Skip to main content

Zinc and Zinc Transport and Sequestration Proteins in the Brain in the Progression of Alzheimer’s Disease

  • Chapter
  • First Online:
Neurochemical Mechanisms in Disease

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 1))

Abstract

Multiple studies over the past 25 years have demonstrated alterations of zinc (Zn) in the brain in Alzheimer’s disease (AD), although the potential fole of these alterations in the pathogenesis of AD remains unclear. The following examines normal and abnormal roles of Zn and Zn transport (ZIP and ZnT) proteins in brain and the potential effects of their alterations in the pathogenesis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, Volitakis I, Liu X, Smith JP, Perez K, Laughton K, Li QX, Charman SA, Nicolazzo JA, Wilkins S, Deleva K, Lynch T, Kok G, Ritchie CW, Tanzi RE, Cappai R, Masters CL, Barnham KJ, Bush AI (2008) Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron 59:43–55

    PubMed  CAS  Google Scholar 

  • American Psychiatric Association. (2000) Diagnostic and statistical manual of mental disorders DSM-IV-TR, 4th edn. American Psychiatric Publishing, Arlington, VA

    Google Scholar 

  • An WL, Bjorkdahl C, Liu R, Cowburn RF, Winblad B, Pei JJ (2005) Mechanism of zinc-induced phosphorylation of p70 S6 kinase and glycogen synthase kinase 3beta in SH-SY5Y neuroblastoma cells. J Neurochem 92:1104–1115

    PubMed  CAS  Google Scholar 

  • Andrasi E, Farkas E, Gawlik D, Rosick U, Bratter P (2000) Brain Iron and Zinc Contents of German Patients with Alzheimer Disease. J Alzheimers Dis 2:17–26

    PubMed  CAS  Google Scholar 

  • Andrasi E, Nadasdi J, Molnar Z, Bezur L, Ernyei L (1990) Determination of main and trace element contents in human brain by NAA and ICP-AES methods. Biol Trace Elem Res 26–27:691–698

    PubMed  Google Scholar 

  • Andrasi E, Suhajda M, Saray I, Bezur L, Ernyei L, Reffy A (1993) Concentration of elements in human brain: glioblastoma multiforme. Sci Total Environ 139–140:399–402

    PubMed  Google Scholar 

  • Andrews GK (2001) Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 14:223–237

    PubMed  CAS  Google Scholar 

  • Atar D, Backx PH, Appel MM, Gao WD, Marban E (1995) Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J Biol Chem 270:2473–2477

    PubMed  CAS  Google Scholar 

  • Backstrom JR, Miller CA, Tokes ZA (1992) Characterization of neutral proteinases from Alzheimer-affected and control brain specimens: identification of calcium-dependent metalloproteinases from the hippocampus. J Neurochem 58:983–992

    PubMed  CAS  Google Scholar 

  • Basun H, Forssell LG, Wetterberg L, Winblad B (1991) Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J Neural Transm Park Dis Dement Sect 3:231–258

    PubMed  CAS  Google Scholar 

  • Baudier J, Haglid K, Haiech J, Gerard D (1983) Zinc ion binding to human brain calcium binding proteins, calmodulin and S100b protein. Biochem Biophys Res Commun 114:1138–1146

    PubMed  CAS  Google Scholar 

  • Beaulieu C, Dyck R, Cynader M (1992) Enrichment of glutamate in zinc-containing terminals of the cat visual cortex. NeuroReport 3:861–864

    PubMed  CAS  Google Scholar 

  • Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT, Barnes LL, Fox JH, Bach J (2002) Natural history of mild cognitive impairment in older persons. Neurology 59:198–205

    PubMed  CAS  Google Scholar 

  • Bergeron C, Petrunka C, Weyer L (1996) Copper/zinc superoxide dismutase expression in the human central nervous system. Correlation with selective neuronal vulnerability. Am J Pathol 148:273–279

    PubMed  CAS  Google Scholar 

  • Bertram L, Blacker D, Mullin K, Keeney D, Jones J, Basu S, Yhu S, McInnis MG, Go RC, Vekrellis K, Selkoe DJ, Saunders AJ, Tanzi RE (2000) Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q. Science 290:2302–2303

    PubMed  CAS  Google Scholar 

  • Bertram L, Hiltunen M, Parkinson M, Ingelsson M, Lange C, Ramasamy K, Mullin K, Menon R, Sampson AJ, Hsiao MY, Elliott KJ, Velicelebi G, Moscarillo T, Hyman BT, Wagner SL, Becker KD, Blacker D, Tanzi RE (2005) Family-based association between Alzheimer’s disease and variants in UBQLN1. N Engl J Med 352:884–894

    PubMed  CAS  Google Scholar 

  • Bettger WJ, O’Dell BL (1981) A critical physiological role of zinc in the structure and function of biomembranes. Life Sci 28:1425–1438

    PubMed  CAS  Google Scholar 

  • Bittel D, Dalton T, Samson SL, Gedamu L, Andrews GK (1998) The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in vitro by zinc, but not by other transition metals. J Biol Chem 273:7127–7133

    PubMed  CAS  Google Scholar 

  • Blennow K, Wallin A, Agren H, Spenger C, Siegfried J, Vanmechelen E (1995) Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol 26:231–245

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1994) Pathology of Alzheimer’s Disease. In: Calne D (ed) Neurodegnerative Diseases. WB Saunders Co, Philadelphia, PA, pp 585–613

    Google Scholar 

  • Bramham CR, Torp R, Zhang N, Storm-Mathisen J, Ottersen OP (1990) Distribution of glutamate-like immunoreactivity in excitatory hippocampal pathways: a semiquantitative electron microscopic study in rats. Neuroscience 39:405–417

    PubMed  CAS  Google Scholar 

  • Brewer GJ, Aster JC, Knutsen CA, Kruckeberg WC (1979) Zinc inhibition of calmodulin: a proposed molecular mechanism of zinc action on cellular functions. Am J Hematol 7:53–60

    PubMed  CAS  Google Scholar 

  • Burnet FM (1981) A possible role of zinc in the pathology of dementia. Lancet 1:186–188

    PubMed  CAS  Google Scholar 

  • Buschke H, Kuslansky G, Katz M, Stewart WF, Sliwinski MJ, Eckholdt HM, Lipton RB (1999) Screening for dementia with the memory impairment screen. Neurology 52:231–238

    PubMed  CAS  Google Scholar 

  • Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214

    PubMed  CAS  Google Scholar 

  • Bush AI, Atwood CS, Huang L (1996) Abnormal homeostasis of ph1 and zinc: the prelunde for cerebral Aß amyloid formation. Eur Neuropsychopharmacol 6(suppl 3):S2–S4

    Google Scholar 

  • Bush AI, Multhaup G, Moir RD, Williamson TG, Small DH, Rumble B, Pollwein P, Beyreuther K, Masters CL (1993) A novel zinc(II) binding site modulates the function of the beta A4 amyloid protein precursor of Alzheimer’s disease. J Biol Chem 268:16109–16112

    PubMed  CAS  Google Scholar 

  • Bush AI, Pettingell WH, Multhaup G, d Paradis M, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL, Tanzi RE (1994) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265:1464–1467

    PubMed  CAS  Google Scholar 

  • Bush AI, Pettingell WH, Paradis MD, Tanzi R (1995) Zinc and Alzheimer’s disease. Science 268:1921–1923

    PubMed  CAS  Google Scholar 

  • Butterfield DA (2003) Amyloid beta-peptide [1-42]-associated free radical-induced oxidative stress and neurodegeneration in Alzheimer’s disease brain: mechanisms and consequences. Curr Med Chem 10:2651–2659

    PubMed  CAS  Google Scholar 

  • Calingasan NY, Uchida K, Gibson GE (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72:751–756

    PubMed  CAS  Google Scholar 

  • Canzoniero LM, Turetsky DM, Choi DW (1999) Measurement of intracellular free zinc concentrations accompanying zinc-induced neuronal death. J Neurosci 19:RC31

    PubMed  CAS  Google Scholar 

  • Chan SL, Griffin WS, Mattson MP (1999) Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer’s disease. J Neurosci Res 57:315–323

    PubMed  CAS  Google Scholar 

  • Cheng C, Reynolds IJ (1998) Calcium-sensitive fluorescent dyes can report increases in intracellular free zinc concentration in cultured forebrain neurons. J Neurochem 71:2401–2410

    PubMed  CAS  Google Scholar 

  • Cherian MG, Apostolova MD (2000) Nuclear localization of metallothionein during cell proliferation and differentiation. Cell Mol Biol (Noisy-le-grand) 46:347–356

    CAS  Google Scholar 

  • Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    PubMed  CAS  Google Scholar 

  • Cherny RA, Legg JT, McLean CA, Fairlie DP, Huang X, Atwood CS, Beyreuther K, Tanzi RE, Masters CL, Bush AI (1999) Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. J Biol Chem 274:23223–23228

    PubMed  CAS  Google Scholar 

  • Choi DW, Yokoyama M, Koh J (1988) Zinc neurotoxicity in cortical cell culture. Neuroscience 24:67–79

    PubMed  CAS  Google Scholar 

  • Chowanadisai W, Kelleher SL, Lonnerdal B (2005) Zinc deficiency is associated with increased brain zinc import and LIV-1 expression and decreased ZnT-1 expression in neonatal rats. J Nutr 135:1002–1007

    PubMed  CAS  Google Scholar 

  • Chromy BA, Nowak RJ, Lambert MP, Viola KL, Chang L, Velasco PT, Jones BW, Fernandez SJ, Lacor PN, Horowitz P, Finch CE, Krafft GA, Klein WL (2003) Self-assembly of Abeta(1-42) into globular neurotoxins. Biochemistry 42:12749–12760

    PubMed  CAS  Google Scholar 

  • Chuah MI, Tennent R, Jacobs I (1995) Response of olfactory Schwann cells to intranasal zinc sulfate irrigation. J Neurosci Res 42:470–478

    PubMed  CAS  Google Scholar 

  • Clements A, Allsop D, Walsh DM, Williams CH (1996) Aggregation and metal-binding properties of mutant forms of the amyloid A beta peptide of Alzheimer’s disease. J Neurochem 66:740–747

    PubMed  CAS  Google Scholar 

  • Colvin RA, Fontaine CP, Laskowski M, Thomas D (2003) Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol 479:171–185

    PubMed  CAS  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    PubMed  CAS  Google Scholar 

  • Cornett CR, Markesbery WR, Ehmann WD (1998) Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicology 19:339–345

    PubMed  CAS  Google Scholar 

  • Corrigan FM, Reynolds GP, Ward NI (1993) Hippocampal tin, aluminum and zinc in Alzheimer’s disease. Biometals 6:149–154

    PubMed  CAS  Google Scholar 

  • Cousins RJ, Blanchard RK, Popp MP, Liu L, Cao J, Moore JB, Green CL (2003) A global view of the selectivity of zinc deprivation and excess on genes expressed in human THP-1 mononuclear cells. Proc Natl Acad Sci U S A 100:6952–6957

    PubMed  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    PubMed  CAS  Google Scholar 

  • Cuajungco MP, Lees GJ (1996) Prevention of zinc neurotoxicity in vivo by N,N,N,N-tetrakis (2-pyridylmethyl) ethylene-diamine (TPEN). NeuroReport 7:1301–1304

    PubMed  CAS  Google Scholar 

  • Dalton TP, Bittel D, Andrews GK (1997) Reversible activation of mouse metal response element-binding transcription factor 1 DNA binding involves zinc interaction with the zinc finger domain. Mol Cell Biol 17:2781–2789

    PubMed  CAS  Google Scholar 

  • Dalton TP, Li Q, Bittel D, Liang L, Andrews GK (1996) Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem 271:26233–26241

    PubMed  CAS  Google Scholar 

  • Danscher G, Howell G, Perez-Clausell J, Hertel N (1985) The dithizone, Timm’s sulphide silver and the selenium methods demonstrate a chelatable pool of zinc in CNS. A proton activation (PIXE) analysis of carbon tetrachloride extracts from rat brains and spinal cords intravitally treated with dithizone. Histochemistry 83:419–422

    PubMed  CAS  Google Scholar 

  • Danscher G, Jensen KB, Frederickson CJ, Kemp K, Andreasen A, Juhl S, Stoltenberg M, Ravid R (1997) Increased amount of zinc in the hippocampus and amygdala of Alzheimer’s diseased brains: a proton-induced X-ray emission spectroscopic analysis of cryostat sections from autopsy material. J Neurosci Methods 76:53–59

    PubMed  CAS  Google Scholar 

  • DeCarli C (2003) Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet neurol 2:15–21

    PubMed  Google Scholar 

  • Deibel MA, Ehmann WD, Markesbery WR (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143:137–142

    PubMed  CAS  Google Scholar 

  • Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300

    PubMed  CAS  Google Scholar 

  • Deng QS, Turk GC, Brady DR, Smith QR (1994) Evaluation of brain element composition in Alzheimer’s disease using inductively coupled plasma mass spectrometry. Neurobiol Aging S113:464

    Google Scholar 

  • Dong J, Atwood CS, Anderson VE, Siedlak SL, Smith MA, Perry G, Carey PR (2003) Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 42:2768–2773

    PubMed  CAS  Google Scholar 

  • Dong J, Robertson JD, Markesbery WR, Lovell MA (2008) Serum Zinc in the Progression of Alzheimer’s Disease. J Alzheimers Dis 15(3):443–450

    PubMed  CAS  Google Scholar 

  • Dong J, Shokes JE, Scott RA, Lynn DG (2006) Modulating amyloid self-assembly and fibril morphology with Zn(II). J Am Chem Soc 128:3540–3542

    PubMed  CAS  Google Scholar 

  • Dufner-Beattie J, Wang F, Kuo YM, Gitschier J, Eide D, Andrews GK (2003) The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem 278:33474–33481

    PubMed  CAS  Google Scholar 

  • Duncan MW, Marini AM, Watters R, Kopin IJ, Markey SP (1992) Zinc, a neurotoxin to cultured neurons, contaminates cycad flour prepared by traditional guamanian methods. J Neurosci 12:1523–1537

    PubMed  CAS  Google Scholar 

  • Durnam DM, Palmiter RD (1981) Transcriptional regulation of the mouse metallothionein-I gene by heavy metals. J Biol Chem 256:5712–5716

    PubMed  CAS  Google Scholar 

  • Eagle GR, Zombola RR, Himes RH (1983) Tubulin-zinc interactions: binding and polymerization studies. Biochemistry 22:221–228

    PubMed  CAS  Google Scholar 

  • Ebadi M, Iversen PL, Hao R, Cerutis DR, Rojas P, Happe HK, Murrin LC, Pfeiffer RF (1995) Expression and regulation of brain metallothionein. Neurochem Int 27:1–22

    PubMed  CAS  Google Scholar 

  • Ehmann WD, Markesbery WR, Alauddin M, Hossain TI, Brubaker EH (1986) Brain trace elements in Alzheimer’s disease. Neurotoxicology 7:195–206

    PubMed  CAS  Google Scholar 

  • Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18:441–469

    PubMed  CAS  Google Scholar 

  • Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722

    PubMed  CAS  Google Scholar 

  • Ertekin-Taner N, Graff-Radford N, Younkin LH, Eckman C, Baker M, Adamson J, Ronald J, Blangero J, Hutton M, Younkin SG (2000) Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Science 290:2303–2304

    PubMed  CAS  Google Scholar 

  • Esler WP, Stimson ER, Jennings JM, Ghilardi JR, Mantyh PW, Maggio JE (1996) Zinc-induced aggregation of human and rat beta-amyloid peptides in vitro. J Neurochem 66:723–732

    PubMed  CAS  Google Scholar 

  • Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO (1989) Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. J Am Med Assoc 262:2551–2556

    CAS  Google Scholar 

  • Fliss H, Menard M (1992) Oxidant-induced mobilization of zinc from metallothionein. Arch Biochem Biophys 293:195–199

    PubMed  CAS  Google Scholar 

  • Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Klitenick MA, Manton WI, Kirkpatrick JB (1983) Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. Brain Res 273:335–339

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Suh SW, Silva D, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471S–1483S

    PubMed  CAS  Google Scholar 

  • Freund WD, Reddig S (1994) AMPA/Zn(2+)-induced neurotoxicity in rat primary cortical cultures: involvement of L-type calcium channels. Brain Res 654:257–264

    PubMed  CAS  Google Scholar 

  • Friedlich AL, Lee JY, van Groen T, Cherny RA, Volitakis I, Cole TB, Palmiter RD, Koh JY, Bush AI (2004) Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer’s disease. J Neurosci 24:3453–3459

    PubMed  CAS  Google Scholar 

  • Gabrielsson B, Robson T, Norris D, Chung SH (1986) Effects of divalent metal ions on the uptake of glutamate and GABA from synaptosomal fractions. Brain Res 384:218–223

    PubMed  CAS  Google Scholar 

  • Gaither LA, Eide DJ (2000) Functional expression of the human hZIP2 zinc transporter. J Biol Chem 275:5560–5564

    PubMed  CAS  Google Scholar 

  • Gaither LA, Eide DJ (2001) The human ZIP1 transporter mediates zinc uptake in human K562 erythroleukemia cells. J Biol Chem 276:22258–22264

    PubMed  CAS  Google Scholar 

  • Gaskin F, Kress Y (1977) Zinc ion-induced assembly of tubulin. J Biol Chem 252:6918–6924

    PubMed  CAS  Google Scholar 

  • Gaskin F, Kress Y, Brosnan C, Bornstein M (1978) Abnormal tubulin aggregates induced by zinc sulfate in organotypic cultures of nerve tissue. Neuroscience 3:1117–1128

    PubMed  CAS  Google Scholar 

  • Gerhardsson L, Lundh T, Minthon L, Londos E (2008) Metal Concentrations in Plasma and Cerebrospinal Fluid in Patients with Alzheimer’s Disease. Dement Geriatr Cogn Disord 25:508–515

    PubMed  CAS  Google Scholar 

  • Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27:570–575

    PubMed  CAS  Google Scholar 

  • Golden BE (1989) Zinc in cell division and tissue growth: Physiological aspects. In: Mills CF (ed) Zinc in Human Biology. Springer, London, pp 119–127

    Google Scholar 

  • Gonzalez C, Martin T, Cacho J, Brenas MT, Arroyo T, Garcia-Berrocal B, Navajo JA, Gonzalez-Buitrago JM (1999) Serum zinc, copper, insulin and lipids in Alzheimer’s disease epsilon 4 apolipoprotein E allele carriers. Eur J Clin Invest 29:637–642

    PubMed  CAS  Google Scholar 

  • Gosavi N, Lee HJ, Lee JS, Patel S, Lee SJ (2002) Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. J Biol Chem 277:48984–48992

    PubMed  CAS  Google Scholar 

  • Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495

    PubMed  CAS  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci U S A 95:7220–7224

    PubMed  CAS  Google Scholar 

  • Gustafson D, Rothenberg E, Blennow K, Steen B, Skoog I (2003) An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med 163:1524–1528

    PubMed  Google Scholar 

  • Haase H, Beyersmann D (2002) Intracellular zinc distribution and transport in C6 rat glioma cells. Biochem Biophys Res Commun 296:923–928

    PubMed  CAS  Google Scholar 

  • Haines A, Iliffe S, Morgan P, Dormandy T, Wood B (1991) Serum aluminium and zinc and other variables in patients with and without cognitive impairment in the community. Clin Chim Acta 198:261–266

    PubMed  CAS  Google Scholar 

  • Haug FM (1967) Electron microscopical localization of the zinc in hippocampal mossy fibre synapses by a modified sulfide silver procedure. Histochemie 8:355–368

    PubMed  CAS  Google Scholar 

  • Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60:1119–1122

    PubMed  Google Scholar 

  • Ho LH, Ratnaike RN, Zalewski PD (2000) Involvement of intracellular labile zinc in suppression of DEVD-caspase activity in human neuroblastoma cells. Biochem Biophys Res Commun 268:148–154

    PubMed  CAS  Google Scholar 

  • Huang L, Gitschier J (1997) A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet 17:292–297

    PubMed  CAS  Google Scholar 

  • Huang L, Kirschke CP, Gitschier J (2002) Functional characterization of a novel mammalian zinc transporter, ZnT6. J Biol Chem 277:26389–26395

    PubMed  CAS  Google Scholar 

  • Huang L, Kirschke CP, Zhang Y, Yu YY (2005) The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem 280:15456–15463

    PubMed  CAS  Google Scholar 

  • Hunter FEJ, Ford L (1955) Inactivation of oxidative and phosphorylative systems in mitochondria by preincubation with phosphate and other. J Biol Chem 216:357–369

    PubMed  CAS  Google Scholar 

  • Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE, Southan CD, Ryan DM, Smith TS, Simmons DL, Walsh FS, Dingwall C, Christie G (1999) Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 14:419–427

    PubMed  CAS  Google Scholar 

  • Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H (2002) Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun 295:102–106

    PubMed  CAS  Google Scholar 

  • Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT (1997) APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 56:965–973

    PubMed  CAS  Google Scholar 

  • Jeandel C, Nicolas MB, Dubois F, Nabet-Belleville F, Penin F, Cuny G (1989) Lipid peroxidation and free radical scavengers in Alzheimer’s disease. Gerontology 35:275–282

    PubMed  CAS  Google Scholar 

  • Jia Y, Jeng JM, Sensi SL, Weiss JH (2002) Zn2+ currents are mediated by calcium-permeable AMPA/kainate channels in cultured murine hippocampal neurones. J Physiol 543:35–48

    PubMed  CAS  Google Scholar 

  • Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356:1627–1631

    PubMed  CAS  Google Scholar 

  • Jost BC, Grossberg GT (1995) The natural history of Alzheimer’s disease: a brain bank study. J Am Geriatr Soc 43:1248–1255

    PubMed  CAS  Google Scholar 

  • Kagi JH, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515

    PubMed  CAS  Google Scholar 

  • Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M (2004) Overview of mammalian zinc transporters. Cell Mol Life Sci 61:49–68

    PubMed  CAS  Google Scholar 

  • Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, Hall JE, Glabe CG (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366

    PubMed  CAS  Google Scholar 

  • Kelleher SL, Lonnerdal B (2002) Zinc transporters in the rat mammary gland respond to marginal zinc and vitamin A intakes during lactation. J Nutr 132:3280–3285

    PubMed  CAS  Google Scholar 

  • Keller JN, Schmitt FA, Scheff SW, Ding Q, Chen Q, Butterfield DA, Markesbery WR (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64:1152–1156

    PubMed  CAS  Google Scholar 

  • Kesslak JP, Frederickson CJ, Gage FH (1987) Quantification of hippocampal noradrenaline and zinc changes after selective cell destruction. Exp Brain Res 67:77–84

    PubMed  CAS  Google Scholar 

  • Kim EY, Koh JY, Kim YH, Sohn S, Joe E, Gwag BJ (1999) Zn2+ entry produces oxidative neuronal necrosis in cortical cell cultures. Eur J Neurosci 11:327–334

    PubMed  CAS  Google Scholar 

  • Kinoshita A, Fukumoto H, Shah T, Whelan CM, Irizarry MC, Hyman BT (2003) Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J Cell Sci 116:3339–3346

    PubMed  CAS  Google Scholar 

  • Kirschke CP, Huang L (2003) ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J Biol Chem 278:4096–4102

    PubMed  CAS  Google Scholar 

  • Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294

    PubMed  CAS  Google Scholar 

  • Klein WL (2002) Abeta toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41:345–352

    PubMed  CAS  Google Scholar 

  • Kleineke JW, Brand IA (1997) Rapid changes in intracellular Zn2+ in rat hepatocytes. J Pharmacol Toxicol Methods 38:181–187

    PubMed  CAS  Google Scholar 

  • Kleiner D, von Jagow G (1972) On the inhibition of mitochondrial electron transport by Zn(2+) ions. FEBS Lett 20:229–232

    PubMed  CAS  Google Scholar 

  • Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20:83–90

    PubMed  CAS  Google Scholar 

  • Koh JY, Choi DW (1994) Zinc toxicity on cultured cortical neurons: involvement of N-methyl-D-aspartate receptors. Neuroscience 60:1049–1057

    PubMed  CAS  Google Scholar 

  • Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    PubMed  CAS  Google Scholar 

  • Koo EH, Squazzo SL (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem 269:17386–17389

    PubMed  CAS  Google Scholar 

  • Korichneva I, Hoyos B, Chua R, Levi E, Hammerling U (2002) Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen. J Biol Chem 277:44327–44331

    PubMed  CAS  Google Scholar 

  • Kress Y, Gaskin F, Brosnan CF, Levine S (1981) Effects of zinc on the cytoskeletal proteins in the central nervous system of the rat. Brain Res 220:139–149

    PubMed  CAS  Google Scholar 

  • Krotkiewska B, Banas T (1992) Interaction of Zn2+ and Cu2+ ions with glyceraldehyde-3-phosphate dehydrogenase from bovine heart and rabbit muscle. Int J Biochem 24:1501–1505

    PubMed  CAS  Google Scholar 

  • Kumar-Singh S, Dewachter I, Moechars D, Lubke U, De Jonghe C, Ceuterick C, Checler F, Naidu A, Cordell B, Cras P, Van Broeckhoven C, Van Leuven F (2000) Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiol Dis 7:9–22

    PubMed  CAS  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453

    PubMed  CAS  Google Scholar 

  • Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, Masters CL, Targum S, Bush AI, Murdoch R, Wilson J, Ritchie CW (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7(9):779–786

    PubMed  CAS  Google Scholar 

  • Lee JY, Mook-Jung I, Koh JY (1999) Histochemically reactive zinc in plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice. J Neurosci 19:RC10

    PubMed  CAS  Google Scholar 

  • Lehmann HM, Brothwell BB, Volak LP, Bobilya DJ (2002) Zinc status influences zinc transport by porcine brain capillary endothelial cells. J Nutr 132:2763–2768

    PubMed  CAS  Google Scholar 

  • Leibson CL, Rocca WA, Hanson VA, Cha R, Kokmen E, O’Brien PC, Palumbo PJ (1997) Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 145:301–308

    PubMed  CAS  Google Scholar 

  • Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K et al (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269:973–977

    PubMed  CAS  Google Scholar 

  • Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    PubMed  CAS  Google Scholar 

  • Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A 91:12243–12247

    PubMed  CAS  Google Scholar 

  • Lovell MA, Ehmann WD, Mattson MP, Markesbery WR (1997) Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol Aging 18:457–461

    PubMed  CAS  Google Scholar 

  • Lovell MA, Markesbery WR (2005) Ectopic expression of Musashi-1 in Alzheimer disease and Pick disease. J Neuropathol Exp Neurol 64:675–680

    PubMed  CAS  Google Scholar 

  • Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    PubMed  CAS  Google Scholar 

  • Lovell MA, Smith JL, Markesbery WR (2006) Elevated zinc transporter-6 in mild cognitive impairment, Alzheimer disease, and pick disease. J Neuropathol Exp Neurol 65:489–498

    PubMed  CAS  Google Scholar 

  • Manev H, Kharlamov E, Uz T, Mason RP, Cagnoli CM (1997) Characterization of zinc-induced neuronal death in primary cultures of rat cerebellar granule cells. Exp Neurol 146:171–178

    PubMed  CAS  Google Scholar 

  • Mantyh PW, Ghilardi JR, Rogers S, DeMaster E, Allen CJ, Stimson ER, Maggio JE (1993) Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide. J Neurochem 61:1171–1174

    PubMed  CAS  Google Scholar 

  • Maret W (2002) Optical methods for measuring zinc binding and release, zinc coordination environments in zinc finger proteins, and redox sensitivity and activity of zinc-bound thiols. Methods Enzymol 348:230–237

    PubMed  CAS  Google Scholar 

  • Markesbery WR, Ehmann WD (1994) Trace element alterations in Alzheimer’s disease. In: Terry RD, Katzman R (eds) Alzheimer’s disease. Raven Press, New York, NY

    Google Scholar 

  • Markesbery WR, Schmitt FA, Kryscio RJ, Davis DG, Smith CD, Wekstein DR (2006) Neuropathologic substrate of mild cognitive impairment. Arch Neurol 63:38–46

    PubMed  Google Scholar 

  • McMahon RJ, Cousins RJ (1998) Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc Natl Acad Sci U S A 95:4841–4846

    PubMed  CAS  Google Scholar 

  • Merchant C, Tang MX, Albert S, Manly J, Stern Y, Mayeux R (1999) The influence of smoking on the risk of Alzheimer’s disease. Neurology 52:1408–1412

    PubMed  CAS  Google Scholar 

  • Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J Struct Biol 155:30–37

    PubMed  CAS  Google Scholar 

  • Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M (2005) Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 75:367–390

    PubMed  CAS  Google Scholar 

  • Moechars D, Lorent K, De Strooper B, Dewachter I, Van Leuven F (1996) Expression in brain of amyloid precursor protein mutated in the alpha-secretase site causes disturbed behavior, neuronal degeneration and premature death in transgenic mice. EMBO J 15:1265–1274

    PubMed  CAS  Google Scholar 

  • Molina JA, Jimenez-Jimenez FJ, Aguilar MV, Meseguer I, Mateos-Vega CJ, Gonzalez-Munoz MJ, de Bustos F, Porta J, Orti-Pareja M, Zurdo M, Barrios E, Martinez-Para MC (1998) Cerebrospinal fluid levels of transition metals in patients with Alzheimer’s disease. J Neural Transm 105:479–488

    PubMed  CAS  Google Scholar 

  • Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, Mellits ED, Clark C (1989) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39:1159–1165

    PubMed  CAS  Google Scholar 

  • Mortimer JA, van Duijn CM, Chandra V, Fratiglioni L, Graves AB, Heyman A, Jorm AF, Kokmen E, Kondo K, Rocca WA et al (1991) Head trauma as a risk factor for Alzheimer’s disease: a collaborative re-analysis of case-control studies. EURODEM Risk Factors Research Group. Int J Epidemiol 20(Suppl 2):S28–S35

    PubMed  Google Scholar 

  • Mucke L, Yu GQ, McConlogue L, Rockenstein EM, Abraham CR, Masliah E (2000) Astroglial expression of human alpha(1)-antichymotrypsin enhances alzheimer-like pathology in amyloid protein precursor transgenic mice. Am J Pathol 157:2003–2010

    PubMed  CAS  Google Scholar 

  • Murakami K, Whiteley MK, Routtenberg A (1987) Regulation of protein kinase C activity by cooperative interaction of Zn2+ and Ca2+. J Biol Chem 262:13902–13906

    PubMed  CAS  Google Scholar 

  • Myers A, Holmans P, Marshall H, Kwon J, Meyer D, Ramic D, Shears S, Booth J, DeVrieze FW, Crook R, Hamshere M, Abraham R, Tunstall N, Rice F, Carty S, Lillystone S, Kehoe P, Rudrasingham V, Jones L, Lovestone S, Perez-Tur J, Williams J, Owen MJ, Hardy J, Goate AM (2000) Susceptibility locus for Alzheimer’s disease on chromosome 10. Science 290:2304–2305

    PubMed  CAS  Google Scholar 

  • National institute on aging and Reagan institute working group (1997) Diagnostic criteria for the neuropathological assessment of Alzheimer’s disease. Neurobiol Aging 18(S4):S

    Google Scholar 

  • Nolte C, Gore A, Sekler I, Kresse W, Hershfinkel M, Hoffmann A, Kettenmann H, Moran A (2004) ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc. Glia 48:145–155

    PubMed  Google Scholar 

  • Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    PubMed  CAS  Google Scholar 

  • Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332

    PubMed  CAS  Google Scholar 

  • Ohana E, Sekler I, Kaisman T, Kahn N, Cove J, Silverman WF, Amsterdam A, Hershfinkel M (2006) Silencing of ZnT-1 expression enhances heavy metal influx and toxicity. J Mol Med 84:753–763

    PubMed  CAS  Google Scholar 

  • Palmiter RD (1995) Constitutive expression of metallothionein-III (MT-III), but not MT-I, inhibits growth when cells become zinc deficient. Toxicol Appl Pharmacol 135:139–146

    PubMed  CAS  Google Scholar 

  • Palmiter RD (1998) The elusive function of metallothioneins. Proc Natl Acad Sci U S A 95:8428–8430

    PubMed  CAS  Google Scholar 

  • Palmiter RD, Cole TB, Findley SD (1996) ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J 15:1784–1791

    PubMed  CAS  Google Scholar 

  • Peila R, Rodriguez BL, Launer LJ (2002) Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 51:1256–1262

    PubMed  CAS  Google Scholar 

  • Penkowa M (2006) Metallothioneins are multipurpose neuroprotectants during brain pathology. FEBS J 273:1857–1870

    PubMed  CAS  Google Scholar 

  • Penkowa M, Nielsen H, Hidalgo J, Bernth N, Moos T (1999) Distribution of metallothionein I + II and vesicular zinc in the developing central nervous system: correlative study in the rat. J Comp Neurol 412:303–318

    PubMed  CAS  Google Scholar 

  • Perez-Clausell J, Danscher G (1986) Release of zinc sulphide accumulations into synaptic clefts after in vivo injection of sodium sulphide. Brain Res 362:358–361

    PubMed  CAS  Google Scholar 

  • Petersen RC, Morris JC (2003) Clinical features. In: Petersen RC (ed) Mild Cognitive Impairment. Oxford University, New York, NY, pp 15–39

    Google Scholar 

  • Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    PubMed  CAS  Google Scholar 

  • Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13:1676–1687

    PubMed  CAS  Google Scholar 

  • Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW (1991) In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 563:311–314

    PubMed  CAS  Google Scholar 

  • Prasad AS, Miale A Jr., Farid Z, Sandstead HH, Schulert AR (1963) Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypognadism. J Lab Clin Med 61:537–549

    PubMed  CAS  Google Scholar 

  • Price D, Joshi JG (1982) Ferritin: a zinc detoxicant and a zinc ion donor. Proc Natl Acad Sci U S A 79:3116–3119

    PubMed  CAS  Google Scholar 

  • Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A, Carrington D, Mavros C, Volitakis I, Xilinas M, Ames D, Davis S, Beyreuther K, Tanzi RE, Masters CL (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691

    PubMed  Google Scholar 

  • Rivlin AA, Chan YL, Wool IG (1999) The contribution of a zinc finger motif to the function of yeast ribosomal protein YL37a. J Mol Biol 294:909–919

    PubMed  CAS  Google Scholar 

  • Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT, Cheng R, Hasegawa H, Chen F, Shibata N, Lunetta KL, Pardossi-Piquard R, Bohm C, Wakutani Y, Cupples LA, Cuenco KT, Green RC, Pinessi L, Rainero I, Sorbi S, Bruni A, Duara R, Friedland RP, Inzelberg R, Hampe W, Bujo H, Song YQ, Andersen OM, Willnow TE, Graff-Radford N, Petersen RC, Dickson D, Der SD, Fraser PE, Schmitt-Ulms G, Younkin S, Mayeux R, Farrer LA, St. George-Hyslop P (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39:168–177

    PubMed  CAS  Google Scholar 

  • Rubin H, Koide T (1973) Stimulation of DNA synthesis and 2-deoxy-D-glucose transport in chick embryo cultures by excessive metal concentrations and by a carcinogenic hydrocarbon. J Cell Physiol 81:387–396

    PubMed  CAS  Google Scholar 

  • Rulon LL, Robertson JD, Lovell MA, Deibel MA, Ehmann WD, Markesber WR (2000) Serum zinc levels and Alzheimer’s disease. Biol Trace Elem Res 75:79–85

    PubMed  CAS  Google Scholar 

  • Samudralwar DL, Diprete CC, Ni BF, Ehmann WD, Markesbery WR (1995) Elemental imbalances in the olfactory pathway in Alzheimer’s disease. J Neurol Sci 130:139–145

    PubMed  CAS  Google Scholar 

  • Segal D, Ohana E, Besser L, Hershfinkel M, Moran A, Sekler I (2004) A role for ZnT-1 in regulating cellular cation influx. Biochem Biophys Res Commun 323:1145–1150

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399:A23–A31

    PubMed  CAS  Google Scholar 

  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    PubMed  CAS  Google Scholar 

  • Seve M, Chimienti F, Devergnas S, Favier A (2004) In silico identification and expression of SLC30 family genes: an expressed sequence tag data mining strategy for the characterization of zinc transporters’ tissue expression. BMC Genomics 5:32

    PubMed  Google Scholar 

  • Shore D, Henkin RI, Nelson NR, Agarwal RP, Wyatt RJ (1984) Hair and serum copper, zinc, calcium, and magnesium concentrations in Alzheimer-type dementia. J Am Geriatr Soc 32:892–895

    PubMed  CAS  Google Scholar 

  • Sim DL, Chow VT (1999) The novel human HUEL (C4orf1) gene maps to chromosome 4p12-p13 and encodes a nuclear protein containing the nuclear receptor interaction motif. Genomics 59:224–233

    PubMed  CAS  Google Scholar 

  • Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402:537–540

    PubMed  CAS  Google Scholar 

  • Sisodia SS, St. George-Hyslop PH (2002) gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci 3:281–290

    PubMed  CAS  Google Scholar 

  • Skhulachev VP, Christyakov VV, Jasaitis AA, Smirnova EG (1967) Inhibition of the respiratory chain by zinc ions. Biochem Biophys Res Commun 26:1–6

    Google Scholar 

  • Skoog I, Lernfelt B, Landahl S, Palmertz B, Andreasson LA, Nilsson L, Persson G, Oden A, Svanborg A (1996) 15-year longitudinal study of blood pressure and dementia. Lancet 347:1141–1145

    PubMed  CAS  Google Scholar 

  • Smith KT, Failla ML, Cousins RJ (1979) Identification of albumin as the plasma carrier for zinc absorption by perfused rat intestine. Biochem J 184:627–633

    PubMed  CAS  Google Scholar 

  • Smith JL, Xiong S, Lovell MA (2006a) 4-Hydroxynonenal disrupts zinc export in primary rat cortical cells. Neurotoxicology 27:1–5

    PubMed  CAS  Google Scholar 

  • Smith JL, Xiong S, Markesbery WR, Lovell MA (2006b) Altered expression of zinc transporters-4 and -6 in mild cognitive impairment, early and late Alzheimer’s disease brain. Neuroscience 140:879–888

    PubMed  CAS  Google Scholar 

  • Snowdon DA, Greiner LH, Markesbery WR (2000) Linguistic ability in early life and the neuropathology of Alzheimer’s disease and cerebrovascular disease. Findings from the Nun Study. Ann N Y Acad Sci 903:34–38

    PubMed  CAS  Google Scholar 

  • Snowdon DA, Kemper SJ, Mortimer JA, Greiner LH, Wekstein DR, Markesbery WR (1996) Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life. Findings from the Nun Study. J Am Med Assoc 275:528–532

    CAS  Google Scholar 

  • Sommer B (2002) Alzheimer’s disease and the amyloid cascade hypothesis: ten years on. Curr Opin Pharmacol 2:87–92

    PubMed  CAS  Google Scholar 

  • St. George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, Myers RH, Feldman RG, Pollen D, Drachman D et al (1987) The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235:885–890

    Google Scholar 

  • St. George-Hyslop PH (1994) The molecular genetics of Alzheimer’s disease. In: Terry RD, Katzman R, Bick LL (eds) Alzheimer’s disease. Raven Press, New York, NY, pp 345–352

    Google Scholar 

  • Stengaard-Pedersen K, Fredens K, Larsson LI (1983) Comparative localization of enkephalin and cholecystokinin immunoreactivities and heavy metals in the hippocampus. Brain Res 273:81–96

    PubMed  CAS  Google Scholar 

  • Stoltenberg M, Bruhn M, Sondergaard C, Doering P, West MJ, Larsen A, Troncoso JC, Danscher G (2005) Immersion autometallographic tracing of zinc ions in Alzheimer beta-amyloid plaques. Histochem Cell Biol 123:605–611

    PubMed  CAS  Google Scholar 

  • Stoltenberg M, Bush AI, Bach G, Smidt K, Larsen A, Rungby J, Lund S, Doering P, Danscher G (2007) Amyloid plaques arise from zinc-enriched cortical layers in APP/PS1 transgenic mice and are paradoxically enlarged with dietary zinc deficiency. Neuroscience 150:357–369

    PubMed  CAS  Google Scholar 

  • Strozyk D, Launer LJ, Adlard PA, Cherny RA, Tsatsanis A, Volitakis I, Blennow K, Petrovitch H, White LR, Bush AI (2007) Zinc and copper modulate Alzheimer Abeta levels in human cerebrospinal fluid. Neurobiol Aging 30(7):1069–1077

    PubMed  Google Scholar 

  • Sturniolo GC, Mestriner C, D’Inca R (2000) Trace Element and Mineral Nutrition in Gastrointestinal Disease. In: Bogden JD, Klevay LM (eds) Clinical Nutrition of the Essential Trace Elements and Minerals: The Guide for Health Professionals. Humana Press, Totowa, NJ

    Google Scholar 

  • Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Brain Res Rev 34:137–148

    PubMed  CAS  Google Scholar 

  • Takeda A, Minami A, Takefuta S, Tochigi M, Oku N (2001) Zinc homeostasis in the brain of adult rats fed zinc-deficient diet. J Neurosci Res 63:447–452

    PubMed  CAS  Google Scholar 

  • Taylor KM, Morgan HE, Johnson A, Hadley LJ, Nicholson RI (2003) Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. Biochem J 375:51–59

    PubMed  CAS  Google Scholar 

  • The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging 18:S

    Google Scholar 

  • Tonder N, Johansen FF, Frederickson CJ, Zimmer J, Diemer NH (1990) Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci Lett 109:247–252

    PubMed  CAS  Google Scholar 

  • Trayhurn P, Duncan JS, Wood AM, Beattie JH (2000) Regulation of metallothionein gene expression and secretion in rat adipocytes differentiated from preadipocytes in primary culture. Horm Metab Res 32:542–547

    PubMed  CAS  Google Scholar 

  • Vallee BL (1995) The function of metallothionein. Neurochem Int 27:23–33

    PubMed  CAS  Google Scholar 

  • Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    PubMed  CAS  Google Scholar 

  • Vandenberg RJ, Mitrovic AD, Johnston GA (1998) Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions. Mol Pharmacol 54:189–196

    PubMed  CAS  Google Scholar 

  • Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    PubMed  CAS  Google Scholar 

  • Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256:628–632

    PubMed  CAS  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    PubMed  CAS  Google Scholar 

  • Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 272:22364–22372

    PubMed  CAS  Google Scholar 

  • Wang F, Kim BE, Petris MJ, Eide DJ (2004) The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. J Biol Chem 279:51433–51441

    PubMed  CAS  Google Scholar 

  • Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA, Trommer BL (2002a) Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140

    PubMed  CAS  Google Scholar 

  • Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J (2002b) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71:66–73

    PubMed  CAS  Google Scholar 

  • Wenstrup D, Ehmann WD, Markesbery WR (1990) Trace element imbalances in isolated subcellular fractions of Alzheimer’s disease brains. Brain Res 533:125–131

    PubMed  CAS  Google Scholar 

  • Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, Carlson GA, Younkin SG, Ashe KH (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22:1858–1867

    PubMed  CAS  Google Scholar 

  • Williams RJP (1989) An introduction to the biochemistry of zinc. In: Mills CF (ed) Zinc in Human Biology. Springer, London, pp 15–31

    Google Scholar 

  • Williams TI, Lynn BC, Markesbery WR, Lovell MA (2005) Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer’s disease. Neurobiol Aging 27(8):1094–1099

    PubMed  Google Scholar 

  • Wilquet V, De Strooper B (2004) Amyloid-beta precursor protein processing in neurodegeneration. Curr Opin Neurobiol 14:582–588

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Kura M, Okada S (1982) Role of zinc as an activator of mitochondrial function in rat liver. Biochem Pharmacol 31:1289–1293

    PubMed  CAS  Google Scholar 

  • Yang JP, Merin JP, Nakano T, Kato T, Kitade Y, Okamoto T (1995) Inhibition of the DNA-binding activity of NF-kappa B by gold compounds in vitro. FEBS Lett 361:89–96

    PubMed  CAS  Google Scholar 

  • Yatin SM, Varadarajan S, Link CD, Butterfield DA (1999) In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1-42). Neurobiol Aging 20:325–330; discussion 339–342

    PubMed  CAS  Google Scholar 

  • Yin HZ, Weiss JH (1995) Zn(2+) permeates Ca(2+) permeable AMPA/kainate channels and triggers selective neural injury. NeuroReport 6:2553–2556

    PubMed  CAS  Google Scholar 

  • Yokoyama M, Koh J, Choi DW (1986) Brief exposure to zinc is toxic to cortical neurons. Neurosci Lett 71:351–355

    PubMed  CAS  Google Scholar 

  • Zabel U, Schreck R, Baeuerle PA (1991) DNA binding of purified transcription factor NF-kappa B. Affinity, specificity, Zn2+ dependence, and differential half-site recognition. J Biol Chem 266:252–260

    PubMed  CAS  Google Scholar 

  • Zalewski PD, Forbes IJ, Seamark RF, Borlinghaus R, Betts WH, Lincoln SF, Ward AD (1994) Flux of intracellular labile zinc during apoptosis (gene-directed cell death) revealed by a specific chemical probe, Zinquin. Chem Biol 1:153–161

    PubMed  CAS  Google Scholar 

  • Zeng J, Heuchel R, Schaffner W, Kagi JH (1991) Thionein (apometallothionein) can modulate DNA binding and transcription activation by zinc finger containing factor Sp1. FEBS Lett 279:310–312

    PubMed  CAS  Google Scholar 

  • Zhang LH, Wang X, Stoltenberg M, Danscher G, Huang L, Wang ZY (2008a) Abundant expression of zinc transporters in the amyloid plaques of Alzheimer’s disease brain. Brain Res Bull 77:55–60

    PubMed  CAS  Google Scholar 

  • Zhang LH, Wang X, Zheng ZH, Ren H, Stoltenberg M, Danscher G, Huang L, Rong M, Wang ZY (2008b) Altered expression and distribution of zinc transporters in APP/PS1 transgenic mouse brain. Neurobiol Aging 31(1):74–87

    PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIH grants 1R01-AG16269, 5-P01-AG05119, and 1P30-AG028383, and by a grant from the Abercrombie Foundation. The author thanks Ms. Paula Thomason for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Lovell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lovell, M.A. (2011). Zinc and Zinc Transport and Sequestration Proteins in the Brain in the Progression of Alzheimer’s Disease. In: Blass, J. (eds) Neurochemical Mechanisms in Disease. Advances in Neurobiology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7104-3_20

Download citation

Publish with us

Policies and ethics