Skip to main content

Central Effects of Efferent Activation

  • Chapter
  • First Online:
Auditory and Vestibular Efferents

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 38))

Abstract

The action of the medial olivocochlear system (MOCS) in the auditory periphery is well established and is described in detail elsewhere in this volume (Guinan, Chap. 3; Sewell, Chap. 4; Katz et al., Chap. 5). The major peripheral effect of activation of the MOCS is a reduction in gain of the outer hair cell (OHC) cochlear amplifier and a consequent reduction in sensitivity of the primary afferent neurons to tones at their most sensitive, or characteristic frequency (CF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benson TE, Brown MC (1990) Synapses formed by olivocochlear axon branches in the mouse cochlear nucleus. J Comp Neurol 295:52–70

    CAS  PubMed  Google Scholar 

  • Benson TE, Berglund AM, Brown MC (1996) Synaptic input to cochlear nucleus dendrites that receive medial olivocochlear synapses. J Comp Neurol 365:27–41

    CAS  PubMed  Google Scholar 

  • Brown MC (1993) Fiber pathways and branching patterns of biocytin-labeled olivocochlear neurons in the mouse brainstem. J Comp Neurol 337:600–613

    CAS  PubMed  Google Scholar 

  • Brown MC, Vetter DE (2009) Olivocochlear neuron central anatomy is normal in alpha9 knockout mice. J Assoc Res Otolaryngol 10:64–75

    PubMed  Google Scholar 

  • Brown MC, Liberman MC, Benson TE, Ryugo DK (1988) Brainstem branches from olivocochlear axons in cats and rodents. J Comp Neurol 278:591–603

    CAS  PubMed  Google Scholar 

  • Brown MC, Pierce S, Berglund AM (1991) Cochlear-nucleus branches of thick (medial) olivocochlear fibers in the mouse: a cochleotopic projection. J Comp Neurol 303:300–315

    CAS  PubMed  Google Scholar 

  • Comis SD, Whitfield IC (1968) Influence of centrifugal pathways on unit activity in the cochlear nucleus. J Neurophysiol 31:62–68

    CAS  PubMed  Google Scholar 

  • Desmedt JE (1962) Auditory-evoked potentials from cochlea to cortex as influenced by activation of the olivocochlear bundle. J Acoust Soc Am 34:1478–1496

    Google Scholar 

  • Desmedt JE, Robertson D (1975) Ionic mechanism of the efferent olivo-cochlear inhibition studied by cochlear perfusion in the cat. J Physiol 247:407–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert U (1996) Noradrenalin enhances the activity of cochlear nucleus neurons in the rat. Eur J Neurosci 8:1306–1314

    CAS  PubMed  Google Scholar 

  • Fex J (1967) Efferent inhibition in the cochlea related to hair-cell dc activity: study of postsynaptic activity of the crossed olivocochlear fibres in the cat. J Acoust Soc Am 41:666–675

    CAS  PubMed  Google Scholar 

  • Fujino K, and Oertel D (2001) Cholinergic modulation of stellate cells in the mammalian ventral cochlear nucleus. J Neurosci 21:7372–7383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawase T, Delgutte B, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. J Neurophysiol 70:2533–2549

    CAS  PubMed  Google Scholar 

  • Klepper A, Herbert H (1991) Distribution and origin of noradrenergic and serotonergic fibers in the cochlear nucleus and inferior colliculus of the rat. Brain Res 557:190–201

    CAS  PubMed  Google Scholar 

  • Koerber KC, Pfeiffer RR, Warr WB, Kiang NY (1966) Spontaneous spike discharges from single units in the cochlear nucleus after destruction of the cochlea. Exp Neurol 16:119–130

    CAS  PubMed  Google Scholar 

  • May BJ, Prosen CA, Weiss D, Vetter D (2002) Behavioral investigation of some possible effects of the central olivocochlear pathways in transgenic mice. Hear Res 171:142–157

    PubMed  Google Scholar 

  • May BJ, Budelis J, Niparko JK (2004) Behavioral studies of the olivocochlear efferent system: learning to listen in noise. Arch Otolaryngol Head Neck Surg 130:660–664

    PubMed  Google Scholar 

  • Mulders WH, Robertson D (2000) Effects on cochlear responses of activation of descending pathways from the inferior colliculus. Hear Res 149:11–23

    CAS  PubMed  Google Scholar 

  • Mulders WH, Robertson D (2001) Origin of the noradrenergic innervation of the superior olivary complex in the rat. J Chem Neuroanat 21:313–322

    CAS  PubMed  Google Scholar 

  • Mulders WH, Robertson D (2005) Catecholaminergic innervation of guinea pig superior olivary complex. J Chem Neuroanat 30:230–242

    CAS  PubMed  Google Scholar 

  • Mulders WH, Winter IM, Robertson D (2002) Dual action of olivocochlear collaterals in the guinea pig cochlear nucleus. Hear Res 174:264–280

    CAS  PubMed  Google Scholar 

  • Mulders WH, Paolini AG, Needham K, Robertson D (2003) Olivocochlear collaterals evoke excitatory effects in onset neurones of the rat cochlear nucleus. Hear Res 176:113–121

    CAS  PubMed  Google Scholar 

  • Mulders WH, Harvey AR, Robertson D (2007) Electrically evoked responses in onset chopper neurons in guinea pig cochlear nucleus. J Neurophysiol 97:3288–3297

    PubMed  Google Scholar 

  • Mulders WH, Seluakumaran K, Robertson D (2008) Effects of centrifugal pathways on responses of cochlear nucleus neurons to signals in noise. Eur J Neurosci 27:702–714

    CAS  PubMed  Google Scholar 

  • Patuzzi R, Rajan R (1992) Additivity of threshold elevations produced by disruption of outer hair cell function. Hear Res 60:165–177

    CAS  PubMed  Google Scholar 

  • Patuzzi R, Johnstone BM, Sellick PM (1984) The alteration of the vibration of the basilar membrane produced by loud sound. Hear Res 13:99–100

    CAS  PubMed  Google Scholar 

  • Pickles JO (1976a) The noradrenaline-containing innervation of the cochlear nucleus and the detection of signals in noise. Brain Res 105:591–596

    CAS  PubMed  Google Scholar 

  • Pickles JO (1976b) Role of centrifugal pathways to cochlear nucleus in determination of critical bandwidth. J Neurophysiol 39:394–400

    CAS  PubMed  Google Scholar 

  • Pickles JO, Comis SD (1973) Role of centrifugal pathways to cochlear nucleus in detection of signals in noise. J Neurophysiol 36:1131–1137

    CAS  PubMed  Google Scholar 

  • Pressnitzer D, Meddis R, Delahaye R, Winter IM (2001) Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus. J Neurosci 21:6377–6386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajan R, Patuzzi RB (1992) Additivity of threshold losses produced by acute acoustic trauma. Hear Res 60:216–230

    CAS  PubMed  Google Scholar 

  • Seluakumaran K, Mulders WH, Robertson D (2008a) Effects of medial olivocochlear efferent stimulation on the activity of neurons in the auditory midbrain. Exp Brain Res 186:161–174

    PubMed  Google Scholar 

  • Seluakumaran K, Mulders WH, Robertson D (2008b) Unmasking effects of olivocochlear efferent activation on responses of inferior colliculus neurons. Hear Res 243:35–46

    PubMed  Google Scholar 

  • Sewell WF (1984) The relation between the endocochlear potential and spontaneous activity in auditory nerve fibres of the cat. J Physiol 347:685–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherriff FE, Henderson Z (1994) Cholinergic neurons in the ventral trapezoid nucleus project to the cochlear nuclei in the rat. Neuroscience 58:627–633

    CAS  PubMed  Google Scholar 

  • Shore SE, El Kashlan H, Lu J (2003) Effects of trigeminal ganglion stimulation on unit activity of ventral cochlear nucleus neurons. Neuroscience 119:1085–1101

    CAS  PubMed  Google Scholar 

  • Starr A, Wernick JS (1968) Olivocohlear bundle stimulation: effect on spontaneous and tone-evoked activities of single units in cat cochlear nucleus. J Neurophysiol 31:549–564

    CAS  PubMed  Google Scholar 

  • Thompson AM, Moore KR, Thompson GC (1995) Distribution and origin of serotoninergic afferents to guinea pig cochlear nucleus. J Comp Neurol 351:104–116

    CAS  PubMed  Google Scholar 

  • Verhey JL, Pressnitzer D, Winter IM (2003) The psychophysics and physiology of comodulation masking release. Exp Brain Res 153:405–417

    PubMed  Google Scholar 

  • Wiederhold ML (1970) Variations in the effects of electric stimulation of the crossed olivocochlear bundle on cat single auditory-nerve-fiber responses to tone bursts. J Acoust Soc Am 48:966–977

    CAS  PubMed  Google Scholar 

  • Wiederhold ML, Kiang NY (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965

    CAS  PubMed  Google Scholar 

  • Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57:1002–1021

    CAS  PubMed  Google Scholar 

  • Winter IM, Robertson D, Cole KS (1989) Descending projections from auditory brainstem nuclei to the cochlea and cochlear nucleus of the guinea pig. J Comp Neurol 280:143–157

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NHMRC (Australia), the Medical Heath and Research Infrastructure Fund, The Royal National Institute for Deaf People, and The University of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Robertson, D., Mulders, W.H.A.M. (2011). Central Effects of Efferent Activation. In: Ryugo, D., Fay, R. (eds) Auditory and Vestibular Efferents. Springer Handbook of Auditory Research, vol 38. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7070-1_10

Download citation

Publish with us

Policies and ethics