Advertisement

The Human Oral Metagenome

  • Peter Mullany
  • Philip Warburton
  • Elaine Allan
Chapter

Abstract

The human oral cavity is estimated to contain more than 750 bacterial species (Jenkinson and Lamont, 2005; Paster et al., 2006). Although this figure is controversial, the fact remains that up to half of the species in the oral microbiota cannot yet be cultivated in the laboratory. Therefore, metagenomics is a powerful way of accessing these unculturable bacteria in order to understand the role of the oral microbiota in health and disease and to mine for useful products such as enzymes, energy sources and antimicrobial agents. The Human Oral Microbiome Database (HOMD http://www.homd.org/) provides comprehensive information on what is known about the composition of the oral microbiota using information derived from cultivation and metagenomic data based on 16S rRNA gene sequencing.

Keywords

Oral Cavity Dental Caries Quorum Sense Mobile Genetic Element Genomic Island 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 23:1037–1050CrossRefGoogle Scholar
  2. Avila M, Ojcius DM, Yilmaz O (2009) The oral microbiota: living with a permanent guest. DNA Cell Biol 28:405–411PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bahrani-Mougeot FK, Paster BJ, Coleman S, Ashar J, Barbuto S, Lockhart PB (2008) Diverse and novel oral bacterial species in blood following dental procedures. J Clin Microbiol 46:2129–2132PubMedCentralPubMedCrossRefGoogle Scholar
  4. Beighton D (2005) The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 33:248–255PubMedCrossRefGoogle Scholar
  5. Bentorcha F, Clermont D, de Cespedes G, Horaud T (1992) Natural occurrence of structures in oral streptococci and enterococci with DNA homology to Tn916. Antimicrob Agents Chemother 36:59–63PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chalmers NI, Palmer RJ, Cisar JO, Kolenbrander PE (2008) Characterization of a Streptococcus sp.-Veillonella sp. Community micromanipulated from dental plaque. J Bacteriol 190:8145–8154PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chattoraj P, Banerjee A, Biswas S, Biswas I (March 2010) ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production, and antibiotic tolerance. J Bacteriol 192(5):1312–1323PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen W, Wang Y, Chen C (2005) Identification of a genomic island of Actinobacillus actinomycetemcomitans. J Periodontol 76(11 Suppl):2052–2060PubMedCrossRefGoogle Scholar
  9. Diaz-Torres ML, McNab R, Spratt DA, Villedieu A, Hunt N, Wilson M, Mullany P (2003) Novel tetracycline resistance determinant from the oral metagenome. Antimicrob Agents Chemother 47:1430–1432PubMedCentralPubMedCrossRefGoogle Scholar
  10. Diaz-Torres ML, Villedieu A, Hunt N, McNab R, Spratt DA, Allan E, Mullany P, Wilson M (2006) Determining the antibiotic resistance potential of the indigenous oral microbiota of humans using a metagenomic approach. FEMS Microbiol Lett 258:257–262PubMedCrossRefGoogle Scholar
  11. Edwards AM, Grossman TJ, Rudney JD (2007) Association of a high molecular weight arginine binding protein of Fusobacterium nucleatum ATCC10953 with adhesion of secretory immunoglobulin A and coaggregation with Streptococcus cristatus. Oral Microbiol Immunol 22:217–224PubMedCrossRefGoogle Scholar
  12. Gong Y, Tian XL, Sutherland T, Sisson G, Mai J, Ling J, Li YH (2009) Global transcriptional analysis of acid-inducible genes in Streptococcus mutans: multiple two-component systems involved in acid adaptation. Microbiology 155:3322–3332PubMedCrossRefGoogle Scholar
  13. Hartley DL, Jones KR, Tobian JA, LeBlanc DJ, Macrina FL (1984) Disseminated tetracycline resistance in oral streptococci: implication of a conjugative transposon. Infect Immun 45:13–17PubMedCentralPubMedGoogle Scholar
  14. Hitch G, Pratten J, Taylor PW (2004). Isolation of bacteriophages from the oral cavity. Lett Appl Microbiol 39:215–219PubMedCrossRefGoogle Scholar
  15. Hojo K, Nagaoka S, Ohshima T, Maeda N (2009). Bacterial interactions in dental biofilm development. J Dent Res 88:982PubMedCrossRefGoogle Scholar
  16. Irie Y, Parsek MR (2008) Quorum sensing and microbial biofilms. In: Romero T (ed) Bacterial biofilms. Springer, Heidelberg,  Chapter 4 pp 67–84CrossRefGoogle Scholar
  17. Jenkinson HF, Lamont RJ (2005) Oral microbial communities in sickness and in health. Trends Microbiol1 3(12):589–595CrossRefGoogle Scholar
  18. Jones BV, Marchesi JR (2007) Transposon-aided capture (TRACA) of plasmids resident in the human gut mobile metagenome. Nat Methods 1:55–61CrossRefGoogle Scholar
  19. Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ Jr (2002) Communication among oral bacteria. Microbiol Mol Biol Rev 66(3):486–505PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kumar PS, Griffen AL, Moeschberger ML, Leys EJ (2005) Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol 43:3944–3955PubMedCentralPubMedCrossRefGoogle Scholar
  22. Lazarevic L, Whiteson K, Huse S, Hernandez D, Farinelli L, Osteras M, Schrenzel J, Francois P (2009) Metagenomic study of the oral microbiota by illumina high-throughput sequencing. J Microbiol Methods 79:266–271PubMedCentralPubMedCrossRefGoogle Scholar
  23. Lockhart PB, Brennan MT, Sasser HC, Fox PC, Paster BJ, Bahrani-Mougeot FK (2008) Bacteremia associated with tooth brushing and dental extraction. Circulation 117:3118–3125Google Scholar
  24. Lockhart PB, Brennan MT, Thornhill M, Michalowicz BS, Noll J, Bahrani-Mougeot FK, Sasser HC (2009) Poor oral hygiene as a risk factor for infective endocarditis-related bacteremia. J Am Dent Assoc 140:1238–1244PubMedCentralPubMedCrossRefGoogle Scholar
  25. Marsh PD (2006) Dental plaque as a biofilm and a microbial community–implications for health and disease. BMC Oral Health 6(Suppl 1): S14PubMedCentralPubMedCrossRefGoogle Scholar
  26. Martin B, Quentin Y, Fichant G, Claverys JP (2006) Independent evolution of competence regulatory cascades in streptococci? Trends Microbiol 14:339–345PubMedCrossRefGoogle Scholar
  27. McKay TL, Ko J, Bilalis Y, DiRienzo JM (1995) Mobile genetic elements of Fusobacterium nucleatum. Plasmid 33:15–25PubMedCrossRefGoogle Scholar
  28. McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ (2003) Lux S based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185:274–284PubMedCentralPubMedCrossRefGoogle Scholar
  29. Mitchell HL, Dashper SG, Catmull DV, Paolini RA, Cleal SM, Slakeski N, Tan KH, Reynolds EC (2010) Treponema denticola biofilm-induced expression of a bacteriophage, toxin–antitoxin systems and transposases. Microbiology 156:774–788PubMedCrossRefGoogle Scholar
  30. Nobbs AH, Lamont RJ, Jenkinson HF (2009) Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450PubMedCentralPubMedCrossRefGoogle Scholar
  31. Paster BJ, Olsen I, Aas JA, Dewhirst FE (2006) The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000(42):80–87CrossRefGoogle Scholar
  32. Raghavendran K, Mylotte JM, Scannapieco FA (2007) Nursing home-associated hospital-acquired pneumonia and ventilator-associated pneumonia: the contribution of dental biofilms and periodontal inflammation. Periodontol 2000(2):1599–1607Google Scholar
  33. Roberts AP, Mullany P (2009) A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol 17:251–258PubMedCrossRefGoogle Scholar
  34. Rudney JD, Xie H, Rhodus NL, Ondrey FG, Griffin TJ (2010) A metaproteomic analysis of the human salivary microbiota by three-dimensional peptide fractionation and tandem mass spectrometry. Mol Oral Microbiol 25:38–49PubMedCentralPubMedCrossRefGoogle Scholar
  35. Salyers AA, Shoemaker NB, Stevens AM, Li LY (1995) Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev 59:579–590PubMedCentralPubMedGoogle Scholar
  36. Seville LA, Patterson AJ, Scott KP, Mullany P, Quail MA, Parkhill J, Ready D, Wilson M, Spratt D, Roberts AP (2009) Distribution of tetracycline and erythromycin resistance genes among human oral and fecal metagenomic DNA. Microb Drug Resist 15:159–166PubMedCrossRefGoogle Scholar
  37. Sommer MGA, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–1131PubMedCrossRefGoogle Scholar
  38. van der Ploeg JR (2008) Characterization of Streptococcus gordonii prophage PH15: complete genome sequence and functional analysis of phage-encoded integrase and endolysin. Microbiology 154:2970–2978PubMedCrossRefGoogle Scholar
  39. Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781PubMedCrossRefGoogle Scholar
  40. Warburton P, Roberts AP, Allan E, Seville L, Lancaster H, Mullany P (2009) Characterization of tet(32) genes from the oral metagenome. Antimicrob Agents Chemother 53:273–276PubMedCentralPubMedCrossRefGoogle Scholar
  41. Warburton PJ, Palmer RM, Munson MA, Wade WG (2007) Demonstration of in vivo transfer of doxycycline resistance mediated by a novel transposon. J Antimicrob Chemother 60:973–980PubMedCrossRefGoogle Scholar
  42. Waterhouse JC, Russell RR (2006) Dispensable genes and foreign DNA in Streptococcus mutans. Microbiology 152:1777–1788PubMedCrossRefGoogle Scholar
  43. Wilson (2005) Microbial inhabitants of humans: their ecology and role in health and disease. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.UCL Eastman Dental InstituteLondonUK
  2. 2.Division of Microbial DiseasesUCL Eastman Dental InstituteLondonUK

Personalised recommendations