Skip to main content

Tau and Tauopathies

  • Chapter
  • First Online:
Neurochemical Mechanisms in Disease

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 1))

  • 1016 Accesses

Abstract

Tau protein is a neuronal microtubule associated protein, which localizes primarily in the axon. It plays a major role in promoting microtubule assembly, stabilizing microtubules and maintaining the normal morphology of the neurons. Structurally tau is a heterogenous molecule due to several posttranslational modifications. Tauopathies are a group of disorders that are the consequence of abnormal tau phosphorylation, abnormal levels of tau, abnormal tau splicing, or mutations in the tau gene. These disorders are characterized not only by neuronal, but also oligodendroglial and astrocytic filamentous tau inclusions. Tauopathies are the commonest among the neurodegerative diseases with filamentous inclusions. Tauopathies include frontotemporal dementia, Parkinsonism plus syndromes, neuromuscular disorders, and certain genetic and metabolic syndromes. The occurrence of neurofibrillary tangles in a wide range of conditions, including Alzheimer’s disease, initially led to the suggestion that tau deposition may be an incidental nonspecific finding associated with cell death or cellular dysfunction. Later the discovery of close to 20 different mutations in tau in frontotemporal dementia with Parkinsonism linked to chromosome-17 (FTDP-17) clearly showed that dysfunction of tau protein causes neurodegeneration and dementia. Among the tauopathies, the most studied is Alzheimer’s disease. Frontotemporal dementia, progressive supranuclear palsy, and corticobasal ganglionic degeneration are some of the other common tauopathies that have been extensively studied. Overlap of clinical and histopathological features occurs between various tauopathies. The role of CSF tau in the diagnosis of dementias is under investigation. The measures of total tau as well as species of phospho-tau detected by antibodies in CSF correlates best with a diagnosis of AD. The discovery of a tau transgenic mouse model has paved the way for testing various therapeutic models for targeting tau.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso AD, Zaidi T, Novak M, Barra HS, Grundke-Iqbal I, Iqbal K (2001) Interaction of tau isoforms with Alzheimer’s disease abnormally hyperphosphorylated tau and in vitro phosphorylation into the disease-like protein. J Biol Chem 276:37967–37973

    PubMed  CAS  Google Scholar 

  2. Andreadis A (2006) Misregulation of tau alternative splicing in neurodegeneration and dementia. Prog Mol Subcell Biol 44:89–107

    PubMed  CAS  Google Scholar 

  3. Arnold CS, Johnson GV, Cole RN, Dong DL, Lee M, Hart GW (1996) The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem 271:28741–28744

    PubMed  CAS  Google Scholar 

  4. Askanas V, Engel WK (1998) Sporadic inclusion-body myositis and its similarities to Alzheimer disease brain. Recent approaches to diagnosis and pathogenesis, and relation to aging. Scand J Rheumatol 27:389–405

    PubMed  CAS  Google Scholar 

  5. Avila J (2000) Tau aggregation into fibrillar polymers: taupathies. FEBS Lett 476:89–92

    PubMed  CAS  Google Scholar 

  6. Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84:361–384

    PubMed  CAS  Google Scholar 

  7. Bancher C, Lassmann H, Budka H, Grundke-Iqbal I, Iqbal K, Wiche G et al (1987) Neurofibrillary tangles in Alzheimer’s disease and progressive supranuclear palsy: antigenic similarities and differences. Microtubule-associated protein tau antigenicity is prominent in all types of tangles. Acta Neuropathol 74:39–46

    PubMed  CAS  Google Scholar 

  8. Barghorn S, Mandelkow E (2002) Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry 41:14885–14896

    PubMed  CAS  Google Scholar 

  9. Baumann K, Mandelkow EM, Biernat J, Piwnica-Worms H, Mandelkow E (1993) Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett 336:417–424

    PubMed  CAS  Google Scholar 

  10. Biernat J, Mandelkow EM (1999) The development of cell processes induced by tau protein requires phosphorylation of serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains. Mol Biol Cell 10:727–740

    PubMed  CAS  Google Scholar 

  11. Biernat J, Mandelkow EM, Schroter C, Lichtenberg-Kraag B, Steiner B, Berling B, et al. (1992) The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region. EMBO J 11:1593–1597

    PubMed  CAS  Google Scholar 

  12. Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323(Pt 3):577–591

    PubMed  CAS  Google Scholar 

  13. Bird TD, Nochlin D, Poorkaj P, Cherrier M, Kaye J, Payami H et al (1999) A clinical pathological comparison of three families with frontotemporal dementia and identical mutations in the tau gene (P301L). Brain 122(Pt 4):741–756

    PubMed  Google Scholar 

  14. Braak H, Braak E, Strothjohann M (1994) Abnormally phosphorylated tau protein related to the formation of neurofibrillary tangles and neuropil threads in the cerebral cortex of sheep and goat. Neurosci Lett 171:1–4

    PubMed  CAS  Google Scholar 

  15. Bradley WG, Daroff RB, Fenichel GM, Jankovic J (2004) Neurology in clinical Practice, vol 2. Butterworth Heineman, Philadelphia

    Google Scholar 

  16. Brandt R, Lee G (1993) Functional organization of microtubule-associated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro. J Biol Chem 268:3414–3419

    PubMed  CAS  Google Scholar 

  17. Brandt R, Lee G (1994) assembly Orientation, and stability of microtubule bundles induced by a fragment of tau protein. Cell Motil Cytoskeleton 28:143–154

    PubMed  CAS  Google Scholar 

  18. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130

    PubMed  CAS  Google Scholar 

  19. Burn DJ, Jaros E (2001) Multiple system atrophy: cellular and molecular pathology. J Clin Pathol Mol Pathol 54:419–426

    CAS  Google Scholar 

  20. Cairns NJ, Lee VM, Trojanowski JQ (2004) The cytoskeleton in neurodegenerative diseases. J Pathol 204:438–449

    PubMed  CAS  Google Scholar 

  21. Caparros-Lefebvre D, Sergeant N, Lees A, Camuzat A, Daniel S, Lannuzel A et al (2002) Guadeloupean parkinsonism: a cluster of progressive supranuclear palsy-like tauopathy. Brain 125:801–811

    PubMed  Google Scholar 

  22. Ceravolo R, Borghetti D, Kiferle L, Tognoni G, Giorgetti A, Neglia D, et al. (2008) CSF phosporylated TAU protein levels correlate with cerebral glucose metabolism assessed with PET in Alzheimer’s disease. Brain Res Bull 76:80–84

    PubMed  CAS  Google Scholar 

  23. Chen F, David D, Ferrari A, Gotz J (2004) Posttranslational modifications of tau–role in human tauopathies and modeling in transgenic animals. Curr Drug Targets 5:503–515

    PubMed  CAS  Google Scholar 

  24. Clark CM, Xie S, Chittams J, Ewbank D, Peskind E, Galasko D et al (2003) Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 60:1696–1702

    PubMed  Google Scholar 

  25. Couchie D, Legay F, Guilleminot J, Lebargy F, Brion JP, Nunez J (1990) Expression of Tau protein and Tau mRNA in the cerebellum during axonal outgrowth. Exp Brain Res 82:589–596

    PubMed  CAS  Google Scholar 

  26. Crowther T, Goedert M, Wischik CM (1989) The repeat region of microtubule-associated protein tau forms part of the core of the paired helical filament of Alzheimer’s disease. Ann Med 21:127–132

    PubMed  CAS  Google Scholar 

  27. Crowther RA, Olesen OF, Jakes R, Goedert M (1992) The microtubule binding repeats of tau protein assemble into filaments like those found in Alzheimer’s disease. FEBS Lett 309:199–202

    PubMed  CAS  Google Scholar 

  28. Crowther RA, Olesen OF, Smith MJ, Jakes R, Goedert M (1994) Assembly of Alzheimer-like filaments from full-length tau protein. FEBS Lett 337:135–138

    PubMed  CAS  Google Scholar 

  29. David DC, Layfield R, Serpell L, Narain Y, Goedert M, Spillantini MG (2002) Proteasomal degradation of tau protein. J Neurochem 83:176–185

    PubMed  CAS  Google Scholar 

  30. Dawson HN, Cantillana V, Chen L, Vitek MP (2007) The tau N279K exon 10 splicing mutation recapitulates frontotemporal dementia and parkinsonism linked to chromosome 17 tauopathy in a mouse model. J Neurosci 27:9155–9168

    PubMed  CAS  Google Scholar 

  31. Delacourte A, Sergeant N, Champain D, Wattez A, Maurage CA, Lebert F, et al. (2002) Nonoverlapping but synergetic tau and APP pathologies in sporadic Alzheimer’s disease. Neurology 59:398–407

    PubMed  CAS  Google Scholar 

  32. Delobel P, Leroy O, Hamdane M, Sambo AV, Delacourte A, Buee L (2005) Proteasome inhibition and Tau proteolysis: an unexpected regulation. FEBS Lett 579:1–5

    PubMed  CAS  Google Scholar 

  33. Dickson DW (1999) Tau and synuclein and their role in neuropathology. Brain Pathol 9:657–661

    PubMed  CAS  Google Scholar 

  34. Drewes G (2004) MARKing tau for tangles and toxicity. Trends Biochem Sci 29:548–555

    PubMed  CAS  Google Scholar 

  35. Drewes G, Trinczek B, Illenberger S, Biernat J, Schmitt-Ulms G, Meyer HE et al (1995) Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J Biol Chem 270:7679–7688

    PubMed  CAS  Google Scholar 

  36. D’Souza I, Schellenberg GD (2006) Arginine/serine-rich protein interaction domain-dependent modulation of a tau exon 10 splicing enhancer: altered interactions and mechanisms for functionally antagonistic FTDP-17 mutations Delta280K AND N279K. J Biol Chem 281:2460–2469

    PubMed  Google Scholar 

  37. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143:777–794

    PubMed  CAS  Google Scholar 

  38. Feijoo C, Campbell DG, Jakes R, Goedert M, Cuenda A (2005) Evidence that phosphorylation of the microtubule-associated protein Tau by SAPK4/p38delta at Thr50 promotes microtubule assembly. J Cell Sci 118:397–408

    PubMed  CAS  Google Scholar 

  39. Flament S, Delacourte A, Hemon B, Defossez A (1989) Characterization of two pathological tau protein, variants in Alzheimer brain cortices. J Neurol Sci 92:133–141

    PubMed  CAS  Google Scholar 

  40. Friedhoff P, von Bergen M, Mandelkow EM, Mandelkow E (2000) Structure of tau protein and assembly into paired helical filaments. Biochim Biophys Acta 1502:122–132

    PubMed  CAS  Google Scholar 

  41. Gamblin TC, King ME, Dawson H, Vitek MP, Kuret J, Berry RW, et al. (2000) In vitro polymerization of tau protein monitored by laser light scattering: method and application to the study of FTDP-17 mutants. Biochemistry 39:6136–6144

    PubMed  CAS  Google Scholar 

  42. Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16:460–465

    PubMed  CAS  Google Scholar 

  43. Goedert M, Cohen ES, Jakes R, Cohen P (1992) p42 MAP kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1. Implications for Alzheimer’s disease [corrected]. FEBS Lett 312:95–99

    PubMed  CAS  Google Scholar 

  44. Goedert M, Hasegawa M, Jakes R, Lawler S, Cuenda A, Cohen P (1997) Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett 409:57–62

    PubMed  CAS  Google Scholar 

  45. Goedert M, Jakes R, Crowther RA, Cohen P, Vanmechelen E, Vandermeeren M, et al. (1994) Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer’s disease: identification of phosphorylation sites in tau protein. Biochem J 301(Pt 3):871–877

    PubMed  CAS  Google Scholar 

  46. Goedert M, Klug A (1999) Tau protein and the paired helical filament of Alzheimer’s disease. Brain Res Bull 50:469–470

    PubMed  CAS  Google Scholar 

  47. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989a) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    PubMed  CAS  Google Scholar 

  48. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989b) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8:393–399

    PubMed  CAS  Google Scholar 

  49. Gong CX, Grundke-Iqbal I, Damuni Z, Iqbal K (1994a) Dephosphorylation of microtubule-associated protein tau by protein phosphatase-1 and -2C and its implication in Alzheimer disease. FEBS Lett 341:94–98

    PubMed  CAS  Google Scholar 

  50. Gong CX, Grundke-Iqbal I, Iqbal K (1994b) Dephosphorylation of Alzheimer’s disease abnormally phosphorylated tau by protein phosphatase-2A. Neuroscience 61:765–772

    PubMed  CAS  Google Scholar 

  51. Gong CX, Singh TJ, Grundke-Iqbal I, Iqbal K (1994c) Alzheimer’s disease abnormally phosphorylated tau is dephosphorylated by protein phosphatase-2B (calcineurin). J Neurochem 62:803–806

    PubMed  CAS  Google Scholar 

  52. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913–4917

    PubMed  CAS  Google Scholar 

  53. Hampel H, Buerger K, Zinkowski R, Teipel SJ, Goernitz A, Andreasen N et al (2004) Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatry 61:95–102

    PubMed  CAS  Google Scholar 

  54. Hanger DP, Mann DM, Neary D, Anderton BH (1992) Tau pathology in a case of familial Alzheimer’s disease with a valine to glycine mutation at position 717 in the amyloid precursor protein. Neurosci Lett 145:178–180

    PubMed  CAS  Google Scholar 

  55. Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T et al (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369:488–491

    PubMed  CAS  Google Scholar 

  56. Haroutunian V, Davies P, Vianna C, Buxbaum JD, Purohit DP (2007) Tau protein abnormalities associated with the progression of alzheimer disease type dementia. Neurobiol Aging 28:1–7

    PubMed  CAS  Google Scholar 

  57. Hasegawa M, Crowther RA, Jakes R, Goedert M (1997) Alzheimer-like changes in microtubule-associated protein Tau induced by sulfated glycosaminoglycans. Inhibition of microtubule binding, stimulation of phosphorylation, and filament assembly depend on the degree of sulfation. J Biol Chem 272:33118–33124

    PubMed  CAS  Google Scholar 

  58. Hirokawa N, Funakoshi T, Sato-Harada R, Kanai Y (1996) Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons. J Cell Biol 132:667–679

    PubMed  CAS  Google Scholar 

  59. Holzer M, Holzapfel HP, Zedlick D, Bruckner MK, Arendt T (1994) Abnormally phosphorylated tau protein in Alzheimer’s disease: heterogeneity of individual regional distribution and relationship to clinical severity. Neuroscience 63:499–516

    PubMed  CAS  Google Scholar 

  60. Huang A, Stultz CM (2007) Conformational sampling with implicit solvent models: application to the PHF6 peptide in tau protein. Biophys J 92:34–45

    PubMed  CAS  Google Scholar 

  61. Ihara Y, Nukina N, Miura R, Ogawara M (1986) Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease. J Biochem 99:1807–1810

    PubMed  CAS  Google Scholar 

  62. Iqbal K, Smith AJ, Zaidi T, Grundke-Iqbal I (1989) Microtubule-associated protein tau. Identification of a novel peptide from bovine brain. FEBS Lett 248:87–91

    PubMed  CAS  Google Scholar 

  63. Johnson GV, Seubert P, Cox TM, Motter R, Brown JP, Galasko D (1997) The tau protein in human cerebrospinal fluid in Alzheimer’s disease consists of proteolytically derived fragments. J Neurochem 68:430–433

    PubMed  CAS  Google Scholar 

  64. Johnson GV, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117:5721–5729

    PubMed  CAS  Google Scholar 

  65. Josephs KA (2007) Frontotemporal lobar degeneration. Neurol Clin 25:683–694

    PubMed  Google Scholar 

  66. Kitano-Takahashi M, Morita H, Kondo S, Tomizawa K, Kato R, Tanio M, et al. (2007) Expression, purification and crystallization of a human tau-tubulin kinase 2 that phosphorylates tau protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:602–604

    PubMed  Google Scholar 

  67. Komori T (1999) Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick’s disease. Brain Pathol 9:663–679

    PubMed  CAS  Google Scholar 

  68. Kosik KS (1990a) Tau protein and Alzheimer’s disease. Curr Opin Cell Biol 2:101–104

    PubMed  CAS  Google Scholar 

  69. Kosik KS (1990b) Tau protein and neurodegeneration. Mol Neurobiol 4:171–179

    PubMed  CAS  Google Scholar 

  70. Kosik KS (1993) The molecular and cellular biology of tau. Brain Pathol 3:39–43

    PubMed  CAS  Google Scholar 

  71. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A 83:4044–4048

    PubMed  CAS  Google Scholar 

  72. Ledesma MD, Bonay P, Colaco C, Avila J (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269:21614–21619

    PubMed  CAS  Google Scholar 

  73. Lee G (1990) Tau protein: an update on structure and function. Cell Motil Cytoskeleton 15:199–203

    PubMed  CAS  Google Scholar 

  74. Leger JG, Brandt R, Lee G (1994) Identification of tau protein regions required for process formation in PC12 cells. J Cell Sci 107(Pt 12):3403–3412

    PubMed  CAS  Google Scholar 

  75. Leszek J, Malyszczak K, Janicka B, Kiejna A, Wiak A (2003) Total tau in cerebrospinal fluid differentiates Alzheimer’s disease from vascular dementia. Med Sci Monit 9:CR484–CR488

    PubMed  Google Scholar 

  76. Litvan I, Agid Y, Calne D (1996) et alClinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47(1):1–9

    PubMed  CAS  Google Scholar 

  77. Lovestone S, McLoughlin DM (2002) Protein aggregates and dementia: is there a common toxicity? J Neurol Neurosurg Psychiatry 72:152–161

    PubMed  CAS  Google Scholar 

  78. Mandelkow EM, Schweers O, Drewes G, Biernat J, Gustke N, Trinczek B et al (1996) Structure, microtubule interactions, and phosphorylation of tau protein. Ann N Y Acad Sci 777:96–106

    PubMed  CAS  Google Scholar 

  79. Mandell JW, Banker GA (1996) A spatial gradient of tau protein phosphorylation in nascent axons. J Neurosci 16:5727–5740

    PubMed  CAS  Google Scholar 

  80. Margittai M, Langen R (2004) Template-assisted filament growth by parallel stacking of tau. Proc Natl Acad Sci U S A 101:10278–10283

    PubMed  CAS  Google Scholar 

  81. Mathuranath PS, Xuereb JH, Bak T, Hodges JR (2000) Corticobasal ganglionic degeneration and/or frontotemporal dementia? A report of two overlap cases and review of literature. J Neurol Neurosurg Psychiatry 68:304–312

    PubMed  CAS  Google Scholar 

  82. Matsushita S, Miyakawa T, Maesato H, Matsui T, Yokoyama A, Arai H et al (2008) Elevated cerebrospinal fluid tau protein levels in Wernicke’s encephalopathy. Alcohol Clin Exp Res 32:1091–1095

    PubMed  CAS  Google Scholar 

  83. Maurage CA, Bussiere T, Sergeant N, Ghesteem A, Figarella-Branger D, Ruchoux MM et al (2004) Tau aggregates are abnormally phosphorylated in inclusion body myositis and have an immunoelectrophoretic profile distinct from other tauopathies. Neuropathol Appl Neurobiol 30:624–634

    PubMed  CAS  Google Scholar 

  84. Mazanetz MP, Fischer PM (2007) Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov 6:464–479

    PubMed  CAS  Google Scholar 

  85. Migheli A, Butler M, Brown K, Shelanski ML (1988) Light and electron microscope localization of the microtubule-associated tau protein in rat brain. J Neurosci 8:1846–1851

    PubMed  CAS  Google Scholar 

  86. Modoni A, Silvestri G, Pomponi MG, Mangiola F, Tonali PA, Marra C (2004) Characterization of the pattern of cognitive impairment in myotonic dystrophy type 1. Arch Neurol 61:1943–1947

    PubMed  Google Scholar 

  87. Mondragon-Rodriguez S, Basurto-Islas G, Santa-Maria I, Mena R, Binder LI, Avila J, et al. (2008) Cleavage and conformational changes of tau protein follow phosphorylation during Alzheimer’s disease. Int J Exp Pathol 89:81–90

    PubMed  CAS  Google Scholar 

  88. Morris HR, Baker M, Yasojima K, Houlden H, Khan MN, Wood NW, et al. (2002) Analysis of tau haplotypes in Pick’s disease. Neurology 59:443–445

    PubMed  CAS  Google Scholar 

  89. Morris HR, Lees AJ, Wood NW (1999) Neurofibrillary tangle parkinsonian disorders–tau pathology and tau genetics. Mov Disord 14:731–736

    PubMed  CAS  Google Scholar 

  90. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S et al (1998) Frontotemporal lobar degeneration:A consensus on clinical diagnostic criteria. Neurology 51:1546–1554

    PubMed  CAS  Google Scholar 

  91. Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Res 387:271–280

    PubMed  CAS  Google Scholar 

  92. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332

    PubMed  CAS  Google Scholar 

  93. Osaki Y, Wenning GK, Daniel SE, Hughes A, Lees AJ, Mathias CJ (2002) Do published criteria improve clinical diagnostic accuracy in multiple system atrophy? Neurology 59(10):1486–1491

    PubMed  CAS  Google Scholar 

  94. Paraskevas GP, Kapaki E, Kararizou E, Mitsonis C, Sfagos C, Vassilopoulos D (2007) Cerebrospinal fluid tau protein is increased in neurosyphilis: a discrimination from syphilis without nervous system involvement? Sex Transm Dis 34:220–223

    PubMed  CAS  Google Scholar 

  95. Perez M, Valpuesta JM, Medina M (1996) Montejo de Garcini E, Avila J. Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction. J Neurochem 67:1183–1190

    PubMed  CAS  Google Scholar 

  96. Price JL, Morris JC (2004) So what if tangles precede plaques? Neurobiol Aging 25:721–723; discussion 743–6

    PubMed  CAS  Google Scholar 

  97. Reynolds CH, Utton MA, Gibb GM, Yates A, Anderton BH (1997) Stress-activated protein kinase/c-jun N-terminal kinase phosphorylates tau protein. J Neurochem 68:1736–1744

    PubMed  CAS  Google Scholar 

  98. Riley DE, Lang AE, Lewis A, Resch L, Ashby P, Hornykiewicz O et al (1990) Cortical-basal ganglionic degeneration. Neurology 40:1203–1212

    PubMed  CAS  Google Scholar 

  99. Rinne JO, Lee MS, Thompson PD, Marsden CD (1994) Corticobasal degeneration. A clinical study of 36 cases. Brain 117(Pt 5):1183–1196

    PubMed  Google Scholar 

  100. Robert M, Mathuranath PS (2007) Tau and tauopathies. Neurol India 55:11–16

    PubMed  CAS  Google Scholar 

  101. Roder HM, Hutton ML (2007) Microtubule-associated protein tau as a therapeutic target in neurodegenerative disease. Expert Opin Ther Targets 11:435–442

    PubMed  CAS  Google Scholar 

  102. Schonknecht P, Pantel J, Kaiser E, Thomann P, Schroder J (2007) Increased tau protein differentiates mild cognitive impairment from geriatric depression and predicts conversion to dementia. Neurosci Lett 416:39–42

    PubMed  Google Scholar 

  103. Schooneboom NHH, Scheltens P, Leon M (2006) Cerebrospinal fluid markers for the diagnosis of Alzheimer’s disease. In: Gauthier SSP, Cummings JL (eds) Alzheimer’s Disese and related Disorders Annual, Vol 5. Taylor and Francis, Oxford, pp 17–33

    Google Scholar 

  104. Schweers O, Mandelkow EM, Biernat J, Mandelkow E (1995) Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. Proc Natl Acad Sci U S A 92:8463–8467

    PubMed  CAS  Google Scholar 

  105. Schweers O, Schonbrunn-Hanebeck E, Marx A, Mandelkow E (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J Biol Chem 269:24290–24297

    PubMed  CAS  Google Scholar 

  106. Sergeant N, Delacourte A, Buee L (2005) Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta 1739:179–197

    PubMed  CAS  Google Scholar 

  107. Shaw LM, Korecka M, Clark CM, Lee VM, Trojanowski JQ (2007) Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov 6:295–303

    PubMed  CAS  Google Scholar 

  108. Sjoberg MK, Shestakova E, Mansuroglu Z, Maccioni RB, Bonnefoy E (2006) Tau protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization. J Cell Sci 119:2025–2034

    PubMed  CAS  Google Scholar 

  109. Snowden JS, Neary D, Mann DM (2002) Frontotemporal dementia. Br J Psychiatry 180:140–143

    PubMed  Google Scholar 

  110. Sontag E, Nunbhakdi-Craig V, Lee G, Brandt R, Kamibayashi C, Kuret J, et al. (1999) Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem 274:25490–25498

    PubMed  CAS  Google Scholar 

  111. Spillantini MG, Goedert M (2000) Tau mutations in familial frontotemporal dementia. Brain 123(Pt 5):857–859

    PubMed  Google Scholar 

  112. Strittmatter WJ, Saunders AM, Goedert M, Weisgraber KH, Dong LM, Jakes R, et al. (1994) Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc Natl Acad Sci U S A 91:11183–11186

    PubMed  CAS  Google Scholar 

  113. Sutherland GT, Nowak G, Halliday GM, Kril JJ (2007) Tau isoform expression in frontotemporal dementia without tau deposition. J Clin Neurosci 14:1182–1185

    PubMed  CAS  Google Scholar 

  114. Takashima A (2008) Hyperphosphorylated tau is a cause of neuronal dysfunction in tauopathy. J Alzheimers Dis 14:371–375

    PubMed  Google Scholar 

  115. Tatebayashi Y, Haque N, Tung YC, Iqbal K, Grundke-Iqbal I (2004) Role of tau phosphorylation by glycogen synthase kinase-3beta in the regulation of organelle transport. J Cell Sci 117:1653–1663

    PubMed  CAS  Google Scholar 

  116. Terzi M, Birinci A, Cetinkaya E, Onar MK (2007) Cerebrospinal fluid total tau protein levels in patients with multiple sclerosis. Acta Neurol Scand 115:325–330

    PubMed  CAS  Google Scholar 

  117. Tolnay M, Probst A (1999) REVIEW: tau protein pathology in Alzheimer’s disease and related disorders. Neuropathol Appl Neurobiol 25:171–187

    PubMed  CAS  Google Scholar 

  118. Trojanowski JQ, Lee VM (2002) The role of tau in Alzheimer’s disease. Med Clin North Am 86:615–627

    PubMed  CAS  Google Scholar 

  119. Ulloa L, Montejo de Garcini E, Gomez-Ramos P, Moran MA, Avila J (1994) Microtubule-associated protein MAP1B showing a fetal phosphorylation pattern is present in sites of neurofibrillary degeneration in brains of Alzheimer’s disease patients. Brain Res Mol Brain Res 26:113–122

    PubMed  CAS  Google Scholar 

  120. Van Deerlin VM, Forman MS, Farmer JM, Grossman M, Joyce S, Crowe A et al (2007) Biochemical and pathological characterization of frontotemporal dementia due to a Leu266Val mutation in microtubule-associated protein tau in an African American individual. Acta Neuropathol 113:471–479

    PubMed  Google Scholar 

  121. Van Everbroeck B, Green AJ, Vanmechelen E, Vanderstichele H, Pals P, Sanchez-Valle R, et al. (2002) Phosphorylated tau in cerebrospinal fluid as a marker for Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 73:79–81

    PubMed  Google Scholar 

  122. Wang JZ, Grundke-Iqbal I, Iqbal K (1996a) Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med 2:871–875

    PubMed  CAS  Google Scholar 

  123. Wang JZ, Grundke-Iqbal I, Iqbal K (1996b) Restoration of biological activity of Alzheimer abnormally phosphorylated tau by dephosphorylation with protein phosphatase-2A, -2B and -1. Brain Res Mol Brain Res 38:200–208

    PubMed  CAS  Google Scholar 

  124. Wang JZ, Liu F (2008) Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 85:148–175

    PubMed  CAS  Google Scholar 

  125. Wenning GK, S YB-, Hughes A, Daniel SE, Lees A, Quinn, NP (2000) What clinical features are most useful to distinguish definite multiple system atrophy from Parkinson’s disease? J Neurol Neurosurg Psychiatry 68:434–440

    Google Scholar 

  126. Wille H, Drewes G, Biernat J, Mandelkow EM, Mandelkow E (1992) Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J Cell Biol 118:573–584

    PubMed  CAS  Google Scholar 

  127. Wischik CM, Edwards PC, Lai RY, Gertz HN, Xuereb JH, Paykel ES et al (1995) Quantitative analysis of tau protein in paired helical filament preparations: implications for the role of tau protein phosphorylation in PHF assembly in Alzheimer’s disease. Neurobiol Aging 16:409–417; discussion 418–31

    PubMed  CAS  Google Scholar 

  128. Yamamoto H, Hasegawa M, Ono T, Tashima K, Ihara Y, Miyamoto E (1995) Dephosphorylation of fetal-tau and paired helical filaments-tau by protein phosphatases 1 and 2A and calcineurin. J Biochem 118:1224–1231

    PubMed  CAS  Google Scholar 

  129. Yan SD, Chen X, Schmidt AM, Brett J, Godman G, Zou YS, et al. (1994) Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci U S A 91:7787–7791

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.S. Mathuranath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mathew, R., Srinivas, G., Mathuranath, P. (2011). Tau and Tauopathies. In: Blass, J. (eds) Neurochemical Mechanisms in Disease. Advances in Neurobiology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7104-3_19

Download citation

Publish with us

Policies and ethics