chemical- and drug-induced liver injury is a significant problem in clinical practice and during drug development. Many drugs fail during development due to acute hepatotoxicity. However, a substantial number of drugs currently on the market or already withdrawn have the potential to cause liver injury [1, 2]. Most of these drug-induced hepatotoxicities are idiosyncratic and the mechanisms of cell injury are not well understood [1, 2]. However, currently the most frequent cause of drug-induced liver failure in the United States and many other countries is acetaminophen (APAP) overdose [3]. In contrast to many other drugs on the market, acetaminophen causes acute liver injury in a dose-dependent manner. Relevant animal models are available and many aspects of the pathophysiology have been studied [4]. In addition to its clinical relevance, APAP is widely used as a model liver toxin to evaluate potential hepatoprotective compounds and therapeutic strategies. Therefore, this review will focus on mechanisms of drug-induced liver injury using mainly APAP as the best studied example. However, there are reviews focusing on other compounds not covered in this chapter including many environmental hepatotoxicants, for example, microcystins [5], herbal extracts [6], metals (e.g., iron, copper, cadmium) [7, 8], and specific chemicals such as carbon tetrachloride [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verma S, Kaplowitz N. Diagnosis, management and prevention of drug-induced liver injury. Gut. 2009;58:1555–64.

    PubMed  CAS  Google Scholar 

  2. Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov. 2005;4:489–99.

    PubMed  CAS  Google Scholar 

  3. Larson AM. Acetaminophen hepatotoxicity. Clin Liver Dis. 2007;11:525–48.

    PubMed  Google Scholar 

  4. Jaeschke H, Bajt ML. Mechanisms of acetaminophen hepatotoxicity. In: McQueen CA, editor. Comprehensive toxicology volume 9, pp. 457–73; Oxford: Academic Press; 2010.

    Google Scholar 

  5. Williams CD, Jaeschke H. Liver toxicology. In: Nriagu J, editor. Encyclopedia of environmental health, section toxicology. Oxford: Elsevier; 2010.

    Google Scholar 

  6. Stickel F, Patsenker E, Schuppan D. Herbal hepatotoxicity. J Hepatol. 2005;43:901–10.

    PubMed  Google Scholar 

  7. Britton RS. Metal-induced hepatotoxicity. Semin Liver Dis. 1996;16:3–12.

    PubMed  CAS  Google Scholar 

  8. Rikans LE, Yamano T. Mechanisms of cadmium-mediated acute hepatotoxicity. J Biochem Mol Toxicol. 2000;14:110–7.

    PubMed  CAS  Google Scholar 

  9. Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 2003;33:105–36.

    PubMed  CAS  Google Scholar 

  10. Jaeschke H, Lemasters JJ. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology. 2003;125: 1246–57.

    PubMed  CAS  Google Scholar 

  11. Doonan F, Cotter TG. Morphological assessment of apoptosis. Methods. 2008;44:200–4.

    PubMed  CAS  Google Scholar 

  12. Bratton SB, Cohen GM. Caspase cascades in chemically-induced apoptosis. Adv Exp Med Biol. 2001;500:407–20.

    PubMed  CAS  Google Scholar 

  13. Jaeschke H, Bajt ML. Intracellular signaling mechanisms of ­acetaminophen-induced liver cell death. Toxicol Sci. 2006;89:31–41.

    PubMed  CAS  Google Scholar 

  14. Conde de la Rosa L, Schoemaker MH, Vrenken TE, Buist-Homan M, Havinga R, Jansen PL, et al. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J Hepatol. 2006;44:918–29.

    PubMed  CAS  Google Scholar 

  15. Hong JY, Lebofsky M, Farhood A, Jaeschke H. Oxidant stress-induced liver injury in vivo: role of apoptosis, oncotic necrosis, and c-Jun NH2-terminal kinase activation. Am J Physiol Gastrointest Liver Physiol. 2009;296:G572–81.

    PubMed  CAS  Google Scholar 

  16. Jaeschke H, Gujral JS, Bajt ML. Apoptosis and necrosis in liver disease. Liver Int. 2004;24:85–9.

    PubMed  Google Scholar 

  17. Boulares AH, Zoltoski AJ, Stoica BA, Cuvillier O, Smulson ME. Acetaminophen induces a caspase-dependent and Bcl-XL sensitive apoptosis in human hepatoma cells and lymphocytes. Pharmacol Toxicol. 2002;90:38–50.

    PubMed  CAS  Google Scholar 

  18. Shi J, Aisaki K, Ikawa Y, Wake K. Evidence of hepatocyte apoptosis in rat liver after the administration of carbon tetrachloride. Am J Pathol. 1998;153:515–25.

    PubMed  CAS  Google Scholar 

  19. Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci. 2002;67:322–8.

    PubMed  CAS  Google Scholar 

  20. Antoine DJ, Williams DP, Kipar A, Jenkins RE, Regan SL, Sathish JG, et al. High-mobility group box-1 protein and keratin-18, circulating serum proteins informative of acetaminophen-induced necrosis and apoptosis in vivo. Toxicol Sci. 2009;112:521–31.

    PubMed  CAS  Google Scholar 

  21. Gujral JS, Farhood A, Jaeschke H. Oncotic necrosis and caspase-dependent apoptosis during galactosamine-induced liver injury in rats. Toxicol Appl Pharmacol. 2003;190:37–46.

    PubMed  CAS  Google Scholar 

  22. Leist M, Gantner F, Bohlinger I, Germann PG, Tiegs G, Wendel A. Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-alpha requires transcriptional arrest. J Immunol. 1994;153:1778–88.

    PubMed  CAS  Google Scholar 

  23. Jaeschke H, Fisher MA, Lawson JA, Simmons CA, Farhood A, Jones DA. Activation of caspase 3 (CPP32)-like proteases is essential for TNF-alpha-induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J Immunol. 1998;160:3480–6.

    PubMed  CAS  Google Scholar 

  24. Pritchard DJ, Butler WH. Apoptosis – the mechanism of cell death in dimethylnitrosamine-induced hepatotoxicity. J Pathol. 1989;158: 253–60.

    PubMed  CAS  Google Scholar 

  25. Hooser SB. Fulminant hepatocyte apoptosis in vivo following microcystin-LR administration to rats. Toxicol Pathol. 2000;28: 726–33.

    PubMed  CAS  Google Scholar 

  26. Napirei M, Basnakian AG, Apostolov EO, Mannherz HG. Deoxyribonuclease 1 aggravates acetaminophen-induced liver necrosis in male CD-1 mice. Hepatology. 2006;43:297–305.

    PubMed  CAS  Google Scholar 

  27. Ray SD, Sorge CL, Raucy JL, Corcoran GB. Early loss of large genomic DNA in vivo with accumulation of Ca2+ in the nucleus during acetaminophen-induced liver injury. Toxicol Appl Pharmacol. 1990;106:346–51.

    PubMed  CAS  Google Scholar 

  28. Lawson JA, Fisher MA, Simmons CA, Farhood A, Jaeschke H. Inhibition of Fas receptor (CD95)-induced hepatic caspase activation and apoptosis by acetaminophen in mice. Toxicol Appl Pharmacol. 1999;156:179–86.

    PubMed  CAS  Google Scholar 

  29. Cover C, Mansouri A, Knight TR, Bajt ML, Lemasters JJ, Pessayre D, et al. Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J Pharmacol Exp Ther. 2005;315:879–87.

    PubMed  CAS  Google Scholar 

  30. Jaeschke H, Cover C, Bajt ML. Role of caspases in acetaminophen-induced liver injury. Life Sci. 2006;78:1670–6.

    PubMed  CAS  Google Scholar 

  31. Ray SD, Mumaw VR, Raje RR, Fariss MW. Protection of acetaminophen-induced hepatocellular apoptosis and necrosis by cholesteryl hemisuccinate pretreatment. J Pharmacol Exp Ther. 1996;279:1470–83.

    PubMed  CAS  Google Scholar 

  32. El-Hassan H, Anwar K, Macanas-Pirard P, Crabtree M, Chow SC, Johnson VL, et al. Involvement of mitochondria in acetaminophen-induced apoptosis and hepatic injury: roles of cytochrome c, Bax, Bid, and caspases. Toxicol Appl Pharmacol. 2003;191: 118–29.

    PubMed  CAS  Google Scholar 

  33. Jaeschke H, Farhood A, Cai SX, Tseng BY, Bajt ML. Protection against TNF-induced liver parenchymal cell apoptosis during endotoxemia by a novel caspase inhibitor in mice. Toxicol Appl Pharmacol. 2000;169:77–83.

    PubMed  CAS  Google Scholar 

  34. Bajt ML, Lawson JA, Vonderfecht SL, Gujral JS, Jaeschke H. Protection against Fas receptor-mediated apoptosis in hepatocytes and nonparenchymal cells by a caspase-8 inhibitor in vivo: evidence for a postmitochondrial processing of caspase-8. Toxicol Sci. 2000;58:109–17.

    PubMed  CAS  Google Scholar 

  35. Bajt ML, Vonderfecht SL, Jaeschke H. Differential protection with inhibitors of caspase-8 and caspase-3 in murine models of tumor necrosis factor and Fas receptor-mediated hepatocellular apoptosis. Toxicol Appl Pharmacol. 2001;175:243–52.

    PubMed  CAS  Google Scholar 

  36. Park BK, Kitteringham NR, Maggs JL, Pirmohamed M, Williams DP. The role of metabolic activation in drug-induced hepatotoxicity. Annu Rev Pharmacol Toxicol. 2005;45:177–202.

    PubMed  CAS  Google Scholar 

  37. Prescott LF, Roscoe P, Wright N, Brown SS. Plasma-paracetamol halflife and hepatic necrosis in patients with paracetamol overdosage. Lancet. 1971;1(7698):519–22.

    PubMed  CAS  Google Scholar 

  38. Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther. 1973;187:185–94.

    PubMed  CAS  Google Scholar 

  39. Dahlin DC, Miwa GT, Lu AY, Nelson SD. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci U S A. 1984;81:1327–31.

    PubMed  CAS  Google Scholar 

  40. Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther. 1973;187:211–7.

    PubMed  CAS  Google Scholar 

  41. Chen C, Hennig GE, Manautou JE. Hepatobiliary excretion of acetaminophen glutathione conjugate and its derivatives in transport-deficient (TR-) hyperbilirubinemic rats. Drug Metab Dispos. 2003;31:798–804.

    PubMed  CAS  Google Scholar 

  42. Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther. 1973;187:195–202.

    PubMed  CAS  Google Scholar 

  43. Prescott LF, Park J, Ballantyne A, Adriaenssens P, Proudfoot AT. Treatment of paracetamol (acetaminophen) poisoning with N-acetylcysteine. Lancet. 1977;2(8035):432–4.

    PubMed  CAS  Google Scholar 

  44. Tsokos-Kuhn JO, Hughes H, Smith CV, Mitchell JR. Alkylation of the liver plasma membrane and inhibition of the Ca2+ ATPase by acetaminophen. Biochem Pharmacol. 1988;37:2125–31.

    PubMed  CAS  Google Scholar 

  45. Nicotera P, Bellomo G, Orrenius S. Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol. 1992;32:449–70.

    PubMed  CAS  Google Scholar 

  46. Cohen SD, Pumford NR, Khairallah EA, Boekelheide K, Pohl LR, Amouzadeh HR, et al. Selective protein covalent binding and target organ toxicity. Toxicol Appl Pharmacol. 1997;143:1–12.

    PubMed  CAS  Google Scholar 

  47. Qiu Y, Benet LZ, Burlingame AL. Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. J Biol Chem. 1998;273:17940–53.

    PubMed  CAS  Google Scholar 

  48. Wendel A, Feuerstein S, Konz KH. Acute paracetamol intoxication of starved mice leads to lipid peroxidation in vivo. Biochem Pharmacol. 1979;28:2051–5.

    PubMed  CAS  Google Scholar 

  49. Wendel A, Feuerstein S. Drug-induced lipid peroxidation in mice – I. Modulation by monooxygenase activity, glutathione and selenium status. Biochem Pharmacol. 1981;30:2513–20.

    PubMed  CAS  Google Scholar 

  50. Jaeschke H, Knight TR, Bajt ML. The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett. 2003;144:279–88.

    PubMed  CAS  Google Scholar 

  51. Knight TR, Fariss MW, Farhood A, Jaeschke H. Role of lipid peroxidation as a mechanism of liver injury after acetaminophen overdose in mice. Toxicol Sci. 2003;76:229–36.

    PubMed  CAS  Google Scholar 

  52. Lauterburg BH, Smith CV, Hughes H, Mitchell JR. Biliary excretion of glutathione and glutathione disulfide in the rat. Regulation and response to oxidative stress. J Clin Invest. 1984;73:124–33.

    PubMed  CAS  Google Scholar 

  53. Smith CV, Jaeschke H. Effect of acetaminophen on hepatic content and biliary efflux of glutathione disulfide in mice. Chem Biol Interact. 1989;70:241–8.

    PubMed  CAS  Google Scholar 

  54. Kehrer JP. Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol. 1993;23:21–48.

    PubMed  CAS  Google Scholar 

  55. Lemasters JJ. Modulation of mitochondrial membrane permea­bility in pathogenesis, autophagy and control of metabolism. J Gastroenterol Hepatol. 2007;22 Suppl 1:S31–7.

    PubMed  CAS  Google Scholar 

  56. Meyers LL, Beierschmitt WP, Khairallah EA, Cohen SD. Acetaminophen-induced inhibition of hepatic mitochondrial respiration in mice. Toxicol Appl Pharmacol. 1988;93:378–87.

    PubMed  CAS  Google Scholar 

  57. Ramsay RR, Rashed MS, Nelson SD. In vitro effects of acetaminophen metabolites and analogs on the respiration of mouse liver mitochondria. Arch Biochem Biophys. 1989;273:449–57.

    PubMed  CAS  Google Scholar 

  58. Jaeschke H. Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo: the protective effect of allopurinol. J Pharmacol Exp Ther. 1990;255: 935–41.

    PubMed  CAS  Google Scholar 

  59. Tirmenstein MA, Nelson SD. Acetaminophen-induced oxidation of protein thiols. Contribution of impaired thiol-metabolizing enzymes and the breakdown of adenine nucleotides. J Biol Chem. 1990;265:3059–65.

    PubMed  CAS  Google Scholar 

  60. Tirmenstein MA, Nelson SD. Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3′-hydroxyacetanilide, in mouse liver. J Biol Chem. 1989;264:9814–9.

    PubMed  CAS  Google Scholar 

  61. Qiu Y, Benet LZ, Burlingame AL. Identification of hepatic protein targets of the reactive metabolites of the non-hepatotoxic regioisomer of acetaminophen, 3′-hydroxyacetanilide, in the mouse in vivo using two-dimensional gel electrophoresis and mass spectrometry. Adv Exp Med Biol. 2001;500:663–73.

    PubMed  CAS  Google Scholar 

  62. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    PubMed  CAS  Google Scholar 

  63. Hinson JA, Pike SL, Pumford NR, Mayeux PR. Nitrotyrosine-protein adducts in hepatic centrilobular areas following toxic doses of acetaminophen in mice. Chem Res Toxicol. 1998;11:604–7.

    PubMed  CAS  Google Scholar 

  64. Knight TR, Kurtz A, Bajt ML, Hinson JA, Jaeschke H. Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress. Toxicol Sci. 2001;62:212–20.

    PubMed  CAS  Google Scholar 

  65. Gardner CR, Laskin JD, Dambach DM, Sacco M, Durham SK, Bruno MK, et al. Reduced hepatotoxicity of acetaminophen in mice lacking inducible nitric oxide synthase: potential role of tumor necrosis factor-alpha and interleukin-10. Toxicol Appl Pharmacol. 2002;184:27–36.

    PubMed  CAS  Google Scholar 

  66. Salhanick SD, Orlow D, Holt DE, Pavlides S, Reenstra W, Buras JA. Endothelially derived nitric oxide affects the severity of early acetaminophen-induced hepatic injury in mice. Acad Emerg Med. 2006;13:479–85.

    PubMed  Google Scholar 

  67. Michael SL, Mayeux PR, Bucci TJ, Warbritton AR, Irwin LK, Pumford NR, et al. Acetaminophen-induced hepatotoxicity in mice lacking inducible nitric oxide synthase activity. Nitric Oxide. 2001;5:432–41.

    PubMed  CAS  Google Scholar 

  68. Knight TR, Ho YS, Farhood A, Jaeschke H. Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione. J Pharmacol Exp Ther. 2002;303: 468–75.

    PubMed  CAS  Google Scholar 

  69. Ishii Y, Iijima M, Umemura T, Nishikawa A, Iwasaki Y, Ito R, et al. Determination of nitrotyrosine and tyrosine by high-performance liquid chromatography with tandem mass spectrometry and immunohistochemical analysis in livers of mice administered acetaminophen. J Pharm Biomed Anal. 2006;41:1325–31.

    PubMed  CAS  Google Scholar 

  70. Saito C, Zwingmann C, Jaeschke H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology. 2010;51:246–54.

    PubMed  CAS  Google Scholar 

  71. Bajt ML, Knight TR, Farhood A, Jaeschke H. Scavenging peroxynitrite with glutathione promotes regeneration and enhances survival during acetaminophen-induced liver injury in mice. J Pharmacol Exp Ther. 2003;307:67–73.

    PubMed  CAS  Google Scholar 

  72. Andringa KK, Bajt ML, Jaeschke H, Bailey SM. Mitochondrial protein thiol modifications in acetaminophen hepatotoxicity: effect on HMG-CoA synthase. Toxicol Lett. 2008;177:188–97.

    PubMed  CAS  Google Scholar 

  73. Kon K, Kim JS, Jaeschke H, Lemasters JJ. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology. 2004;40:1170–9.

    PubMed  CAS  Google Scholar 

  74. Masubuchi Y, Suda C, Horie T. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol. 2005;42:110–6.

    PubMed  CAS  Google Scholar 

  75. Nagata S, Nagase H, Kawane K, Mukae N, Fukuyama H. Degradation of chromosomal DNA during apoptosis. Cell Death Differ. 2003;10:108–16.

    PubMed  CAS  Google Scholar 

  76. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–65.

    PubMed  CAS  Google Scholar 

  77. Bajt ML, Cover C, Lemasters JJ, Jaeschke H. Nuclear translocation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury. Toxicol Sci. 2006;94: 217–25.

    PubMed  CAS  Google Scholar 

  78. Widlak P, Garrard WT. Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J Cell Biochem. 2005;94:1078–87.

    PubMed  CAS  Google Scholar 

  79. Modjtahedi N, Giordanetto F, Madeo F, Kroemer G. Apoptosis-inducing factor: vital and lethal. Trends Cell Biol. 2006;16:264–72.

    PubMed  CAS  Google Scholar 

  80. Bajt ML, Farhood A, Lemasters JJ, Jaeschke H. Mitochondrial bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. J Pharmacol Exp Ther. 2008;324:8–14.

    PubMed  CAS  Google Scholar 

  81. Jacob M, Mannherz HG, Napirei M. Chromatin breakdown by deoxyribonuclease1 promotes acetaminophen-induced liver necrosis: an ultrastructural and histochemical study on male CD-1 mice. Histochem Cell Biol. 2007;128:19–33.

    PubMed  CAS  Google Scholar 

  82. Shen W, Kamendulis LM, Ray SD, Corcoran GB. Acetaminophen-induced cytotoxicity in cultured mouse hepatocytes: effects of Ca(2+)-endonuclease, DNA repair, and glutathione depletion inhibitors on DNA fragmentation and cell death. Toxicol Appl Pharmacol. 1992;112:32–40.

    PubMed  CAS  Google Scholar 

  83. Hassa PO. The molecular “Jekyll and Hyde” duality of PARP1 in cell death and cell survival. Front Biosci. 2009;14:72–111.

    PubMed  CAS  Google Scholar 

  84. Ha HC, Snyder SH. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A. 1999;96:13978–82.

    PubMed  CAS  Google Scholar 

  85. Cover C, Fickert P, Knight TR, Fuchsbichler A, Farhood A, Trauner M, et al. Pathophysiological role of poly(ADP-ribose) polymerase (PARP) activation during acetaminophen-induced liver cell necrosis in mice. Toxicol Sci. 2005;84:201–8.

    PubMed  CAS  Google Scholar 

  86. Ray SD, Balasubramanian G, Bagchi D, Reddy CS. Ca(2+)-calmodulin antagonist chlorpromazine and poly(ADP-ribose) polymerase modulators 4-aminobenzamide and nicotinamide influence hepatic expression of BCL-XL and P53 and protect against acetaminophen-induced programmed and unprogrammed cell death in mice. Free Radic Biol Med. 2001;31:277–91.

    PubMed  CAS  Google Scholar 

  87. Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kaplowitz N. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem. 2008;283:13565–77.

    PubMed  CAS  Google Scholar 

  88. Nakagawa H, Maeda S, Hikiba Y, Ohmae T, Shibata W, Yanai A, et al. Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology. 2008;135:1311–21.

    PubMed  CAS  Google Scholar 

  89. Gunawan BK, Liu ZX, Han D, Hanawa N, Gaarde WA, Kaplowitz N. c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology. 2006;131:165–78.

    PubMed  CAS  Google Scholar 

  90. Henderson NC, Pollock KJ, Frew J, Mackinnon AC, Flavell RA, Davis RJ, et al. Critical role of c-jun (NH2) terminal kinase in paracetamol- induced acute liver failure. Gut. 2007;56:982–90.

    PubMed  CAS  Google Scholar 

  91. Saito C, Lemasters JJ, Jaeschke H. c-Jun-N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol. 2010;246:8–17.

    PubMed  CAS  Google Scholar 

  92. Adams DH, Ju C, Ramaiah SK, Uetrecht J, Jaeschke H. Mechanisms of immune-mediated liver injury. Toxicol Sci. 2010;115:307–21.

    PubMed  CAS  Google Scholar 

  93. Jaeschke H. Role of inflammation in the mechanism of acetaminophen-induced hepatotoxicity. Expert Opin Drug Metab Toxicol. 2005;1:389–97.

    PubMed  CAS  Google Scholar 

  94. Liu ZX, Kaplowitz N. Role of innate immunity in acetaminophen-induced hepatotoxicity. Expert Opin Drug Metab Toxicol. 2006;2: 493–503.

    PubMed  CAS  Google Scholar 

  95. Laskin DL, Gardner CR, Price VF, Jollow DJ. Modulation of macrophage functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology. 1995;21:1045–50.

    PubMed  CAS  Google Scholar 

  96. Michael SL, Pumford NR, Mayeux PR, Niesman MR, Hinson JA. Pretreatment of mice with macrophage inactivators decreases acetaminophen hepatotoxicity and the formation of reactive oxygen and nitrogen species. Hepatology. 1999;30:186–95.

    PubMed  CAS  Google Scholar 

  97. Edwards MJ, Keller BJ, Kauffman FC, Thurman RG. The involvement of Kupffer cells in carbon tetrachloride toxicity. Toxicol Appl Pharmacol. 1993;119:275–9.

    PubMed  CAS  Google Scholar 

  98. Przybocki JM, Reuhl KR, Thurman RG, Kauffman FC. Involve­ment of nonparenchymal cells in oxygen-dependent hepatic injury by allyl alcohol. Toxicol Appl Pharmacol. 1992;115: 57–63.

    PubMed  CAS  Google Scholar 

  99. Hoglen NC, Younis HS, Hartley DP, Gunawardhana L, Lantz RC, Sipes IG. 1, 2-Dichlorobenzene-induced lipid peroxidation in male Fischer 344 rats is Kupffer cell dependent. Toxicol Sci. 1998;46: 376–85.

    PubMed  CAS  Google Scholar 

  100. Liu P, McGuire GM, Fisher MA, Farhood A, Smith CW, Jaeschke H. Activation of Kupffer cells and neutrophils for reactive oxygen formation is responsible for endotoxin-enhanced liver injury after hepatic ischemia. Shock. 1995;3:56–62.

    PubMed  CAS  Google Scholar 

  101. Knight TR, Jaeschke H. Peroxynitrite formation and sinusoidal endothelial cell injury during acetaminophen-induced hepatotoxicity in mice. Comp Hepatol. 2004;3 Suppl 1:S46.

    PubMed  Google Scholar 

  102. Ito Y, Bethea NW, Abril ER, McCuskey RS. Early hepatic microvascular injury in response to acetaminophen toxicity. Microcirculation. 2003;10:391–400.

    PubMed  CAS  Google Scholar 

  103. Ju C, Reilly TP, Bourdi M, Radonovich MF, Brady JN, George JW, et al. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem Res Toxicol. 2002;15:1504–13.

    PubMed  CAS  Google Scholar 

  104. Bourdi M, Masubuchi Y, Reilly TP, Amouzadeh HR, Martin JL, George JW, et al. Protection against acetaminophen-induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatology. 2002;35:289–98.

    PubMed  CAS  Google Scholar 

  105. James LP, McCullough SS, Knight TR, Jaeschke H, Hinson JA. Acetaminophen toxicity in mice lacking NADPH oxidase activity: role of peroxynitrite formation and mitochondrial oxidant stress. Free Radic Res. 2003;37:1289–97.

    PubMed  CAS  Google Scholar 

  106. Cover C, Liu J, Farhood A, Malle E, Waalkes MP, Bajt ML, et al. Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol. 2006;216:98–107.

    PubMed  CAS  Google Scholar 

  107. Gao B, Radaeva S, Park O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J Leukoc Biol. 2009;86:513–28.

    PubMed  CAS  Google Scholar 

  108. Liu ZX, Govindarajan S, Kaplowitz N. Innate immune system plays a critical role in determining the progression and severity of acetaminophen hepatotoxicity. Gastroenterology. 2004;127: 1760–74.

    PubMed  CAS  Google Scholar 

  109. Ishida Y, Kondo T, Ohshima T, Fujiwara H, Iwakura Y, Mukaida N. A pivotal involvement of IFN-gamma in the pathogenesis of acetaminophen-induced acute liver injury. FASEB J. 2002;16: 1227–36.

    PubMed  CAS  Google Scholar 

  110. Masson MJ, Carpenter LD, Graf ML, Pohl LR. Pathogenic role of natural killer T and natural killer cells in acetaminophen-induced liver injury in mice is dependent on the presence of dimethyl sulfoxide. Hepatology. 2008;48:889–97.

    PubMed  CAS  Google Scholar 

  111. Jaeschke H. Mechanisms of Liver Injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am J Physiol Gastrointest Liver Physiol. 2006;290:G1083–8.

    PubMed  CAS  Google Scholar 

  112. Jaeschke H, Hasegawa T. Role of neutrophils in acute inflammatory liver injury. Liver Int. 2006;26:912–9.

    PubMed  CAS  Google Scholar 

  113. Ramaiah SK, Jaeschke H. Role of neutrophils in the pathogen­esis of acute inflammatory liver injury. Toxicol Pathol. 2007;35: 757–66.

    PubMed  CAS  Google Scholar 

  114. Jaeschke H, Farhood A, Smith CW. Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB J. 1990;4: 3355–9.

    PubMed  CAS  Google Scholar 

  115. Jaeschke H, Farhood A, Bautista AP, Spolarics Z, Spitzer JJ, Smith CW. Functional inactivation of neutrophils with a Mac-1 (CD11b/CD18) monoclonal antibody protects against ischemia-reperfusion injury in rat liver. Hepatology. 1993;17:915–23.

    PubMed  CAS  Google Scholar 

  116. Gujral JS, Farhood A, Bajt ML, Jaeschke H. Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct-ligated mice. Hepatology. 2003;38:355–63.

    PubMed  Google Scholar 

  117. Gujral JS, Liu J, Farhood A, Hinson JA, Jaeschke H. Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice. Am J Physiol Gastrointest Liver Physiol. 2004;286:G499–507.

    PubMed  CAS  Google Scholar 

  118. Jaeschke H, Farhood A, Smith CW. Neutrophil-induced liver cell injury in endotoxin shock is a CD11b/CD18-dependent mechanism. Am J Physiol. 1991;261:G1051–6.

    PubMed  CAS  Google Scholar 

  119. You Q, Cheng L, Reilly TP, Wegmann D, Ju C. Role of neutrophils in a mouse model of halothane-induced liver injury. Hepatology. 2006;44:1421–31.

    PubMed  CAS  Google Scholar 

  120. Dahm LJ, Schultze AE, Roth RA. An antibody to neutrophils attenuates alpha-naphthylisothiocyanate-induced liver injury. J Pharmacol Exp Ther. 1991;256:412–20.

    PubMed  CAS  Google Scholar 

  121. Kodali P, Wu P, Lahiji PA, Brown EJ, Maher JJ. ANIT toxicity toward mouse hepatocytes in vivo is mediated primarily by neutrophils via CD18. Am J Physiol Gastrointest Liver Physiol. 2006;291:G355–63.

    PubMed  CAS  Google Scholar 

  122. Bonder CS, Ajuebor MN, Zbytnuik LD, Kubes P, Swain MG. Essential role for neutrophil recruitment to the liver in concanavalin A-induced hepatitis. J Immunol. 2004;172:45–53.

    PubMed  CAS  Google Scholar 

  123. Lawson JA, Farhood A, Hopper RD, Bajt ML, Jaeschke H. The hepatic inflammatory response after acetaminophen overdose: role of neutrophils. Toxicol Sci. 2000;54:509–16.

    PubMed  CAS  Google Scholar 

  124. Bauer I, Vollmar B, Jaeschke H, Rensing H, Kraemer T, Larsen R, et al. Transcriptional activation of heme oxygenase-1 and its functional significance in acetaminophen-induced hepatitis and hepatocellular injury in the rat. J Hepatol. 2000;33:395–406.

    PubMed  CAS  Google Scholar 

  125. Liu ZX, Han D, Gunawan B, Kaplowitz N. Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology. 2006;43:1220–30.

    PubMed  CAS  Google Scholar 

  126. Ishida Y, Kondo T, Kimura A, Tsuneyama K, Takayasu T, Mukaida N. Opposite roles of neutrophils and macrophages in the pathogenesis of acetaminophen-induced acute liver injury. Eur J Immunol. 2006;36: 1028–38.

    PubMed  CAS  Google Scholar 

  127. Bautista AP, Spolarics Z, Jaeschke H, Smith CW, Spitzer JJ. Antineutrophil monoclonal antibody (1F12) alters superoxide anion release by neutrophils and Kupffer cells. J Leukoc Biol. 1994;55:328–35.

    PubMed  CAS  Google Scholar 

  128. Jaeschke H, Liu J. Neutrophil depletion protects against murine acetaminophen hepatotoxicity: another perspective (Letter). Hepatology. 2007;45:1588–9.

    PubMed  Google Scholar 

  129. Williams CD, Bajt ML, Farhood A, Jaeschke H. Acetaminophen-induced hepatic neutrophil recruitment and liver injury in CD18-deficient mice. Liver Int. 2010;30:1280–92.

    Google Scholar 

  130. Jaeschke H, Smith CW. Mechanisms of neutrophil-induced parenchymal cell injury. J Leukoc Biol. 1997;61:647–53.

    PubMed  CAS  Google Scholar 

  131. Jaeschke H, Ho YS, Fisher MA, Lawson JA, Farhood A. Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia: importance of an intracellular oxidant stress. Hepatology. 1999;29:443–50.

    PubMed  CAS  Google Scholar 

  132. Gujral JS, Hinson JA, Farhood A, Jaeschke H. NADPH oxidase-derived oxidant stress is critical for neutrophil cytotoxicity during endotoxemia. Am J Physiol Gastrointest Liver Physiol. 2004;287: G243–52.

    PubMed  CAS  Google Scholar 

  133. Mehendale HM. Tissue repair: an important determinant of final outcome of toxicant-induced injury. Toxicol Pathol. 2005;33:41–51.

    PubMed  CAS  Google Scholar 

  134. Apte U, Singh S, Zeng G, Cieply B, Virji MA, Wu T, et al. Beta-catenin activation promotes liver regeneration after acetaminophen-induced injury. Am J Pathol. 2009;175:1056–65.

    PubMed  CAS  Google Scholar 

  135. Laskin DL, Pilaro AM, Ji S. Potential role of activated macrophages in acetaminophen hepatotoxicity. II. Mechanism of macrophage accumulation and activation. Toxicol Appl Pharmacol. 1986;86:216–26.

    PubMed  CAS  Google Scholar 

  136. Dambach DM, Watson LM, Gray KR, Durham SK, Laskin DL. Role of CCR2 in macrophage migration into the liver during acetaminophen-induced hepatotoxicity in the mouse. Hepatology. 2002;35:1093–103.

    PubMed  CAS  Google Scholar 

  137. Holt MP, Cheng L, Ju C. Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury. J Leukoc Biol. 2008;84:1410–21.

    PubMed  CAS  Google Scholar 

  138. Smedsrod B, LeCouteur D, Ikejima K, Jaeschke H, Kawada N, Naito M, et al. Hepatic sinusoidal cells in health and disease: update from the 14th international symposium. Liver Intern. 2009;29: 490–501.

    Google Scholar 

  139. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5.

    PubMed  CAS  Google Scholar 

  140. Schwabe RF, Seki E, Brenner DA. Toll-like receptor signaling in the liver. Gastroenterology. 2006;130:1886–900.

    PubMed  CAS  Google Scholar 

  141. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.

    PubMed  CAS  Google Scholar 

  142. Bajt ML, Farhood A, Jaeschke H. Effects of CXC chemokines on neutrophil activation and sequestration in hepatic vasculature. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1188–95.

    PubMed  CAS  Google Scholar 

  143. Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007;7:31–40.

    PubMed  CAS  Google Scholar 

  144. Imaeda AB, Watanabe A, Sohail MA, Mahmood S, Mohamadnejad M, Sutterwala FS, et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest. 2009;119:305–14.

    PubMed  CAS  Google Scholar 

  145. Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med. 2007;13:851–6.

    PubMed  CAS  Google Scholar 

  146. Williams CD, Farhood A, Jaeschke H. Role of caspase-1 and interleukin-1b in acetaminophen-induced hepatic inflammation and liver injury. Toxicol Appl Pharmacol 2010;247:169–78.

    Google Scholar 

  147. Martin-Murphy BV, Holt MP, Ju C. The role of damage associated molecular pattern molecules in acetaminophen-induced liver injury in mice. Toxicol Lett. 2010;192:387–94.

    PubMed  CAS  Google Scholar 

  148. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418: 191–5.

    PubMed  CAS  Google Scholar 

  149. Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science. 2009;323:1722–5.

    PubMed  CAS  Google Scholar 

  150. Uetrecht J. Immunoallergic drug-induced liver injury in humans. Semin Liver Dis. 2009;29:383–92.

    PubMed  CAS  Google Scholar 

  151. Hussaini SH, Farrington EA. Idiosyncratic drug-induced liver injury: an overview. Expert Opin Drug Saf. 2007;6:673–84.

    PubMed  CAS  Google Scholar 

  152. Boelsterli UA, Lim PL. Mitochondrial abnormalities – a link to idiosyncratic drug hepatotoxicity? Toxicol Appl Pharmacol. 2007;220:92–107.

    PubMed  CAS  Google Scholar 

  153. Ong MM, Latchoumycandane C, Boelsterli UA. Troglitazone-induced hepatic necrosis in an animal model of silent genetic mitochondrial abnormalities. Toxicol Sci. 2007;97:205–13.

    PubMed  CAS  Google Scholar 

  154. Jaeschke H. Troglitazone hepatotoxicity: are we getting closer to understanding idiosyncratic liver injury? Toxicol Sci. 2007;97: 1–3.

    PubMed  CAS  Google Scholar 

  155. Fujimoto K, Kumagai K, Ito K, Arakawa S, Ando Y, Oda S, et al. Sensitivity of liver injury in heterozygous Sod2 knockout mice treated with troglitazone or acetaminophen. Toxicol Pathol. 2009;37: 193–200.

    PubMed  CAS  Google Scholar 

  156. Roth RA, Ganey PE. Intrinsic versus idiosyncratic drug-induced hepatotoxicity – two villains or one? J Pharmacol Exp Ther. 2010;332:692–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Jaeschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jaeschke, H. (2011). Toxicant-Induced Liver Injury. In: Monga, S. (eds) Molecular Pathology of Liver Diseases. Molecular Pathology Library, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7107-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7107-4_42

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7106-7

  • Online ISBN: 978-1-4419-7107-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics