Skip to main content

Pharmacology and Neurochemistry of Olivocochlear Efferents

  • Chapter
  • First Online:
Auditory and Vestibular Efferents

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 38))

Abstract

This chapter covers the chemistry and pharmacology of efferent transmission in the cochlea, starting with an overview of the biochemical and biophysical steps following the arrival of an action potential at the peripheral efferent nerve terminal (Sect. 4.1.1). A brief history of advances in understanding the efferent system follows (Sect. 4.1.2). The description of the neurochemistry and pharmacology of efferent action is organized around the sequence of events beginning with the arrival of an action potential at the medial efferent peripheral terminal and ending with the activation of calcium-dependent potassium channels in the outer hair cell (OHC; Sect. 4.2). In Sect. 4.3, other efferent neurotransmitters are covered and, because most of these are associated with the lateral efferent system, it is in this section that much of the knowledge of lateral efferents is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschuler RA, Hoffman DW, Reeks KA, Fex J (1985a) Localization of dynorphin B-like and alpha-neoendorphin-like immunoreactivities in the guinea pig organ of Corti. Hear Res 17:249–258

    CAS  PubMed  Google Scholar 

  • Altschuler RA, Kachar B, Rubio JA, Parakkal MH, Fex J (1985b) Immunocytochemical localization of choline acetyltransferase-like immunoreactivity in the guinea pig cochlea. Brain Res 338:1–11

    CAS  PubMed  Google Scholar 

  • Aran JM, Erre JP, Avan P (1994) Contralateral suppression of transient evoked otoacoustic emissions in guinea-pigs: effects of gentamicin. Br J Audiol 28:267–271

    CAS  PubMed  Google Scholar 

  • Art JJ, Fettiplace R (1984) Efferent desensitization of auditory nerve fibre responses in the cochlea of the turtle Pseudemys scripta elegans. J Physiol 356:507–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Augustinsson K-B (1946) Studies on the specificiy of choline esterase in Helix pomatia. Biochem J 40:343–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey GP, Sewell WF (2000) Calcitonin gene-related peptide suppresses hair cell responses to mechanical stimulation in the Xenopus lateral line organ. J Neurosci 20:5163–5169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballestero JA, Plazas PV, Kracun S, Gomez-Casati ME, Taranda J, Rothlin CV, Katz E, Millar NS, Elgoyhen AB (2005) Effects of quinine, quinidine, and chloroquine on alpha9alpha10 nicotinic cholinergic receptors. Mol Pharmacol 68:822–829

    CAS  PubMed  Google Scholar 

  • Bartolami S, Ripoll C, Planche M, Pujol R (1993) Localisation of functional muscarinic receptors in the rat cochlea: evidence for efferent presynaptic autoreceptors. Brain Res 626:200–209

    CAS  PubMed  Google Scholar 

  • Bergeron AL, Schrader A, Yang D, Osman AA, Simmons DD (2005) The final stage of cholinergic differentiation occurs below inner hair cells during development of the rodent cochlea. J Assoc Res Otolaryngol 6:401–415

    PubMed  PubMed Central  Google Scholar 

  • Blanchet C, Erostegui C, Sugasawa M, Dulon D (2000) Gentamicin blocks ACh-evoked K+ current in guinea-pig outer hair cells by impairing Ca2+ entry at the cholinergic receptor. J Physiol 525(Pt 3):641–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bobbin RP, Thompson MH (1978) Effects of putative transmitters on afferent cochlear transmission. Ann Otol Rhinol Laryngol 87:185–190

    CAS  PubMed  Google Scholar 

  • Cabanillas LA, Luebke AE (2002) CGRP- and cholinergic-containing fibers project to guinea pig outer hair cells. Hear Res 172:14–17

    CAS  PubMed  Google Scholar 

  • Churchill JA, Schuknecht HF, Doran R (1956) Acetylcholinesterase activity in the cochlea. Laryngoscope 66:1–15

    CAS  PubMed  Google Scholar 

  • Comis SD, Guth PS (1974) The release of acetylcholine from the cochlear nucleus upon stimulation of the crossed olivo-cochlear bundle. Neuropharmacology 13:633–641

    CAS  PubMed  Google Scholar 

  • Cooper NP, Guinan JJ Jr (2003) Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity. J Physiol 548:307–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • d’Aldin C, Puel JL, Leducq R, Crambes O, Eybalin M, Pujol R (1995) Effects of a dopaminergic agonist in the guinea pig cochlea. Hear Res 90:202–211

    PubMed  Google Scholar 

  • Dallos P, He DZ, Lin X, Sziklai I, Mehta S, Evans BN (1997) Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci 17:2212–2226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darrow KN, Simons EJ, Dodds L, Liberman MC (2006) Dopaminergic innervation of the mouse inner ear: evidence for a separate cytochemical group of cochlear efferent fibers. J Comp Neurol 498:403–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dawkins R, Keller SL, Sewell WF (2005) Pharmacology of acetylcholine-mediated cell signaling in the lateral line organ following efferent stimulation. J Neurophysiol 93:2541–2551

    CAS  PubMed  Google Scholar 

  • de San Z, Martin J, Ballestero J, Katz E, Elgoyhen AB, Fuchs PA (2007) Ryanodine is a positive modulator of acetylcholine receptor gating in cochlear hair cells. J Assoc Res Otolaryngol 8:474–483

    Google Scholar 

  • Dlugaiczyk J, Singer W, Schick B, Iro H, Becker K, Becker CM, Zimmermann U, Rohbock K, Knipper M (2008) Expression of glycine receptors and gephyrin in the rat cochlea. Histochem Cell Biol 129:513–523

    CAS  PubMed  Google Scholar 

  • Drescher MJ, Drescher DG, Medina JE (1983) Effect of sound stimulation at several levels on concentrations of primary amines, including neurotransmitter candidates, in perilymph of the guinea pig inner ear. J Neurochem 41:309–320

    CAS  PubMed  Google Scholar 

  • Drescher DG, Green GE, Khan KM, Hajela K, Beisel KW, Morley BJ, Gupta AK (1993) Analysis of gamma-aminobutyric acid A receptor subunits in the mouse cochlea by means of the polymerase chain reaction. J Neurochem 61:1167–1170

    CAS  PubMed  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715

    CAS  PubMed  Google Scholar 

  • Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J (2001) Alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci U S A 98:3501–3506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellison M, Haberlandt C, Gomez-Casati ME, Watkins M, Elgoyhen AB, McIntosh JM, Olivera BM (2006) Alpha-RgIA: a novel conotoxin that specifically and potently blocks the alpha9alpha10 nAChR. Biochemistry 45:1511–1517

    CAS  PubMed  Google Scholar 

  • Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73:309–373

    CAS  PubMed  Google Scholar 

  • Eybalin M, Pujol R (1987) Choline acetyltransferase (ChAT) immunoelectron microscopy distinguishes at least three types of efferent synapses in the organ of Corti. Exp Brain Res 65:261–270

    CAS  PubMed  Google Scholar 

  • Eybalin M, Cupo A, Pujol R (1985) Met-enkephalin-Arg6-Gly7-Leu8 in the organ of Corti: high performance liquid chromatography and immunoelectron microscopy. Brain Res 331:389–395

    CAS  PubMed  Google Scholar 

  • Eybalin M, Charachon G, Renard N (1993) Dopaminergic lateral efferent innervation of the guinea-pig cochlea: immunoelectron microscopy of catecholamine-synthesizing enzymes and effect of 6-hydroxydopamine. Neuroscience 54:133–142

    CAS  PubMed  Google Scholar 

  • Fex J, Altschuler RA (1981) Enkephalin-like immunoreactivity of olivocochlear nerve fibers in cochlea of guinea pig and cat. Proc Natl Acad Sci U S A 78:1255–1259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fex J, Wenthold RJ (1976) Choline acetyltransferase, glutamate decarboxylase and tyrosine hydroxylase in the cochlea and cochlear nucleus of the guinea pig. Brain Res 109:575–585

    CAS  PubMed  Google Scholar 

  • Fuchs PA, Murrow BW (1992) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12:800–809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galambos R (1956) Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J Neurophysiol 19:424–437

    CAS  PubMed  Google Scholar 

  • Galley N, Klinke R, Oertel W, Pause M, Storch WH (1973) The effect of intracochlearly administered acetylcholine-blocking agents on the efferent synapses of the cochlea. Brain Res 64:55–63

    CAS  PubMed  Google Scholar 

  • Gil-Loyzaga P, Pares-Herbute N (1989) HPLC detection of dopamine and noradrenaline in the cochlea of adult and developing rats. Brain Res Dev Brain Res 48:157–160

    CAS  PubMed  Google Scholar 

  • Gil-Loyzaga P, Pujol R (1988) Synaptophysin in the developing cochlea. Int J Dev Neurosci 6:155–160

    CAS  PubMed  Google Scholar 

  • Gil-Loyzaga P, Bartolome MV, Vicente-Torres MA (1997) Serotonergic innervation of the organ of Corti of the cat cochlea. Neuroreport 8:3519–3522

    CAS  PubMed  Google Scholar 

  • Gisselsson L (1950) Experimental investigation into the problem of humoral transmission in the cochlea. Acta Otolaryngol 82:9–78

    CAS  Google Scholar 

  • Gitter AH, Zenner HP (1992) Gamma-aminobutyric acid receptor activation of outer hair cells in the guinea pig cochlea. Eur Arch Otorhinolaryngol 249:62–65

    CAS  PubMed  Google Scholar 

  • Glowatzki E, Fuchs PA (2000) Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science (NY) 288:2366–2368

    CAS  Google Scholar 

  • Godfrey DA, Ross CD (1985) Enzymes of acetylcholine metabolism in the rat cochlea. Ann Otol Rhinol Laryngol 94:409–414

    CAS  PubMed  Google Scholar 

  • Godfrey DA, Krzanowski JJ Jr, Matschinsky FM (1976) Activities of enzymes of the cholinergic systems in the guinea pig cochlea. J Histochem Cytochem 24:470–472

    CAS  PubMed  Google Scholar 

  • Gomez-Casati ME, Katz E, Glowatzki E, Lioudyno MI, Fuchs P, Elgoyhen AB (2004) Linopirdine blocks alpha9alpha10-containing nicotinic cholinergic receptors of cochlear hair cells. J Assoc Res Otolaryngol 5:261–269

    PubMed  PubMed Central  Google Scholar 

  • Goutman JD, Fuchs PA, Glowatzki E (2005) Facilitating efferent inhibition of inner hair cells in the cochlea of the neonatal rat. J Physiol 566:49–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gulley RL, Fex J, Wenthold RJ (1979) Uptake of putative neurotransmitters in the organ of Corti. Acta Otolaryngol 88:177–182

    CAS  PubMed  Google Scholar 

  • Guth PS, Norris CH, Bobbin RP (1976) The pharmacology of transmission in the peripheral auditory system. Pharmacol Rev 28:95–125

    CAS  PubMed  Google Scholar 

  • Hoffman DW, Zamir N, Rubio JA, Altschuler RA, Fex J (1985) Proenkephalin and prodynorphin related neuropeptides in the cochlea. Hear Res 17:47–50

    CAS  PubMed  Google Scholar 

  • Inoue T, Matsubara A, Maruya S, Yamamoto Y, Namba A, Sasaki A, Shinkawa H (2006) Localization of dopamine receptor subtypes in the rat spiral ganglion. Neurosci Lett 399: 226–229

    CAS  PubMed  Google Scholar 

  • Jasser A, Guth PS (1973) The synthesis of acetylcholine by the olivo-cochlear bundle. J Neurochem 20:45–53

    CAS  PubMed  Google Scholar 

  • Jones N, Fex J, Altschuler RA (1987) Tyrosine hydroxylase immunoreactivity identifies possible catecholaminergic fibers in the organ of Corti. Hear Res 30:33–38

    CAS  PubMed  Google Scholar 

  • Jongkamonwiwat N, Phansuwan-Pujito P, Casalotti SO, Forge A, Dodson H, Govitrapong P (2006) The existence of opioid receptors in the cochlea of guinea pigs. Eur J Neurosci 23: 2701–2711

    PubMed  Google Scholar 

  • Karadaghy AA, Lasak JM, Chomchai JS, Khan KM, Drescher MJ, Drescher DG (1997) Quantitative analysis of dopamine receptor messages in the mouse cochlea. Brain Res Mol Brain Res 44:151–156

    CAS  PubMed  Google Scholar 

  • Kho ST, Lopez IA, Evans C, Ishiyama A, Ishiyama G (2006) Immunolocalization of orphanin FQ in rat cochlea. Brain Res 1113:146–152

    CAS  PubMed  Google Scholar 

  • Kitajiri M, Yamashita T, Tohyama Y, Kumazawa T, Takeda N, Kawasaki Y, Matsunaga T, Girgis S, Hillyard CJ, MacIntyre I et al (1985) Localization of calcitonin gene-related peptide in the organ of Corti of the rat: an immunohistochemical study. Brain Res 358:394–397

    CAS  PubMed  Google Scholar 

  • Klinke R, Oertel W (1977) Evidence that GABA is not the afferent transmitter in the cochlea. Exp Brain Res 28:311–314

    CAS  PubMed  Google Scholar 

  • Knipper M, Zimmermann U, Rohbock K, Kopschall I, Zenner HP (1995) Synaptophysin and GAP-43 proteins in efferent fibers of the inner ear during postnatal development. Brain Res Dev Brain Res 89:73–86

    CAS  PubMed  Google Scholar 

  • Kong WJ, Guo CK, Zhang S, Zhang XW, Wang YJ, Li ZW (2006) Fast cholinergic efferent inhibition in guinea pig outer hair cells. Brain Res 1102:103–108

    CAS  PubMed  Google Scholar 

  • Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1992) Intracochlear application of acetylcholine alters sound-induced mechanical events within the cochlear partition. Hear Res 61: 106–116

    CAS  PubMed  Google Scholar 

  • Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1993) Contralateral sound suppresses distortion product otoacoustic emissions through cholinergic mechanisms. Hear Res 68:97–106

    CAS  PubMed  Google Scholar 

  • Kurc M, Dodane V, Pinto DS, Kachar B (1998) Presynaptic localization of G protein isoforms in the efferent nerve terminals of the mammalian cochlea. Hear Res 116:1–9

    CAS  PubMed  Google Scholar 

  • Lioudyno MI, Verbitsky M, Holt JC, Elgoyhen AB, Guth PS (2000) Morphine inhibits an alpha9-acetylcholine nicotinic receptor-mediated response by a mechanism which does not involve opioid receptors. Hear Res 149:167–177

    CAS  PubMed  Google Scholar 

  • Lioudyno MI, Verbitsky M, Glowatzki E, Holt JC, Boulter J, Zadina JE, Elgoyhen AB, Guth PS (2002) The alpha9/alpha10-containing nicotinic ACh receptor is directly modulated by opioid peptides, endomorphin-1, and dynorphin B, proposed efferent cotransmitters in the inner ear. Mol Cell Neurosci 20:695–711

    CAS  PubMed  Google Scholar 

  • Lioudyno M, Hiel H, Kong JH, Katz E, Waldman E, Parameshwaran-Iyer S, Glowatzki E, Fuchs PA (2004) A “synaptoplasmic cistern” mediates rapid inhibition of cochlear hair cells. J Neurosci 24:11160–11164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maison SF, Emeson RB, Adams JC, Luebke AE, Liberman MC (2003) Loss of alpha CGRP reduces sound-evoked activity in the cochlear nerve. J Neurophysiol 90:2941–2949

    CAS  PubMed  Google Scholar 

  • Marcotti W, Johnson SL, Kros CJ (2004) A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells. J Physiol 560:691–708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulders WH, Robertson D (2004) Dopaminergic olivocochlear neurons originate in the high frequency region of the lateral superior olive of guinea pigs. Hear Res 187:122–130

    CAS  PubMed  Google Scholar 

  • Nachmansohn D, Wilson IB (1951) The enzymic hydrolysis and synthesis of acetylcholine. Adv Enzymol Relat Subj Biochem 12:259–339

    CAS  PubMed  Google Scholar 

  • Nie L, Song H, Chen MF, Chiamvimonvat N, Beisel KW, Yamoah EN, Vazquez AE (2004) Cloning and expression of a small-conductance Ca(2+)-activated K+ channel from the mouse cochlea: coexpression with alpha9/alpha10 acetylcholine receptors. J Neurophysiol 91:1536–1544

    CAS  PubMed  Google Scholar 

  • Niu X, Tahera Y, Canlon B (2007) Environmental enrichment to sound activates dopaminergic pathways in the auditory system. Physiol Behav 92:34–39

    CAS  PubMed  Google Scholar 

  • Oh CK, Drescher MJ, Hatfield JS, Drescher DG (1999) Selective expression of serotonin receptor transcripts in the mammalian cochlea and its subdivisions. Brain Res Mol Brain Res 70:135–140

    CAS  PubMed  Google Scholar 

  • Oliver D, Ludwig J, Reisinger E, Zoellner W, Ruppersberg JP, Fakler B (2001) Memantine inhibits efferent cholinergic transmission in the cochlea by blocking nicotinic acetylcholine receptors of outer hair cells. Mol Pharmacol 60:183–189

    CAS  PubMed  Google Scholar 

  • Plinkert PK, Mohler H, Zenner HP (1989) A subpopulation of outer hair cells possessing GABA receptors with tonotopic organization. Arch Otorhinolaryngol 246:417–422

    CAS  PubMed  Google Scholar 

  • Plinkert PK, Gitter AH, Mohler H, Zenner HP (1993) Structure, pharmacology and function of GABA-A receptors in cochlear outer hair cells. Eur Arch Otorhinolaryngol 250:351–357

    CAS  PubMed  Google Scholar 

  • Rasmussen GL (1946) The olivary peduncle and other fiber projections of the superior olivary complex. J Comp Neurol 84:141–219

    CAS  PubMed  Google Scholar 

  • Reiter ER, Liberman MC (1995) Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation. J Neurophysiol 73:506–514

    CAS  PubMed  Google Scholar 

  • Rome C, Luo D, Dulon D (1999) Muscarinic receptor-mediated calcium signaling in spiral ganglion neurons of the mammalian cochlea. Brain Res 846:196–203

    CAS  PubMed  Google Scholar 

  • Rothlin CV, Katz E, Verbitsky M, Elgoyhen AB (1999) The alpha9 nicotinic acetylcholine receptor shares pharmacological properties with type A gamma-aminobutyric acid, glycine, and type 3 serotonin receptors. Mol Pharmacol 55:248–254

    CAS  PubMed  Google Scholar 

  • Rothlin CV, Katz E, Verbitsky M, Vetter DE, Heinemann SF, Elgoyhen AB (2000) Block of the alpha9 nicotinic receptor by ototoxic aminoglycosides. Neuropharmacology 39:2525–2532

    CAS  PubMed  Google Scholar 

  • Rothlin CV, Lioudyno MI, Silbering AF, Plazas PV, Casati ME, Katz E, Guth PS, Elgoyhen AB (2003) Direct interaction of serotonin type 3 receptor ligands with recombinant and native alpha 9 alpha 10-containing nicotinic cholinergic receptors. Mol Pharmacol 63:1067–1074

    CAS  PubMed  Google Scholar 

  • Ruel J, Nouvian R, Gervais d’Aldin C, Pujol R, Eybalin M, Puel JL (2001) Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. Eur J Neurosci 14:977–986

    CAS  PubMed  Google Scholar 

  • Ruel J, Wang J, Dememes D, Gobaille S, Puel JL, Rebillard G (2006) Dopamine transporter is essential for the maintenance of spontaneous activity of auditory nerve neurones and their responsiveness to sound stimulation. J Neurochem 97:190–200

    CAS  PubMed  Google Scholar 

  • Safieddine S, Wenthold RJ (1999) SNARE complex at the ribbon synapses of cochlear hair cells: analysis of synaptic vesicle- and synaptic membrane-associated proteins. Eur J Neurosci 11:803–812

    CAS  PubMed  Google Scholar 

  • Safieddine S, Bartolami S, Wenthold RJ, Eybalin M (1996) Pre- and postsynaptic M3 muscarinic receptor mRNAs in the rodent peripheral auditory system. Brain Res Mol Brain Res 40:127–135

    CAS  PubMed  Google Scholar 

  • Safieddine S, Prior AM, Eybalin M (1997) Choline acetyltransferase, glutamate decarboxylase, tyrosine hydroxylase, calcitonin gene-related peptide and opioid peptides coexist in lateral efferent neurons of rat and guinea-pig. Eur J Neurosci 9:356–367

    CAS  PubMed  Google Scholar 

  • Sahley TL, Nodar RH (1994) Improvement in auditory function following pentazocine suggests a role for dynorphins in auditory sensitivity. Ear Hear 15:422–431

    CAS  PubMed  Google Scholar 

  • Schwartz IR, Ryan AF (1983) Differential labeling of sensory cell and neural populations in the organ of Corti following amino acid incubations. Hear Res 9:185–200

    CAS  PubMed  Google Scholar 

  • Simmons DD, Bertolotto C, Typpo K, Clay A, Wu M (1999) Differential development of cholinergic-like neurons in the superior olive: a light microscopic study. Anat Embryol 200:585–595

    CAS  PubMed  Google Scholar 

  • Sliwinska-Kowalska M, Parakkal M, Schneider ME, Fex J (1989) CGRP-like immunoreactivity in the guinea pig organ of Corti: a light and electron microscopy study. Hear Res 42:83–95

    CAS  PubMed  Google Scholar 

  • Smith CA, Sjostrand FS (1961) Structure of the nerve endings on the external hair cells of the guinea pig cochlea as studied by serial sections. J Ultrastruct Res 5:523–556

    CAS  PubMed  Google Scholar 

  • Sridhar TS, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci 15:3667–3678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sridhar TS, Brown MC, Sewell WF (1997) Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales. J Neurosci 17:428–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waka N, Knipper M, Engel J (2003) Localization of the calcium channel subunits Cav1.2 (alpha1C) and Cav2.3 (alpha1E) in the mouse organ of Corti. Histol Histopathol 18:1115–1123

    CAS  PubMed  Google Scholar 

  • Warr WB, Boche JB, Neely ST (1997) Efferent innervation of the inner hair cell region: origins and terminations of two lateral olivocochlear systems. Hear Res 108:89–111

    CAS  PubMed  Google Scholar 

  • Yao W, Godfrey DA (1998) Immunohistochemical evaluation of cholinergic neurons in the rat superior olivary complex. Microsc Res Tech 41:270–283

    CAS  PubMed  Google Scholar 

  • Yao W, Godfrey DA (1999) Vesicular acetylcholine transporter in the rat cochlear nucleus: an immunohistochemical study. J Histochem Cytochem 47:83–90

    CAS  PubMed  Google Scholar 

  • Yoshida N, Liberman MC, Brown MC, Sewell WF (1999) Gentamicin blocks both fast and slow effects of olivocochlear activation in anesthetized guinea pigs. J Neurophysiol 82:3168–3174

    CAS  PubMed  Google Scholar 

  • Yoshida N, Liberman MC, Brown MC, Sewell WF (2001) Fast, but not slow, effects of olivocochlear activation are resistant to apamin. J Neurophysiol 85:84–88

    CAS  PubMed  Google Scholar 

  • Yuhas WA, Fuchs PA (1999) Apamin-sensitive, small-conductance, calcium-activated potassium channels mediate cholinergic inhibition of chick auditory hair cells. J Comp Physiol 185:455–462

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the NIDCD (R01 DC000767).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Sewell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sewell, W.F. (2011). Pharmacology and Neurochemistry of Olivocochlear Efferents. In: Ryugo, D., Fay, R. (eds) Auditory and Vestibular Efferents. Springer Handbook of Auditory Research, vol 38. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7070-1_4

Download citation

Publish with us

Policies and ethics