Skip to main content

Glutamate and Glutamine in Brain Disorders

  • Chapter
  • First Online:
Neurochemical Mechanisms in Disease

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 1))

Abstract

Diseases of the brain account for much human suffering and place a huge burden on the health care systems. Thus, research into the pathology of brain diseases and improved pharmacotherapy is of significant value. In this respect, knowledge on malfunctions of metabolic homeostasis related to the neurotransmission process is still limited. As evident from this chapter, failure of the metabolic homeostasis of the two amino acids of major importance, namely glutamate and glutamine, is a hallmark of a wide range of both neurological and psychiatric diseases. This chapter deals with representative brain diseases as well as the methodology of research related to metabolism. In addition, future need for research and potential new targets for pharmacotherapy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EAAT:

Excitatory amino acid transporter

GABA:

γ-Aminobutyric acid

GDH:

Glutamate dehydrogenase

GS:

Glutamine synthetase

MCAO:

Middle cerebral artery occlusion

MS:

Mass spectrometry

MSA:

Multiple system atrophy

NMDA:

N-methyl-D-aspartate

NMRS:

Nuclear magnetic resonance spectroscopy

3-NPA:

3-Nitropropionic acid

PAG:

Phosphate-activated glutaminase

TCA:

Tricarboxylic acid

VGLUT:

Vesicular glutamate transporter

References

  • Almeida A, Delgado-Esteban M, Bolanos JP, Medina JM (2002) Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J Neurochem 81:207–217

    Article  PubMed  CAS  Google Scholar 

  • Bacci A, Sancini G, Verderio C, Armano S, Pravettoni E, Fesce R, Franceschetti S, Matteoli M (2002) Block of glutamate-glutamine cycle between astrocytes and neurons inhibits epileptiform activity in hippocampus. J Neurophysiol 88:2302–2310

    Article  PubMed  CAS  Google Scholar 

  • Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    Article  PubMed  CAS  Google Scholar 

  • Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D (2006) Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 6:3414–3425

    Article  PubMed  CAS  Google Scholar 

  • Belayev L, Zhao W, Busto R, Ginsberg MD (1997) Transient middle cerebral artery occlusion by intraluminal suture: I. Three-dimensional autoradiographic image-analysis of local cerebral glucose metabolism-blood flow interrelationships during ischemia and early recirculation. J Cereb Blood Flow Metab 17:1266–1280

    Article  PubMed  CAS  Google Scholar 

  • Benjamin AM, Quastel JH (1972) Locations of amino acids in brain slices from the rat. Tetrodotoxin-sensitive release of amino acids. Biochem J 128:631–646

    PubMed  CAS  Google Scholar 

  • Berl S, Clarke DD (1983) The metabolic compartmentation concept. In: Hertz L, Kvamme E, McGeer EG, Schousboe A (eds) Glutamine, glutamate and GABA in the central nervous system. Liss, New York, NY, pp 205–217

    Google Scholar 

  • Brenner E, Kondziella D, Håberg A, Sonnewald U (2005) Impaired glutamine metabolism in NMDA receptor hypofunction induced by MK801. J Neurochem 94:1594–1603

    Article  PubMed  CAS  Google Scholar 

  • Brouillet E, Guyot MC, Mittoux V, Altairac S, Conde F, Palfi S, Hantraye P (1998) Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficient to initiate striatal degeneration in rat. J Neurochem 70:794–805

    Article  PubMed  CAS  Google Scholar 

  • Burbaeva GS, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS (2005) Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer’s disease patients. Neurochem Res 30:1443–1451

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    Article  PubMed  CAS  Google Scholar 

  • Cater HL, Benham CD, Sundstrom LE (2001) Neuroprotective role of monocarboxylate transport during glucose deprivation in slice cultures of rat hippocampus. J Physiol 531:459–466

    Article  PubMed  CAS  Google Scholar 

  • Clarke CE, Lowry M, Horsman A (1997) Unchanged basal ganglia N-acetylaspartate and glutamate in idiopathic Parkinson’s disease measured by proton magnetic resonance spectroscopy. Mov Disord 12:297–301

    Article  PubMed  CAS  Google Scholar 

  • Cowan WM, Kandel ER (2001) Prospects for neurology and psychiatry. JAMA 285:594–600

    Article  PubMed  CAS  Google Scholar 

  • Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C (1998) Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 55:27–57

    Article  PubMed  CAS  Google Scholar 

  • Desagher S, Glowinski J, Premont J (1997) Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci 17:9060–9067

    PubMed  CAS  Google Scholar 

  • Dufour F, Nalecz KA, Nalecz MJ, Nehlig A (2001a) Metabolic approach of absence seizures in a genetic model of absence epilepsy, the GAERS: study of the leucine-glutamate cycle. J Neurosci Res 66:923–930

    Article  PubMed  CAS  Google Scholar 

  • Dufour F, Nalecz KA, Nalecz MJ, Nehlig A (2001b) Modulation of absence seizures by branched-chain amino acids: correlation with brain amino acid concentrations. Neurosci Res 40:255–263

    Article  PubMed  CAS  Google Scholar 

  • Eyjolfsson EM, Brenner E, Kondziella D, Sonnewald U (2006) Repeated injection of MK801: an animal model of schizophrenia? Neurochem Int 48:541–546

    Article  PubMed  CAS  Google Scholar 

  • Fowler JC (1993) Glucose deprivation results in a lactate preventable increase in adenosine and depression of synaptic transmission in rat hippocampal slices. J Neurochem 60:572–576

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez SV, Nguyen NH, Rise F, Hassel B (2005) Brain metabolism of exogenous pyruvate. J Neurochem 95:284–293

    Article  PubMed  CAS  Google Scholar 

  • Hassel B, Sonnewald U (1995) Selective inhibition of the tricarboxylic acid cycle of GABAergic neurons with 3-nitropropionic acid in vivo. J Neurochem 65:1184–1191

    Article  PubMed  CAS  Google Scholar 

  • Henry PG, Lebon V, Vaufrey F, Brouillet E, Hantraye P, Bloch G (2002) Decreased TCA cycle rate in the rat brain after acute 3-NPA treatment measured by in vivo 1H-[13C] NMR spectroscopy. J Neurochem 82:857–866

    Article  PubMed  CAS  Google Scholar 

  • Huang R, Sochocka E, Hertz L (1997) Cell culture studies of the role of elevated extracellular glutamate and K+ in neuronal cell death during and after anoxia/ischemia. Neurosci Biobehav Rev 21:129–134

    Article  PubMed  CAS  Google Scholar 

  • Håberg A, Qu H, Haraldseth O, Unsgard G, Sonnewald U (1998) In vivo injection of [1-13C]glucose and [1,2-13C]acetate combined with ex vivo 13C nuclear magnetic resonance spectroscopy: a novel approach to the study of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:1223–1232

    Article  PubMed  Google Scholar 

  • Håberg A, Qu H, Saether O, Unsgard G, Haraldseth O, Sonnewald U (2001) Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: the role of astrocytes in neuronal survival. J Cereb Blood Flow Metab 21:1451–1463

    Article  PubMed  Google Scholar 

  • Håberg A, Qu H, Sonnewald U (2006) Glutamate and GABA metabolism in transient and permanent middle cerebral artery occlusion in rat: importance of astrocytes for neuronal survival. Neurochem Int 48:531–540

    Article  PubMed  Google Scholar 

  • Jackson JH (1873) On the anatomical, physiological and pathological investigation of epilepsies. West Riding Lunatic Asylum Med Rep 3:315–339

    Google Scholar 

  • Juttler E, Kohrmann M, Schellinger PD (2006) Therapy for early reperfusion after stroke. Nat Clin Pract Cardiovasc Med 3:656–663

    Article  PubMed  CAS  Google Scholar 

  • Kondziella D, Brenner E, Eyjolfsson EM, Markinhuhta KR, Carlsson ML, Sonnewald U (2006) Glial-neuronal interactions are impaired in the schizophrenia model of repeated MK801 exposure. Neuropsychopharmacology 31:1880–1887

    Article  PubMed  CAS  Google Scholar 

  • Kondziella D, Hammer J, Sletvold O, Sonnewald U (2003) The pentylenetetrazole-kindling model of epilepsy in SAMP8 mice: glial-neuronal metabolic interactions. Neurochem Int 43:629–637

    Article  PubMed  CAS  Google Scholar 

  • Kosenko E, Kaminsky Y, Grau E, Minana MD, Grisolia S, Felipo V (1995) Nitroarginine, an inhibitor of nitric oxide synthetase, attenuates ammonia toxicity and ammonia-induced alterations in brain metabolism. Neurochem Res 20:451–456

    Article  PubMed  CAS  Google Scholar 

  • Kosenko E, Llansola M, Montoliu C, Monfort P, Rodrigo R, Hernandez-Viadel M, Erceg S, Sanchez-Perez AM, Felipo V (2003) Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43:493–499

    Article  PubMed  CAS  Google Scholar 

  • Kvamme E, Torgner IA, Roberg B (2001) Kinetics and localization of brain phosphate activated glutaminase. J Neurosci Res 66:951–958

    Article  PubMed  CAS  Google Scholar 

  • Lin AP, Shic F, Enriquez C, Ross BD (2003) Reduced glutamate neurotransmission in patients with Alzheimer’s disease – an in vivo 13C magnetic resonance spectroscopy study. MAGMA 16:29–42

    Article  PubMed  CAS  Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  PubMed  CAS  Google Scholar 

  • Mally J, Szalai G, Stone TW (1997) Changes in the concentration of amino acids in serum and cerebrospinal fluid of patients with Parkinson’s disease. J Neurol Sci 151:159–162

    Article  PubMed  CAS  Google Scholar 

  • Mastrogiacomo F, Kish SJ (1994) Cerebellar Alpha-Ketoglutarate Dehydrogenase-Activity Is Reduced in Spinocerebellar Ataxia Type-1. Ann Neurol 35:624–626

    Article  PubMed  CAS  Google Scholar 

  • Matute C, Meløne M, Vallejo-Illarramendi A, Conti F (2005) Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia 49:451–455

    Article  PubMed  Google Scholar 

  • McKenna MC, Gruetter R, Sonnewald U, Waagepetersen HS, Schousboe A (2006) Energy metabolism of the brain. In: Siegel GJ, Albers RW, Brady ST, Price DL (eds) Basic neurochemistry, 7th edn. Elsevier, Amsterdam, pp 531–557

    Google Scholar 

  • Melø TM, Nehlig A, Sonnewald U (2005) Metabolism is normal in astrocytes in chronically epileptic rats: a 13C NMR study of neuronal-glial interactions in a model of temporal lobe epilepsy. J Cereb Blood Flow Metab 25:1254–1264

    Article  PubMed  Google Scholar 

  • Melø TM, Sonnewald U, Touret M, Nehlig A (2006) Cortical glutamate metabolism is enhanced in a genetic model of absence epilepsy. J Cereb Blood Flow Metab 26:1496–1506

    Article  PubMed  Google Scholar 

  • Miret-Duvaux O, Frederic F, Simon D, Guenet JL, Hanauer A, Delhaye-Bouchaud N, Mariani J (1990) Glutamate dehydrogenase in cerebellar mutant mice: gene localization and enzyme activity in different tissues. J Neurochem 54:23–29

    Article  PubMed  CAS  Google Scholar 

  • Nanitsos EK, Nguyen KT, St’astny F, Balcar VJ (2005) Glutamatergic hypothesis of schizophrenia: involvement of Na+/K+-dependent glutamate transport. J Biomed Sci 12:975–984

    Article  PubMed  CAS  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  PubMed  CAS  Google Scholar 

  • Ohrmann P, Siegmund A, Suslow T, Spitzberg K, Kersting A, Arolt V, Heindel W, Pfleiderer B (2005) Evidence for glutamatergic neuronal dysfunction in the prefrontal cortex in chronic but not in first-episode patients with schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 73:153–157

    Article  PubMed  Google Scholar 

  • Okada Y, Lipton P (2007) Glucose, oxidative energy metabolism, and neuronal function in brain slices-glycolysis plays a key role in neural activity. In: Gibson GE, Dienel G (eds) Handbook of neurochemistry and molecular neurobiology Springer-Verlag, Heidelburg, Germany, vol 5. pp 17–39

    Chapter  Google Scholar 

  • Olney JW, Labruyere J, Price MT (1989) Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Ottersen OP, Zhang N, Walberg F (1992) Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 46:519–534

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Kish SJ, Hansen S, Currier RD (1981) Neurotransmitter amino acids in dominantly inherited cerebellar disorders. Neurology 31:237–242

    PubMed  CAS  Google Scholar 

  • Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43:703–710

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis A, Flessas P, Natsiou AB, Shashidharan P (1993) Glutamate dehydrogenase deficiency in cerebellar degenerations: clinical, biochemical and molecular genetic aspects. Can J Neurol Sci 20(Suppl 3):S109–S116

    PubMed  Google Scholar 

  • Plaitakis A, Nicklas WJ, Desnick RJ (1979) Glutamate dehydrogenase deficiency in three patients with spinocerebellar ataxia: a new enzymatic defect? Trans Am Neurol Assoc 104:54–57

    PubMed  CAS  Google Scholar 

  • Plaitakis A, Nicklas WJ, Desnick RJ (1980) Glutamate dehydrogenase deficiency in three patients with spinocerebellar syndrome. Ann Neurol 7:297–303

    Article  PubMed  CAS  Google Scholar 

  • Podell M, Hadjiconstantinou M, Smith MA, Neff NH (2003) Proton magnetic resonance imaging and spectroscopy identify metabolic changes in the striatum in the MPTP feline model of parkinsonism. Exp Neurol 179:159–166

    Article  PubMed  CAS  Google Scholar 

  • Qu H, Håberg A, Haraldseth O, Unsgard G, Sonnewald U (2000) 13C MR spectroscopy study of lactate as substrate for rat brain. Dev Neurosci 22:429–436

    Article  PubMed  CAS  Google Scholar 

  • Rae C, Moussa C, Griffin JL, Bubb WA, Wallis T, Balcar VJ (2005) Group I and II metabotropic glutamate receptors alter brain cortical metabolic and glutamate/glutamine cycle activity: a 13C NMR spectroscopy and metabolomic study. J Neurochem 92:405–416

    Article  PubMed  CAS  Google Scholar 

  • Re DB, Nafia I, Meløn C, Shimamoto K, Goff LK, Had-Aissouni L (2006) Glutamate leakage from a compartmentalized intracellular metabolic pool and activation of the lipoxygenase pathway mediate oxidative astrocyte death by reversed glutamate transport. Glia 54:47–57

    Article  PubMed  Google Scholar 

  • Robinson SR (2000) Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochem Int 36:471–482

    Article  PubMed  CAS  Google Scholar 

  • Robinson SR (2001) Changes in the cellular distribution of glutamine synthetase in Alzheimer’s disease. J Neurosci Res 66:972–980

    Article  PubMed  CAS  Google Scholar 

  • Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    Article  PubMed  CAS  Google Scholar 

  • Sarup A, Larsson OM, Schousboe A (2003) GABA transporters and GABA-transaminase as drug targets. Curr Drug Targets CNS Neurol Disord 2:269–277

    Article  PubMed  CAS  Google Scholar 

  • Schurr A, Payne RS, Miller JJ, Rigor BM (1997a) Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 69:423–426

    Article  PubMed  CAS  Google Scholar 

  • Schurr A, Payne RS, Miller JJ, Rigor BM (1997b) Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res 744:105–111

    Article  PubMed  CAS  Google Scholar 

  • Schurr A, Payne RS, Miller JJ, Rigor BM (1997c) Glia are the main source of lactate utilized by neurons for recovery of function posthypoxia. Brain Res 774:221–224

    Article  PubMed  CAS  Google Scholar 

  • Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2001a) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 158:1393–1399

    Article  PubMed  CAS  Google Scholar 

  • Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2001b) Vesicular glutamate transporter transcript expression in the thalamus in schizophrenia. Neuroreport 12:2885–2887

    Article  PubMed  CAS  Google Scholar 

  • Sonnewald U, Kondziella D (2003) Neuronal glial interaction in different neurological diseases studied by ex vivo 13C NMR spectroscopy. NMR Biomed 16:424–429

    Article  PubMed  CAS  Google Scholar 

  • Taylor A, McLean M, Morris P, Bachelard H (1996) Approaches to studies on neuronal/glial relationships by 13C-NMRS analysis. Dev Neurosci 18:434–442

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Robinson SD, Turjanski N, Bhattacharya S, Seery JP, Sargentoni J, Brooks DJ, Bryant DJ, Cox IJ (1999) A proton magnetic resonance spectroscopy study of the striatum and cerebral cortex in Parkinson’s disease. Metab Brain Dis 14:45–55

    Article  PubMed  CAS  Google Scholar 

  • Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O’Donnell C, Kittner S, Lloyd-Jones D, Goff DC Jr., Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M, Wolf P (2006) Heart disease and stroke statistics – 2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113:e85–e151

    Article  PubMed  Google Scholar 

  • Thoren AE, Helps SC, Nilsson M, Sims NR (2005) Astrocytic function assessed from 1-14C-acetate metabolism after temporary focal cerebral ischemia in rats. J Cereb Blood Flow Metab 25:440–450

    Article  PubMed  CAS  Google Scholar 

  • Thoren AE, Helps SC, Nilsson M, Sims NR (2006) The metabolism of 14C-glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats. J Neurochem 97:968–978

    Article  PubMed  CAS  Google Scholar 

  • Waagepetersen HS, Schousboe A, Sonnewald U (2007) Glutamate, glutamine and GABA: metabolic aspects. In: Oja SS, Schousboe A, Saransaari P (eds) Handbook of neurochemistry and molecular neurobiology Springer-Verlag, Heidelburg, Germany, vol 6. pp 1–21

    Chapter  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Larsson OM, Schousboe A (1999) Synthesis of vesicular GABA from glutamine involves TCA cycle metabolism in neocortical neurons. J Neurosci Res 57:342–349

    Article  PubMed  CAS  Google Scholar 

  • Waniewski RA, Martin DL (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18:5225–5233

    PubMed  CAS  Google Scholar 

  • van den Berg CJ, Garfinkel D (1971) A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123:211–218

    PubMed  Google Scholar 

  • van Elst LT, Valerius G, Buchert M, Thiel T, Rusch N, Bubl E, Hennig J, Ebert D, Olbrich HM (2005) Increased prefrontal and hippocampal glutamate concentration in schizophrenia: evidence from a magnetic resonance spectroscopy study. Biol Psychiatry 58:724–730

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Schousboe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bak, L.K., Schousboe, A., Waagepetersen, H.S. (2011). Glutamate and Glutamine in Brain Disorders. In: Blass, J. (eds) Neurochemical Mechanisms in Disease. Advances in Neurobiology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7104-3_7

Download citation

Publish with us

Policies and ethics