Skip to main content

Selection and Sequencing of Strains as References for Human Microbiome Studies

  • Chapter
  • First Online:
Book cover Metagenomics of the Human Body

Abstract

Metagenomics is a rapidly changing field of microbial biology that provides insights into the diversity and functional capacity of the microbial communities. In order to improve the phylogenetic and physiological interpretation of metagenomic data, it is essential to produce sequence data for individual reference strains. The NIH-supported Human Microbiome Project (HMP) plans to sequence the genomes of 900 reference strains representing isolates from all major body sites. This Chapter describes the approaches used by the strain selection groups of the HMP and International Human Microbiome Consortium (IHMC) to achieve this goal as well as some current and future challenges and opportunities facing those interested in metagenomics of the human body. Although advances in DNA sequencing technology have helped make the selection and sequencing of reference strains less dependent on cultivation and large quantities of DNA, using the data in pursuit of strain isolation and purification should not be neglected. The international collaborations that have developed via the leadership of North American and European research groups have also created an excellent opportunity to undertake a pangenomic analysis of human microbiomes, which may substantially increase the value of comparative analysis of metagenomic datasets, leading to a better understanding of host–microbiome relationships in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (1977) Anaerobe laboratory manual. Anaerobe Laboratory, Blacksburg, VA.

    Google Scholar 

  • Anonymous (1981) The pioneers of pediatric medicine: Teodor Escherich. Eur J Pediatr 137:131

    Google Scholar 

  • Aoki-Kinoshita KF, Kanehisa M (2007) Gene annotation and pathway mapping in KEGG. Methods Mol Biol 396:71–91

    Article  CAS  PubMed  Google Scholar 

  • Aranki A, Syed SA, Kenney EB et al (1969) Isolation of anaerobic bacteria from human gingiva and mouse cecum by means of a simplified glove box procedure. Appl Microbiol Biotechnol 17:568–576

    Google Scholar 

  • Aziz RK, Bartels D, Best AA, et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed Central  PubMed  Google Scholar 

  • Bairoch, A (1993) The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res 21:3097–3103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bakir MA, Kitahara M, Sakamoto M, et al (2006) Bacteroides intestinalis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56:151–154

    Article  PubMed  Google Scholar 

  • Barcenilla A, Pryde SE, Martin JC et al (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66:1654–1661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borodovsky M, McIninch J (1993) GeneMark: parallel gene recognition for both DNA strands. Comput Chem 19:123–133

    Article  Google Scholar 

  • Chain PS, Grafham DV, Fulton RS et al (2009) Genomics. Genome project standards in a new era of sequencing. Science 326:236–237

    Article  CAS  PubMed  Google Scholar 

  • Chassard C, Delmas E, Lawson PA et al (2008) Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces. Int J Syst Evol Microbiol 58:1008–1013

    Article  CAS  PubMed  Google Scholar 

  • Collado MC, Derrien M, Isolauri E et al (2007) Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 73:7767–7770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costello EK, Lauber CL, Hamady M et al (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delcher AL, Harmon D, Kasif S et al (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Derrien M, Collado MC, Ben-Amor K et al (2008) The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 74:1646–1648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Derrien M, Vaughan EE, Plugge CM et al (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Dethlefsen L, Huse S, Sogin ML et al (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:2383–2400

    Article  CAS  Google Scholar 

  • Duan Y, Zhou L, Hall DG et al (2009) Complete genome sequence of citrus huanglongbing bacterium, 'Candidatus Liberibacter asiaticus' obtained through metagenomics. Mol Plant Microbe Interact 22:1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Ferrari BC, Winsley T, Gillings M et al (2008) Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat Protoc 3:1261–1269

    Article  CAS  PubMed  Google Scholar 

  • Finegold SM, Attebery HR, Sutter VL (1974) Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr 27:1456–1469

    CAS  PubMed  Google Scholar 

  • Finn RD, Tate J, Mistry J et al (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gardy JL, Laird MR, Chen F et al (2005) PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623

    Article  CAS  PubMed  Google Scholar 

  • Gill SR, Pop M, DeBoy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grice EA, Kong HH, Conlan S et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–57

    Article  PubMed Central  PubMed  Google Scholar 

  • Haffajee AD, Cugini MA, Tanner A et al (1998) Subgingival microbiota in healthy, well-maintained elder and periodontitis subjects. J Clin Periodontol 25:346–353

    Article  CAS  PubMed  Google Scholar 

  • Haffajee AD, Socransky SS, Patel MR et al (2008) Microbial complexes in supragingival plaque. Oral Microbiol Immunol 23:196–205

    Article  CAS  PubMed  Google Scholar 

  • Haft DH, Selengut JD, White O (2003) The TIGRFAMs database of protein families. Nucleic Acids Res 31:371–373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi H, Shibata K, Bakir MA et al (2007a) Bacteroides coprophilus sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57:1323–1326

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Shibata K, Sakamoto M et al (2007b) Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57:941–946

    Article  CAS  PubMed  Google Scholar 

  • Hyman RW, Fukushima M, Diamond L et al (2005) Microbes on the human vaginal epithelium. Proc Natl Acad Sci USA 102:7952–7957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ingham CJ, van Hylckama Vlieg JE (2008) MEMS and the microbe. Lab Chip 8:1604–1616

    Article  CAS  PubMed  Google Scholar 

  • Ishoey T, Woyke T, Stepanauskas R et al (2008) Genomic sequencing of single microbial cells from environmental samples. Curr Opin Microbiol 11:198–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juncker AS, Willenbrock H, Von Heijne G et al (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanehisa M (2002) The KEGG database. Novartis Found Symp 247:91–101

    Article  CAS  PubMed  Google Scholar 

  • Kopke B, Wilms R, Engelen B et al (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830

    Article  PubMed Central  PubMed  Google Scholar 

  • Kyrpides NC (2009) Fifteen years of microbial genomics: meeting the challenges and fulfilling the dream. Nat Biotechnol 27:627–632

    Article  CAS  PubMed  Google Scholar 

  • Lagesen K, Hallin P, Rodland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lasken RS (2009) Genomic DNA amplification by the multiple displacement amplification (MDA) method. Biochem Soc Trans 37:450–453

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF et al (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:D192–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McHardy AC, Martin HG, Tsirigos A et al (2007) Accurate phylogenetic classification of variable-length DNA fragments. Nat Methods 4:63–72

    Article  CAS  PubMed  Google Scholar 

  • Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohan R, Namsolleck P, Lawson PA et al (2006) Clostridium asparagiforme sp. nov., isolated from a human faecal sample. Syst Appl Microbiol 29:292–299

    Article  PubMed  Google Scholar 

  • Moore WE, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mulder N, Apweiler R (2007) InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol Biol 396:59–70

    Article  CAS  PubMed  Google Scholar 

  • Mulder NJ, Apweiler R, Attwood TK, et al (2007) New developments in the InterPro database. Nucleic Acids Res 35:D224–228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palmer C, Bik EM, Digiulio DB et al (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177

    Article  PubMed Central  PubMed  Google Scholar 

  • Petrosino JF, Highlander S, Luna RA et al (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55:856–866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pryde SE, Duncan SH, Hold GL, et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren Q, Kang KH, Paulsen IT (2004) TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Res 32:D284–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigue S, Malmstrom RR, Berlin AM, et al (2009) Whole genome amplification and de novo assembly of single bacterial cells. PLoS ONE 4:e6864

    Article  PubMed Central  PubMed  Google Scholar 

  • Sakamoto M, Kitahara M, Benno Y (2007) Parabacteroides johnsonii sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57:293–296

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Behal A, Singla N et al (2009) Metagenomics: concept, methodology, ecological inference and recent advances. Biotechnol J 4:480–494

    Article  CAS  PubMed  Google Scholar 

  • Socransky SS, Haffajee AD, Cugini MA et al (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Kononen E, Rautio M et al (2006) Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. Int J Syst Evol Microbiol 56:1985–1990

    Article  CAS  PubMed  Google Scholar 

  • Stevenson BS, Eichorst SA, Wertz JT et al (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748–4755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tap J, Mondot S, Levenez F et al (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11:2574–2584

    Article  PubMed  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

    Article  PubMed Central  PubMed  Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV et al (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zengler K, Toledo G, Rappe M et al (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zoetendal EG, Plugge CM, Akkermans AD et al (2003) Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol 53:211–215

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eline S. Klaassens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Klaassens, E.S., Morrison, M., Highlander, S.K. (2011). Selection and Sequencing of Strains as References for Human Microbiome Studies. In: Nelson, K. (eds) Metagenomics of the Human Body. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7089-3_5

Download citation

Publish with us

Policies and ethics