Skip to main content

The Role of Protein SUMOylation in Neuronal Function

  • Chapter
  • First Online:
Book cover Folding for the Synapse

Abstract

The post-translational modification of proteins by members of the Small Ubiquitin-like MOdifier (SUMO) family is beginning to emerge as a key regulator of neuronal function. SUMO conjugation modifies the interaction of target proteins with protein partners, and thereby alters their subcellular localization, activity and stability. Importantly, SUMOylation is readily reversible, allowing cells to respond rapidly to varying cellular demands. SUMO has already been implicated in the regulation of multiple neuronal signalling pathways, mitochondrial dynamics, spine formation and synaptogenesis, as well as the direct control of neuronal excitability via its modulation of cell surface receptors and ion channels. Here, we outline the basic mechanics of the SUMO pathway, review major recent advances in the field and discuss the far-reaching implications of neuronal SUMOylation in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbor TA and Taylor CT (2008) SUMO, hypoxia and the regulation of metabolism. Biochem Soc Trans 36(Pt 3): 445–8

    Article  CAS  PubMed  Google Scholar 

  • Ahima RS and Flier JS (2000) Leptin. Annu Rev Physiol 62: 413–37

    Article  CAS  PubMed  Google Scholar 

  • Anderson DB, Wilkinson KA and Henley JM (2009) Protein SUMOylation in neuropathological conditions. Drug News Perspect 22(5): 255–65

    Article  CAS  PubMed  Google Scholar 

  • Bauer PH, Muller S, Puzicha M et al (1992) Phosducin is a protein kinase A-regulated G-protein regulator. Nature 358(6381): 73–6

    Article  CAS  PubMed  Google Scholar 

  • Bence KK, Delibegovic M, Xue B et al (2006) Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med 12(8): 917–24

    Article  CAS  PubMed  Google Scholar 

  • Bencsath KP, Podgorski MS, Pagala VR et al (2002) Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J Biol Chem 277(49): 47938–45

    Article  CAS  PubMed  Google Scholar 

  • Benson MD, Li QJ, Kieckhafer K et al (2007) SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proc Natl Acad Sci U S A 104(6): 1805–10

    Article  CAS  PubMed  Google Scholar 

  • Berman DM and Gilman AG (1998) Mammalian RGS proteins: barbarians at the gate. J Biol Chem 273(3): 1269–72

    Article  CAS  PubMed  Google Scholar 

  • Besnault-Mascard L, Leprince C, Auffredou MT et al (2005) Caspase-8 SUMOylation is associated with nuclear localization. Oncogene 24(20): 3268–73

    Article  CAS  PubMed  Google Scholar 

  • Bohren KM, Nadkarni V, Song JH et al (2004) A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 279(26): 27233–8

    Article  CAS  PubMed  Google Scholar 

  • Bossis G and Melchior F (2006) SUMO: regulating the regulator. Cell Div 1: 13

    Article  PubMed  CAS  Google Scholar 

  • Braschi E, Zunino R and McBride HM (2009) MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep 10(7): 748–54

    Article  CAS  PubMed  Google Scholar 

  • Bryant NJ, Govers R and James DE (2002) Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3(4): 267–77

    Article  CAS  PubMed  Google Scholar 

  • Bylebyl GR, Belichenko I and Johnson ES (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278(45): 44113–20

    Article  CAS  PubMed  Google Scholar 

  • Chan HY, Warrick JM, Andriola I et al (2002) Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet 11(23): 2895–904

    Article  CAS  PubMed  Google Scholar 

  • Chao HW, Hong CJ, Huang TN et al (2008) SUMOylation of the MAGUK protein CASK regulates dendritic spinogenesis. J Cell Biol 182(1): 141–55

    Article  CAS  PubMed  Google Scholar 

  • Cheng A, Uetani N, Simoncic PD et al (2002) Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev Cell 2(4): 497–503

    Article  CAS  PubMed  Google Scholar 

  • Cimarosti H and Henley JM (2008) Investigating the mechanisms underlying neuronal death in ischemia using in vitro oxygen-glucose deprivation: potential involvement of protein SUMOylation. Neuroscientist 14(6): 626–36

    Article  CAS  PubMed  Google Scholar 

  • Cimarosti H, Lindberg C, Bomholt SF et al (2008) Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology 54(2): 280–9

    Article  CAS  PubMed  Google Scholar 

  • Dadke S, Cotteret S, Yip SC et al (2007) Regulation of protein tyrosine phosphatase 1B by SUMOylation. Nat Cell Biol 9(1): 80–5

    Article  CAS  PubMed  Google Scholar 

  • Desterro JM, Thomson J and Hay RT (1997) Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 417(3): 297–300

    Article  CAS  PubMed  Google Scholar 

  • Dorval V and Fraser PE (2006) Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. J Biol Chem 281(15): 9919–24

    Article  CAS  PubMed  Google Scholar 

  • Dorval V and Fraser PE (2007) SUMO on the road to neurodegeneration. Biochim Biophys Acta 1773(6): 694–706

    Article  CAS  PubMed  Google Scholar 

  • Dorval V, Mazzella MJ, Mathews PM et al (2007) Modulation of Abeta generation by small ubiquitin-like modifiers does not require conjugation to target proteins. Biochem J 404(2): 309–16

    Article  CAS  PubMed  Google Scholar 

  • Dube N and Tremblay ML (2005) Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer. Biochim Biophys Acta 1754(1–2): 108–17

    CAS  PubMed  Google Scholar 

  • Feliciangeli S, Bendahhou S, Sandoz G et al (2007) Does SUMOylation control K2P1/TWIK1 background K+ channels? Cell 130(3): 563–9

    Article  CAS  PubMed  Google Scholar 

  • Feligioni M, Nishimune A and Henley JM (2009) Protein SUMOylation modulates calcium influx and glutamate release from presynaptic terminals. Eur J Neurosci 29(7): 1348–56

    Article  PubMed  Google Scholar 

  • Flavell SW, Cowan CW, Kim TK et al (2006) Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311(5763): 1008–12

    Article  CAS  PubMed  Google Scholar 

  • Gatchel JR and Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6(10): 743–55

    Article  CAS  PubMed  Google Scholar 

  • Geiss-Friedlander R and Melchior F (2007) Concepts in SUMOylation: a decade on. Nat Rev Mol Cell Biol 8(12): 947–56

    Article  CAS  PubMed  Google Scholar 

  • Giorgino F, de Robertis O, Laviola L et al (2000) The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Proc Natl Acad Sci U S A 97(3): 1125–30

    Article  CAS  PubMed  Google Scholar 

  • Giuditta A, Kaplan BB, van Minnen J et al (2002) Axonal and presynaptic protein synthesis: new insights into the biology of the neuron. Trends Neurosci 25(8): 400–4

    Article  CAS  PubMed  Google Scholar 

  • Gocke CB, Yu H and Kang J (2005) Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J Biol Chem 280(6): 5004–12

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Kamitani T, Fujise K et al (1997) Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. J Biol Chem 272(45): 28198–201

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Li B, Millas S et al (1999) Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett 448(1): 185–9

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Li M, Zhang Y et al (2004) A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36(8): 837–41

    Article  CAS  PubMed  Google Scholar 

  • Hannich JT, Lewis A, Kroetz MB et al (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280(6): 4102–10

    Article  CAS  PubMed  Google Scholar 

  • Harder Z, Zunino R and McBride H (2004) Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 14(4): 340–5

    CAS  PubMed  Google Scholar 

  • Hay RT (2005) SUMO: a history of modification. Mol Cell 18(1): 1–12

    Article  CAS  PubMed  Google Scholar 

  • Hayashi N, Shirakura H, Uehara T et al (2006) Relationship between SUMO-1 modification of caspase-7 and its nuclear localization in human neuronal cells. Neurosci Lett 397(1–2): 5–9

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Seki M, Maeda D et al (2002) Ubc9 is essential for viability of higher eukaryotic cells. Exp Cell Res 280(2): 212–21

    Article  CAS  PubMed  Google Scholar 

  • Hecker CM, Rabiller M, Haglund K et al (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281(23): 16117–27

    Article  CAS  PubMed  Google Scholar 

  • Heun P (2007) SUMOrganization of the nucleus. Curr Opin Cell Biol 19(3): 350–5

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N and Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6(3): 201–14

    Article  CAS  PubMed  Google Scholar 

  • Hurley JH, Lee S and Prag G (2006) Ubiquitin-binding domains. Biochem J 399(3): 361–72

    Article  CAS  PubMed  Google Scholar 

  • Ja Lee Y, Castri P, Bembry J et al (2009) SUMOylation participates in induction of ischemic tolerance. J Neurochem 109(1): 257–67

    Article  CAS  Google Scholar 

  • Jaskolski F, Coussen F and Mulle C (2005) Subcellular localization and trafficking of kainate receptors. Trends Pharmacol Sci 26(1): 20–6

    Article  CAS  PubMed  Google Scholar 

  • Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73: 355–82

    Article  CAS  PubMed  Google Scholar 

  • Johnson ES and Blobel G (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272(43): 26799–802

    Article  CAS  PubMed  Google Scholar 

  • Kadare G, Toutant M, Formstecher E et al (2003) PIAS1-mediated SUMOYlation of focal adhesion kinase activates its autophosphorylation. J Biol Chem 278(48): 47434–40

    Article  CAS  PubMed  Google Scholar 

  • Kamitani T, Nguyen HP and Yeh ET (1997) Preferential modification of nuclear proteins by a novel ubiquitin-like molecule. J Biol Chem 272(22): 14001–4

    Article  CAS  PubMed  Google Scholar 

  • Katsuno M, Adachi H, Waza M et al (2006) Pathogenesis, animal models and therapeutics in spinal and bulbar muscular atrophy (SBMA). Exp Neurol 200(1): 8–18

    Article  CAS  PubMed  Google Scholar 

  • Kerscher O (2007) SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep 8(6): 550–5

    Article  CAS  PubMed  Google Scholar 

  • Klenk C, Humrich J, Quitterer U et al (2006) SUMO-1 controls the protein stability and the biological function of phosducin. J Biol Chem 281(13): 8357–64

    Article  CAS  PubMed  Google Scholar 

  • Lallemand-Breitenbach V, Jeanne M, Benhenda S et al (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10(5): 547–55

    Article  CAS  PubMed  Google Scholar 

  • Lee GW, Melchior F, Matunis MJ et al (1998) Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. J Biol Chem 273(11): 6503–7

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang H, Wang S et al (2003) Positive and negative regulation of APP amyloidogenesis by SUMOYlation. Proc Natl Acad Sci U S A 100(1): 259–64

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Okamoto K, Hayashi Y et al (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119(6): 873–87

    Article  CAS  PubMed  Google Scholar 

  • Liu LB, Omata W, Kojima I et al (2007) The SUMO conjugating enzyme Ubc9 is a regulator of GLUT4 turnover and targeting to the insulin-responsive storage compartment in 3T3-L1 adipocytes. Diabetes 56: 1977–85

    Article  CAS  PubMed  Google Scholar 

  • Mahajan R, Delphin C, Guan T et al (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88(1): 97–107

    Article  CAS  PubMed  Google Scholar 

  • Mao H, Zhao Q, Daigle M et al (2004) RGS17/RGSZ2, a novel regulator of Gi/o, Gz, and Gq signaling. J Biol Chem 279(25): 26314–22

    Article  CAS  PubMed  Google Scholar 

  • Martin KC (2004) Local protein synthesis during axon guidance and synaptic plasticity. Curr Opin Neurobiol 14(3): 305–10

    Article  CAS  PubMed  Google Scholar 

  • Martin S, Nishimune A, Mellor JR et al (2007a) SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 447: 321–5

    Article  CAS  PubMed  Google Scholar 

  • Martin S, Wilkinson KA, Nishimune A et al (2007b) Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci 8(12): 948–59

    Article  CAS  PubMed  Google Scholar 

  • Matic I, van Hagen M, Schimmel J et al (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 7(1): 132–44

    CAS  PubMed  Google Scholar 

  • Matunis MJ, Coutavas E and Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135(6 Pt 1): 1457–70

    Article  CAS  PubMed  Google Scholar 

  • McFadden K, Hamilton RL, Insalaco SJ et al (2005) Neuronal intranuclear inclusion disease without polyglutamine inclusions in a child. J Neuropathol Exp Neurol 64(6): 545–52

    PubMed  Google Scholar 

  • Meluh PB and Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 6(7): 793–807

    CAS  PubMed  Google Scholar 

  • Minty A, Dumont X, Kaghad M et al (2000) Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275(46): 36316–23

    Article  CAS  PubMed  Google Scholar 

  • Mitra SK, Hanson DA and Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6(1): 56–68

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay D and Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32(6): 286–95

    Article  CAS  PubMed  Google Scholar 

  • Nacerddine K, Lehembre F, Bhaumik M et al (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9(6): 769–79

    Article  CAS  PubMed  Google Scholar 

  • Nimchinsky EA, Sabatini BL and Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64: 313–53

    Article  CAS  PubMed  Google Scholar 

  • Nishida T and Yasuda H (2002) PIAS1 and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J Biol Chem 277(44): 41311–7

    Article  CAS  PubMed  Google Scholar 

  • Okuma T, Honda R, Ichikawa G et al (1999) In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res Commun 254(3): 693–8

    Article  CAS  PubMed  Google Scholar 

  • Orias M, Velazquez H, Tung F et al (1997) Cloning and localization of a double-pore K channel, KCNK1: exclusive expression in distal nephron segments. Am J Physiol 273(4 Pt 2): F663–6

    CAS  PubMed  Google Scholar 

  • Owerbach D, McKay EM, Yeh ET et al (2005) A proline-90 residue unique to SUMO-4 prevents maturation and SUMOYlation. Biochem Biophys Res Commun 337(2): 517–20

    Article  CAS  PubMed  Google Scholar 

  • Perry JJ, Tainer JA and Boddy MN (2008) A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem Sci 33(5): 201–8

    Article  CAS  PubMed  Google Scholar 

  • Pierce KL, Premont RT and Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3(9): 639–50

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro P and Mulle C (2006) Kainate receptors. Cell Tissue Res 326(2): 457–82

    Article  CAS  PubMed  Google Scholar 

  • Plant LD, Rajan S and Goldstein SA (2005) K2P channels and their protein partners. Curr Opin Neurobiol 15(3): 326–33

    Article  CAS  PubMed  Google Scholar 

  • Poukka H, Karvonen U, Janne OA et al (2000) Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A 97(26): 14145–50

    Article  CAS  PubMed  Google Scholar 

  • Pountney DL, Chegini F, Shen X et al (2005) SUMO-1 marks subdomains within glial cytoplasmic inclusions of multiple system atrophy. Neurosci Lett 381(1–2): 74–9

    Article  CAS  PubMed  Google Scholar 

  • Pountney DL, Huang Y, Burns RJ et al (2003) SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp Neurol 184(1): 436–46

    Article  CAS  PubMed  Google Scholar 

  • Pountney DL, Raftery MJ, Chegini F et al (2008) NSF, Unc-18–1, dynamin-1 and HSP90 are inclusion body components in neuronal intranuclear inclusion disease identified by anti-SUMO-1-immunocapture. Acta Neuropathol 116(6): 603–14

    Article  CAS  PubMed  Google Scholar 

  • Rajan S, Plant LD, Rabin ML et al (2005) SUMOylation silences the plasma membrane leak K+ channel K2P1. Cell 121(1): 37–47

    Article  CAS  PubMed  Google Scholar 

  • Riley BE, Zoghbi HY and Orr HT (2005) SUMOylation of the polyglutamine repeat protein, ataxin-1, is dependent on a functional nuclear localization signal. J Biol Chem 280(23): 21942–8

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MS, Dargemont C and Hay RT (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276(16): 12654–9

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Munoz M, Bermudez D, Sanchez-Blazquez P et al (2007) Sumoylated RGS-Rz proteins act as scaffolds for Mu-opioid receptors and G-protein complexes in mouse brain. Neuropsychopharmacology 32(4): 842–50

    Article  CAS  PubMed  Google Scholar 

  • Rui HL, Fan E, Zhou HM et al (2002) SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling. J Biol Chem 277(45): 42981–6

    Article  CAS  PubMed  Google Scholar 

  • Saitoh H and Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275(9): 6252–8

    Article  CAS  PubMed  Google Scholar 

  • Saitoh H, Sparrow DB, Shiomi T et al (1998) Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr Biol 8(2): 121–4

    Article  CAS  PubMed  Google Scholar 

  • Sampson DA, Wang M and Matunis MJ (2001) The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 276(24): 21664–9

    Article  CAS  PubMed  Google Scholar 

  • Schilling G, Wood JD, Duan K et al (1999) Nuclear accumulation of truncated atrophin-1 fragments in a transgenic mouse model of DRPLA. Neuron 24(1): 275–86

    Article  CAS  PubMed  Google Scholar 

  • Schwarz SE, Matuschewski K, Liakopoulos D et al (1998) The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc Natl Acad Sci U S A 95(2): 560–4

    Article  CAS  PubMed  Google Scholar 

  • Shalizi A, Bilimoria PM, Stegmuller J et al (2007) PIASx is a MEF2 SUMO E3 ligase that promotes postsynaptic dendritic morphogenesis. J Neurosci 27(37): 10037–46

    Article  CAS  PubMed  Google Scholar 

  • Shalizi A, Gaudilliere B, Yuan Z et al (2006) A calcium-regulated MEF2 SUMOylation switch controls postsynaptic differentiation. Science 311(5763): 1012–7

    Article  CAS  PubMed  Google Scholar 

  • Shinbo Y, Niki T, Taira T et al (2006) Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death Differ 13(1): 96–108

    Article  CAS  PubMed  Google Scholar 

  • Smirnova E, Griparic L, Shurland DL et al (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12(8): 2245–56

    CAS  PubMed  Google Scholar 

  • Song J, Durrin LK, Wilkinson TA et al (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101(40): 14373–8

    Article  CAS  PubMed  Google Scholar 

  • Steffan JS, Agrawal N, Pallos J et al (2004) SUMO modification of Huntingtin and Huntington’s disease pathology. Science 304(5667): 100–4

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam S, Sixt KM, Barrow R et al (2009) Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 324(5932): 1327–30

    Article  CAS  PubMed  Google Scholar 

  • Sung JH, Ramirez-Lassepas M, Mastri AR et al (1980) An unusual degenerative disorder of neurons associated with a novel intranuclear hyaline inclusion (neuronal intranuclear hyaline inclusion disease). A clinicopathological study of a case. J Neuropathol Exp Neurol 39(2): 107–30

    Article  CAS  PubMed  Google Scholar 

  • Taira T, Saito Y, Niki T et al (2004) DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 5(2): 213–8

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Taira T, Niki T et al (2001) DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor. J Biol Chem 276(40): 37556–63

    Article  CAS  PubMed  Google Scholar 

  • Takahashi-Fujigasaki J, Arai K, Funata N et al (2006) SUMOylation substrates in neuronal intranuclear inclusion disease. Neuropathol Appl Neurobiol 32(1): 92–100

    Article  CAS  PubMed  Google Scholar 

  • Tan EK and Skipper LM (2007) Pathogenic mutations in Parkinson disease. Hum Mutat 28(7): 641–53

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, El Far O, Betz H et al (2005) Pias1 interaction and SUMOylation of metabotropic glutamate receptor 8. J Biol Chem 280(46): 38153–9

    Article  CAS  PubMed  Google Scholar 

  • Tatham MH, Geoffroy MC, Shen L et al (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10(5): 538–46

    Article  CAS  PubMed  Google Scholar 

  • Tatham MH, Jaffray E, Vaughan OA et al (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276(38): 35368–74

    Article  CAS  PubMed  Google Scholar 

  • Tatham MH, Kim S, Yu B et al (2003) Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. Biochemistry 42(33): 9959–69

    Article  CAS  PubMed  Google Scholar 

  • Tempe D, Piechaczyk M and Bossis G (2008) SUMO under stress. Biochem Soc Trans 36(Pt 5): 874–8

    Article  CAS  PubMed  Google Scholar 

  • Terashima T, Kawai H, Fujitani M et al (2002) SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. Neuroreport 13(17): 2359–64

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Goto J, Hashida H et al (2002) Enhanced SUMOylation in polyglutamine diseases. Biochem Biophys Res Commun 293(1): 307–13

    Article  CAS  PubMed  Google Scholar 

  • Um JW and Chung KC (2006) Functional modulation of parkin through physical interaction with SUMO-1. J Neurosci Res 84(7): 1543–54

    Article  CAS  PubMed  Google Scholar 

  • Um JW, Min DS, Rhim H et al (2006) Parkin ubiquitinates and promotes the degradation of RanBP2. J Biol Chem 281(6): 3595–603

    Article  CAS  PubMed  Google Scholar 

  • van Niekerk EA, Willis DE, Chang JH et al (2007) SUMOylation in axons triggers retrograde transport of the RNA-binding protein La. Proc Natl Acad Sci U S A 104(31): 12913–8

    Article  CAS  PubMed  Google Scholar 

  • Vassilatis DK, Hohmann JG, Zeng H et al (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A 100(8): 4903–8

    Article  CAS  PubMed  Google Scholar 

  • Wasiak S, Zunino R and McBride HM (2007) Bax/Bak promote SUMOYlation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177(3): 439–50

    Article  CAS  PubMed  Google Scholar 

  • Weisshaar SR, Keusekotten K, Krause A et al (2008) Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS Lett 582(21–22): 3174–8

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson KA, Nishimune A and Henley JM (2008) Analysis of SUMO-1 modification of ­neuronal proteins containing consensus SUMOylation motifs. Neurosci Lett 436(2): 239–44

    Article  CAS  PubMed  Google Scholar 

  • Wolin SL and Cedervall T (2002) The La protein. Annu Rev Biochem 71: 375–403

    Article  CAS  PubMed  Google Scholar 

  • Xu J, He Y, Qiang B et al (2008) A novel method for high accuracy SUMOylation site prediction from protein sequences. BMC Bioinformatics 9: 8

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Sheng H, Homi HM et al (2008a) Cerebral ischemia/stroke and small ubiquitin-like modifier (SUMO) conjugation – a new target for therapeutic intervention? J Neurochem 106: 989–99

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Sheng H, Warner DS et al (2008b) Transient global cerebral ischemia induces a massive increase in protein SUMOylation. J Cereb Blood Flow Metab 28(2): 269–79

    Article  PubMed  CAS  Google Scholar 

  • Yazawa I, Nukina N, Hashida H et al (1995) Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nat Genet 10(1): 99–103

    Article  CAS  PubMed  Google Scholar 

  • Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A et al (2002) PTP1B regulates leptin signal transduction in vivo. Dev Cell 2(4): 489–95

    Article  CAS  PubMed  Google Scholar 

  • Zoghbi HY and Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23: 217–47

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the lab of JMH is funded by the MRC, the Wellcome Trust, the ERC and the BBSRC. We thank Atsushi Nishimune for invaluable guidance, discussion and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy M. Henley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wilkinson, K.A., Henley, J.M. (2011). The Role of Protein SUMOylation in Neuronal Function. In: Wyttenbach, A., O'Connor, V. (eds) Folding for the Synapse. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7061-9_9

Download citation

Publish with us

Policies and ethics