Skip to main content

Prion Protein Misfolding at the Synapse

  • Chapter
  • First Online:
Folding for the Synapse

Abstract

The synapse has emerged as a major target for the misfolding insults that underlie prion disease and many other proteinopathies (e.g., Alzheimer’s disease (AD)). This common theme in the pathogenesis of these disorders indicates that analogous degenerative processes could be at play when increasing extracellular and/or intracellular accumulation of misfolded proteins leads to eventual cell loss. Similar therapeutic strategies may thus be effective in various central nervous system amyloidoses. Animal models of prion disease provide good evidence for specific synaptic degeneration within defined anatomical pathways of the hippocampus. Biochemical, histological, and electron microscopy studies have documented disintegrating synaptic structures during the early asymptomatic stage of disease, which has lead to the hypothesis that degenerative pathways are engaged locally at the synapse during an early key stage of neurodegeneration. Mirroring this, synapse loss precedes neuronal loss in early AD, and is more closely correlated with cognitive impairment than are plaques and tangles. As in other protein misfolding neurodegenerative disorders, it is likely that in prion disease, pathological prion protein conformers are present and actively participate in disease pathogenesis at the synapse. Despite this fundamental understanding, there has been little systematic study of the evidence for pathological accumulation of prion protein in either the presynaptic or postsynaptic specializations, or indeed the role of cellular pathways and synaptic proteins associated with these pathologies. This chapter will review key signaling pathways and processes implicated in biochemical changes that misfolded prion protein triggers at the synapse. Knowing what these changes are may well lead to new drug targets that would then enable us to prevent neuronal cell loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, V., et al. 2003. Small, highly structured RNAs participate in the conversion of human recombinant PrP(Sen) to PrP(Res) in vitro. J Mol Biol. 332, 47–57

    Article  PubMed  CAS  Google Scholar 

  • Aguzzi, A., et al. 2001. Spongiform encephalopathies: insights from transgenic models. Adv Virus Res. 56, 313–52

    Article  PubMed  CAS  Google Scholar 

  • Aguzzi, A., et al. 2007. Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol. 8, 552–61

    Article  PubMed  CAS  Google Scholar 

  • Aguzzi, A., Polymenidou, M. 2004. Mammalian prion biology: one century of evolving concepts. Cell. 116, 313–27

    Article  PubMed  CAS  Google Scholar 

  • Araque, A., 2006. Astrocyte-neuron signaling in the brain – implications for disease. Curr Opin Investig Drugs. 7, 619–24

    PubMed  CAS  Google Scholar 

  • Araque, A., et al. 2001. Dynamic signaling between astrocytes and neurons. Annu Rev Physiol. 63, 795–813

    Article  PubMed  CAS  Google Scholar 

  • Asuni, A. A., et al. 2008. Unaltered SNARE complex formation in an in vivo model of prion disease. Brain Res. 1233, 1–7

    Article  PubMed  CAS  Google Scholar 

  • Barron, R. M., et al. 2007. High titers of transmissible spongiform encephalopathy infectivity associated with extremely low levels of PrPSc in vivo. J Biol Chem. 282, 35878–86

    Article  PubMed  CAS  Google Scholar 

  • Basler, K., et al. 1986. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell. 46, 417–28

    Article  PubMed  CAS  Google Scholar 

  • Bautista, M. J., et al. 2006. BSE infection in bovine PrP transgenic mice leads to hyperphosphorylation of tau-protein. Vet Microbiol. 115, 293–301

    Article  PubMed  CAS  Google Scholar 

  • Belichenko, P. V., et al. 2000. Dendritic and synaptic alterations of hippocampal pyramidal neurones in scrapie-infected mice. Neuropathol Appl Neurobiol. 26, 143–9

    Article  PubMed  CAS  Google Scholar 

  • Borchelt, D. R., et al. 1994. Rapid anterograde axonal transport of the cellular prion glycoprotein in the peripheral and central nervous systems. J Biol Chem. 269, 14711–4

    PubMed  CAS  Google Scholar 

  • Bouzamondo-Bernstein, E., et al. 2004. The neurodegeneration sequence in prion diseases: evidence from functional, morphological and ultrastructural studies of the GABAergic system. J Neuropathol Exp Neurol. 63, 882–99

    PubMed  CAS  Google Scholar 

  • Bradke, F., Dotti, C. G., 1998. Membrane traffic in polarized neurons. Biochim Biophys Acta. 1404, 245–58

    Article  PubMed  CAS  Google Scholar 

  • Bresler, T., et al. 2004. Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J Neurosci. 24, 1507–20

    Article  PubMed  CAS  Google Scholar 

  • Brockes, J. P., 1999. Topics in prion cell biology. Curr Opin Neurobiol. 9, 571–7

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. R., 2001. Prion and prejudice: normal protein and the synapse. Trends Neurosci. 24, 85–90

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. R., 2002. Copper and prion diseases. Biochem Soc Trans. 30, 742–5

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. R., Besinger, A., 1998. Prion protein expression and superoxide dismutase activity. Biochem J. 334 (Pt 2), 423–9

    PubMed  CAS  Google Scholar 

  • Brown, D. R., et al. 1999. Normal prion protein has an activity like that of superoxide dismutase. Biochem J. 344 (Pt 1), 1–5

    Article  PubMed  CAS  Google Scholar 

  • Bueler, H., et al. 1993. Mice devoid of PrP are resistant to scrapie. Cell. 73, 1339

    Article  PubMed  CAS  Google Scholar 

  • Bueler, H., et al. 1992. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature. 356, 577–82

    Article  PubMed  CAS  Google Scholar 

  • Burthem, J., et al. 2001. The normal cellular prion protein is strongly expressed by myeloid dendritic cells. Blood. 98, 3733–8

    Article  PubMed  CAS  Google Scholar 

  • Campana, V., et al. 2005. The highways and byways of prion protein trafficking. Trends Cell Biol. 15, 102–11

    Article  PubMed  CAS  Google Scholar 

  • Carimalo, J., et al. 2005. Activation of the JNK-c-Jun pathway during the early phase of neuronal apoptosis induced by PrP106–126 and prion infection. Eur J Neurosci. 21, 2311–9

    Article  PubMed  CAS  Google Scholar 

  • Carleton, A., et al. 2001. Dose-dependent, prion protein (PrP)-mediated facilitation of excitatory synaptic transmission in the mouse hippocampus. Pflugers Arch. 442, 223–9

    Article  PubMed  CAS  Google Scholar 

  • Caughey, B., Baron, G. S., 2006. Prions and their partners in crime. Nature. 443, 803–10

    Article  PubMed  CAS  Google Scholar 

  • Caughey, B., et al. 1991. N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol. 65, 6597–603

    PubMed  CAS  Google Scholar 

  • Cereghetti, G. M., et al. 2001. Electron paramagnetic resonance evidence for binding of Cu(2+) to the C-terminal domain of the murine prion protein. Biophys J. 81, 516–25

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., et al. 2003. Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol Cell Neurosci. 22, 227–33

    Article  PubMed  CAS  Google Scholar 

  • Chesebro, B., et al. 2005. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science. 308, 1435–9

    Article  PubMed  CAS  Google Scholar 

  • Chiarini, L. B., et al. 2002. Cellular prion protein transduces neuroprotective signals. EMBO J. 21, 3317–26

    Article  PubMed  CAS  Google Scholar 

  • Chiesa, R., et al. 2008. Aggregated, wild-type prion protein causes neurological dysfunction and synaptic abnormalities. J Neurosci. 28, 13258–67

    Article  PubMed  CAS  Google Scholar 

  • Chiesa, R., et al. 2005. Bax deletion prevents neuronal loss but not neurological symptoms in a transgenic model of inherited prion disease. Proc Natl Acad Sci USA. 102, 238–43

    Article  PubMed  CAS  Google Scholar 

  • Choi, S. I., et al. 1998. Mitochondrial dysfunction induced by oxidative stress in the brains of hamsters infected with the 263 K scrapie agent. Acta Neuropathol. 96, 279–86

    Article  PubMed  CAS  Google Scholar 

  • Choi, Y. G., et al. 2000. Induction of heme oxygenase-1 in the brains of scrapie-infected mice. Neurosci Lett. 289, 173–6

    Article  PubMed  CAS  Google Scholar 

  • Collinge, J., et al. 1994. Prion protein is necessary for normal synaptic function. Nature. 370, 295–7

    Article  PubMed  CAS  Google Scholar 

  • Criado, J. R., et al. 2005. Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol Dis. 19, 255–65

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, C., et al. 2003. Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci. 17, 2147–55

    Article  PubMed  CAS  Google Scholar 

  • Daniels, M., Brown, D. R., 2002. Purification and preparation of prion protein: synaptic superoxide dismutase. Methods Enzymol. 349, 258–67

    Article  PubMed  CAS  Google Scholar 

  • De Camilli, P., et al. 1990. The synapsins. Annu Rev Cell Biol. 6, 433–60

    Article  PubMed  CAS  Google Scholar 

  • Deleault, N. R., et al. 2003. RNA molecules stimulate prion protein conversion. Nature. 425, 717–20

    Article  PubMed  CAS  Google Scholar 

  • Duranteau, J., et al. 1998. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem. 273, 11619–24

    Article  PubMed  CAS  Google Scholar 

  • Durig, J., et al. 2000. Differential constitutive and activation-dependent expression of prion protein in human peripheral blood leucocytes. Br J Haematol. 108, 488–95

    Article  PubMed  CAS  Google Scholar 

  • Fein, J. A., et al. 2008. Co-localization of amyloid beta and tau pathology in Alzheimer’s disease synaptosomes. Am J Pathol. 172, 1683–92

    Article  PubMed  CAS  Google Scholar 

  • Ferreiro, E., et al. 2008a. Involvement of mitochondria in endoplasmic reticulum stress-induced apoptotic cell death pathway triggered by the prion peptide PrP(106–126). J Neurochem. 104, 766–76

    PubMed  CAS  Google Scholar 

  • Ferreiro, E., et al. 2008b. The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol Dis. 30, 331–42

    Google Scholar 

  • Ferrer, I., Puig, B., 2003. GluR2/3, NMDAepsilon1 and GABAA receptors in Creutzfeldt-Jakob disease. Acta Neuropathol. 106, 311–8

    Article  PubMed  CAS  Google Scholar 

  • Fischer von Mollard, G., et al. 1994. Rab proteins in regulated exocytosis. Trends Biochem Sci. 19, 164–8

    Article  PubMed  CAS  Google Scholar 

  • Ford, M. J., et al. 2002. A marked disparity between the expression of prion protein and its message by neurones of the CNS. Neuroscience. 111, 533–51

    Article  PubMed  CAS  Google Scholar 

  • Fournier, J. G., et al. 1995. Ultrastructural localization of cellular prion protein (PrPc) in synaptic boutons of normal hamster hippocampus. C R Acad Sci III. 318, 339–44

    PubMed  CAS  Google Scholar 

  • Friedhoff, P., et al. 1998. A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc Natl Acad Sci USA. 95, 15712–7

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann, M., et al. 2007. Dendritic pathology in prion disease starts at the synaptic spine. J Neurosci. 27, 6224–33

    Article  PubMed  CAS  Google Scholar 

  • Garner, C. C., et al. 2000. Molecular determinants of presynaptic active zones. Curr Opin Neurobiol. 10, 321–7

    Article  PubMed  CAS  Google Scholar 

  • Gauczynski, S., et al. 2001. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J. 20, 5863–75

    Article  PubMed  CAS  Google Scholar 

  • Gavin, R., et al. 2005. PrP(106–126) activates neuronal intracellular kinases and Egr1 synthesis through activation of NADPH-oxidase independently of PrPc. FEBS Lett. 579, 4099–106

    Article  PubMed  CAS  Google Scholar 

  • Godsave, S. F., et al. 2008. Cryo-immunogold electron microscopy for prions: toward identification of a conversion site. J Neurosci. 28, 12489–99

    Article  PubMed  CAS  Google Scholar 

  • Gohel, C., et al. 1999. Ultrastructural localization of cellular prion protein (PrPc) at the neuromuscular junction. J Neurosci Res. 55, 261–7

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, L. S., Philp, A. V., 1999. The road less traveled: emerging principles of kinesin motor utilization. Annu Rev Cell Dev Biol. 15, 141–83

    Article  PubMed  CAS  Google Scholar 

  • Graner, E., et al. 2000. Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res. 76, 85–92

    Article  PubMed  CAS  Google Scholar 

  • Gray, B. C., et al. 2009. Selective presynaptic degeneration in the synaptopathy associated with ME7-induced hippocampal pathology. Neurobiol Dis. 35, 63–74

    Google Scholar 

  • Gray, F., et al. 1999. Neuronal apoptosis in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol. 58, 321–8

    Article  PubMed  CAS  Google Scholar 

  • Gray, N. W., et al. 2003. Dynamin 3 is a component of the postsynapse, where it interacts with mGluR5 and Homer. Curr Biol. 13, 510–5

    Article  PubMed  CAS  Google Scholar 

  • Greengard, P., et al. 1993. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science. 259, 780–5

    Article  PubMed  CAS  Google Scholar 

  • Guentchev, M., et al. 2000. Evidence for oxidative stress in experimental prion disease. Neurobiol Dis. 7, 270–3

    Article  PubMed  CAS  Google Scholar 

  • Guenther, K., et al. 2001. Early behavioural changes in scrapie-affected mice and the influence of dapsone. Eur J Neurosci. 14, 401–9

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena, S., et al. 2003. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron. 40, 25–40

    Article  PubMed  CAS  Google Scholar 

  • Gylys, K. H., et al. 2004. Synaptic changes in Alzheimer’s disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. Am J Pathol. 165, 1809–17

    Article  PubMed  CAS  Google Scholar 

  • Haass, C., Selkoe, D. J., 2007. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 8, 101–12

    Article  PubMed  CAS  Google Scholar 

  • Haber, M., et al. 2006. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci. 26, 8881–91

    Article  PubMed  CAS  Google Scholar 

  • Hachiya, N. S., et al. 2004. Anterograde and retrograde intracellular trafficking of fluorescent cellular prion protein. Biochem Biophys Res Commun. 315, 802–7

    Article  PubMed  CAS  Google Scholar 

  • Hafezparast, M., et al. 2005. Prion disease incubation time is not affected in mice heterozygous for a dynein mutation. Biochem Biophys Res Commun. 326, 18–22

    Article  PubMed  CAS  Google Scholar 

  • Halassa, M. M., et al. 2007. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med. 13, 54–63

    Article  PubMed  CAS  Google Scholar 

  • Hergersberg, M., et al. 2000. Deletions in the spinal muscular atrophy gene region in a newborn with neuropathy and extreme generalized muscular weakness. Eur J Paediatr Neurol. 4, 35–8

    Article  PubMed  CAS  Google Scholar 

  • Herms, J., et al. 1999. Evidence of presynaptic location and function of the prion protein. J Neurosci. 19, 8866–75

    PubMed  CAS  Google Scholar 

  • Hetz, C., et al. 2003. Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J. 22, 5435–45

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, N., 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 279, 519–26

    Article  PubMed  CAS  Google Scholar 

  • Hirrlinger, J., et al. 2004. Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci. 20, 2235–9

    Article  PubMed  Google Scholar 

  • Horton, A. C., Ehlers, M. D., 2004. Secretory trafficking in neuronal dendrites. Nat Cell Biol. 6, 585–91

    Article  PubMed  CAS  Google Scholar 

  • Hutter, G., et al. 2003. No superoxide dismutase activity of cellular prion protein in vivo. Biol Chem. 384, 1279–85

    Article  PubMed  CAS  Google Scholar 

  • Ishikura, N., et al. 2005. Notch-1 activation and dendritic atrophy in prion disease. Proc Natl Acad Sci USA. 102, 886–91

    Article  PubMed  CAS  Google Scholar 

  • Jackson, G. S., et al. 2001. Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci USA. 98, 8531–5

    Article  PubMed  CAS  Google Scholar 

  • Jahn, R., Sudhof, T. C., 1994. Synaptic vesicles and exocytosis. Annu Rev Neurosci. 17, 219–46

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey, M., et al. 1995. Early unsuspected neuron and axon terminal loss in scrapie-infected mice revealed by morphometry and immunocytochemistry. Neuropathol Appl Neurobiol. 21, 41–9

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey, M., et al. 2000. Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol Appl Neurobiol. 26, 41–54

    Article  PubMed  CAS  Google Scholar 

  • Jesionek-Kupnicka, D., et al. 1997. Programmed cell death (apoptosis) in Alzheimer’s disease and Creutzfeldt-Jakob disease. Folia Neuropathol. 35, 233–5

    PubMed  CAS  Google Scholar 

  • Johnston, A. R., et al. 1998. Synaptic plasticity in the CA1 area of the hippocampus of scrapie-infected mice. Neurobiol Dis. 5, 188–95

    Article  PubMed  CAS  Google Scholar 

  • Jones, S., et al. 2005. Recombinant prion protein does not possess SOD-1 activity. Biochem J. 392, 309–12

    Article  PubMed  CAS  Google Scholar 

  • Kanaani, J., et al. 2005. Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J Neurochem. 95, 1373–86

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, K., et al. 1997. COOH-terminal sequence of the cellular prion protein directs subcellular trafficking and controls conversion into the scrapie isoform. Proc Natl Acad Sci USA. 94, 2333–8

    Article  PubMed  CAS  Google Scholar 

  • Kapaki, E., et al. 2001. Highly increased CSF tau protein and decreased beta-amyloid (1–42) in sporadic CJD: a discrimination from Alzheimer’s disease? J Neurol Neurosurg Psychiatr. 71, 401–3

    Article  PubMed  CAS  Google Scholar 

  • Kardos, J., et al. 1989. Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability. Neurosci Lett. 103, 139–44

    Article  PubMed  CAS  Google Scholar 

  • Keshet, G. I., et al. 2000. The cellular prion protein colocalizes with the dystroglycan complex in the brain. J Neurochem. 75, 1889–97

    Article  PubMed  CAS  Google Scholar 

  • Khosravani, H., et al. 2008. Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol. 181, 551–65

    Article  PubMed  CAS  Google Scholar 

  • Kim, E., Sheng, M., 2004. PDZ domain proteins of synapses. Nat Rev Neurosci. 5, 771–81

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. I., et al. 1999. Expression of cytokine genes and increased nuclear factor-kappa B activity in the brains of scrapie-infected mice. Brain Res Mol Brain Res. 73, 17–27

    Article  PubMed  CAS  Google Scholar 

  • Kim, N. H., et al. 2000. Increased ferric iron content and iron-induced oxidative stress in the brains of scrapie-infected mice. Brain Res. 884, 98–103

    Article  PubMed  CAS  Google Scholar 

  • Klamt, F., et al. 2001. Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic Biol Med. 30, 1137–44

    Article  PubMed  CAS  Google Scholar 

  • Klein, M. A., et al. 1997. A crucial role for B cells in neuroinvasive scrapie. Nature. 390, 687

    PubMed  CAS  Google Scholar 

  • Kleizen, B., Braakman, I., 2004. Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol. 16, 343–9

    Article  PubMed  CAS  Google Scholar 

  • Kunzi, V., et al. 2002. Unhampered prion neuroinvasion despite impaired fast axonal transport in transgenic mice overexpressing four-repeat tau. J Neurosci. 22, 7471–7

    PubMed  CAS  Google Scholar 

  • LaFerla, F. M., 2002. Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci. 3, 862–72

    Article  PubMed  CAS  Google Scholar 

  • Laine, J., et al. 2001. Cellular and subcellular morphological localization of normal prion protein in rodent cerebellum. Eur J Neurosci. 14, 47–56

    Article  PubMed  CAS  Google Scholar 

  • Lashuel, H. A., et al. 2002. Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol. 322, 1089–102

    Article  PubMed  CAS  Google Scholar 

  • Lasmezas, C. I., 2003. Putative functions of PrP(C). Br Med Bull. 66, 61–70

    Article  PubMed  CAS  Google Scholar 

  • Lasmezas, C. I., et al. 1997. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science. 275, 402–5

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. W., et al. 1999. Alteration of free radical metabolism in the brain of mice infected with scrapie agent. Free Radic Res. 30, 499–507

    Article  PubMed  CAS  Google Scholar 

  • Lee, H. P., et al. 2005. Activation of mitogen-activated protein kinases in hamster brains infected with 263K scrapie agent. J Neurochem. 95, 584–93

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. J., et al. 2007. Cellular prion protein (PrPC) protects neuronal cells from the effect of huntingtin aggregation. J Cell Sci. 120, 2663–71

    Article  PubMed  CAS  Google Scholar 

  • Leuba, G., et al. 2008. Differential changes in synaptic proteins in the Alzheimer frontal cortex with marked increase in PSD-95 postsynaptic protein. J Alzheimers Dis. 15, 139–51

    PubMed  CAS  Google Scholar 

  • Li, A., et al. 2007. N-terminally deleted forms of the prion protein activate both Bax-dependent and Bax-independent neurotoxic pathways. J Neurosci. 27, 852–9

    Article  PubMed  CAS  Google Scholar 

  • Lledo, P. M., et al. 1996. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc Natl Acad Sci USA. 93, 2403–7

    Article  PubMed  CAS  Google Scholar 

  • Lopes, M. H., et al. 2005. Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J Neurosci. 25, 11330–9

    Article  PubMed  CAS  Google Scholar 

  • Macreadie, I. G., 2008. Copper transport and Alzheimer’s disease. Eur Biophys J. 37, 295–300

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes, A. C., et al. 2002. Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein. J Biol Chem. 277, 33311

    Article  PubMed  CAS  Google Scholar 

  • Maglio, L. E., et al. 2004. Hippocampal synaptic plasticity in mice devoid of cellular prion protein. Brain Res Mol Brain Res. 131, 58–64

    Article  PubMed  CAS  Google Scholar 

  • Makrinou, E., et al. 2002. Genomic characterization of the human prion protein (PrP) gene locus. Mamm Genome. 13, 696–703

    Article  PubMed  CAS  Google Scholar 

  • Mallucci, G., et al. 2003. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science. 302, 871–4

    Article  PubMed  CAS  Google Scholar 

  • Mallucci, G. R., et al. 2002. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21, 202–10

    Article  PubMed  CAS  Google Scholar 

  • Manson, J. C., et al. 1994. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol. 8, 121–7

    Article  PubMed  CAS  Google Scholar 

  • Manson, J. C., et al. 1999. A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J. 18, 6855–64

    Article  PubMed  CAS  Google Scholar 

  • Marchut, A. J., Hall, C. K., 2006. Spontaneous formation of annular structures observed in molecular dynamics simulations of polyglutamine peptides. Comput Biol Chem. 30, 215–8

    Article  PubMed  CAS  Google Scholar 

  • Martin, L. J., 2007. Transgenic mice with human mutant genes causing Parkinson’s disease and amyotrophic lateral sclerosis provide common insight into mechanisms of motor neuron selective vulnerability to degeneration. Rev Neurosci. 18, 115–36

    PubMed  CAS  Google Scholar 

  • Mattson, M. P., et al. 2000. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–9

    Article  PubMed  CAS  Google Scholar 

  • McKinley, M. P., et al. 1983. A protease-resistant protein is a structural component of the scrapie prion. Cell. 35, 57

    Article  PubMed  CAS  Google Scholar 

  • McLennan, N. F., et al. 2004. Prion protein accumulation and neuroprotection in hypoxic brain damage. Am J Pathol. 165, 227–35

    Article  PubMed  CAS  Google Scholar 

  • Miele, G., et al. 2003. Embryonic activation and developmental expression of the murine prion protein gene. Gene Expr 11, 1–12

    Article  PubMed  CAS  Google Scholar 

  • Miele, G., et al. 2002. Ablation of cellular prion protein expression affects mitochondrial numbers and morphology. Biochem Biophys Res Commun. 291, 372–7

    Article  PubMed  CAS  Google Scholar 

  • Minghetti, L., et al. 2000. Increased brain synthesis of prostaglandin E2 and F2-isoprostane in human and experimental transmissible spongiform encephalopathies. J Neuropathol Exp Neurol. 59, 866–71

    PubMed  CAS  Google Scholar 

  • Mironov, A., Jr., et al. 2003. Cytosolic prion protein in neurons. J Neurosci. 23, 7183–93

    PubMed  CAS  Google Scholar 

  • Mitterauer, B., 2004. Imbalance of glial-neuronal interaction in synapses: a possible mechanism of the pathophysiology of bipolar disorder. Neuroscientist. 10, 199–206

    Article  PubMed  CAS  Google Scholar 

  • Montrasio, F., et al. 2000. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science. 288, 1257–9.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. C., et al. 1999. Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J Mol Biol. 292, 797–817.

    Article  PubMed  CAS  Google Scholar 

  • Moser, M., et al. 1995. Developmental expression of the prion protein gene in glial cells. Neuron. 14, 509–17.

    Article  PubMed  CAS  Google Scholar 

  • Mouillet-Richard, S., et al. 2000. Signal transduction through prion protein. Science. 289, 1925–8.

    Article  PubMed  CAS  Google Scholar 

  • Mouillet-Richard, S., et al. 2005. Modulation of serotonergic receptor signaling and cross-talk by prion protein. J Biol Chem. 280, 4592–601.

    Article  PubMed  CAS  Google Scholar 

  • Moya, K. L., et al. 2000. Immunolocalization of the cellular prion protein in normal brain. Microsc Res Tech. 50, 58–65.

    Article  PubMed  CAS  Google Scholar 

  • Negro, A., et al. 2000. Susceptibility of the prion protein to enzymic phosphorylation. Biochem Biophys Res Commun. 271, 337–41.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa, S., et al. 2005. Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). J Biochem. 137, 551–5.

    Article  PubMed  CAS  Google Scholar 

  • O’Dell, B. L., 1976. Biochemistry of copper. Med Clin North Am. 60, 687–703.

    PubMed  Google Scholar 

  • Okamoto, P. M., et al. 2001. Dynamin isoform-specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton. J Biol Chem. 276, 48458–65.

    PubMed  CAS  Google Scholar 

  • Pamplona, R., et al. 2008. Increased oxidation, glycoxidation, and lipoxidation of brain proteins in prion disease. Free Radic Biol Med. 45, 1159–66.

    Article  PubMed  CAS  Google Scholar 

  • Pan, T., et al. 2002. Cell-surface prion protein interacts with glycosaminoglycans. Biochem J. 368, 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Petrakis, S., Sklaviadis, T., 2006. Identification of proteins with high affinity for refolded and native PrPC. Proteomics. 6, 6476–84.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, G. R., et al. 2001. The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron. 32, 63–77.

    Article  PubMed  CAS  Google Scholar 

  • Piccardo, P., et al. 2007. Accumulation of prion protein in the brain that is not associated with transmissible disease. Proc Natl Acad Sci USA. 104, 4712–7.

    Article  PubMed  CAS  Google Scholar 

  • Pietri, M., et al. 2006. Overstimulation of PrPC signaling pathways by prion peptide 106–126 causes oxidative injury of bioaminergic neuronal cells. J Biol Chem. 281, 28470–9.

    Article  PubMed  CAS  Google Scholar 

  • Politopoulou, G., et al. 2000. Age-related expression of the cellular prion protein in human peripheral blood leukocytes. Haematologica. 85, 580–7.

    PubMed  CAS  Google Scholar 

  • Prinz, M., et al. 2003. Oral prion infection requires normal numbers of Peyer’s patches but not of enteric lymphocytes. Am J Pathol. 162, 1103–11.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner, S. B., 1991. Molecular biology of prions causing infectious and genetic encephalopathies of humans as well as scrapie of sheep and BSE of cattle. Dev Biol Stand. 75, 55–74.

    PubMed  CAS  Google Scholar 

  • Prusiner, S. B., 1997. Prion diseases and the BSE crisis. Science. 278, 245–51.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner, S. B., 1998. Prions. Proc Natl Acad Sci USA. 95, 13363–83.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport, M., et al. 2002. Tau is essential to beta -amyloid-induced neurotoxicity. Proc Natl Acad Sci USA. 99, 6364–9.

    Article  PubMed  CAS  Google Scholar 

  • Rauk, A., 2008. Why is the amyloid beta peptide of Alzheimer’s disease neurotoxic? Dalton Trans. 1273–82.

    Google Scholar 

  • Re, L., et al. 2006. Prion protein potentiates acetylcholine release at the neuromuscular junction. Pharmacol Res. 53, 62–8.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, S. G., 1999. Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med. 31, 53–9.

    Article  PubMed  CAS  Google Scholar 

  • Riek, R., et al. 1997. NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett. 413, 282–8.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, M., et al. 1993. Conversion of truncated and elongated prion proteins into the scrapie isoform in cultured cells. Proc Natl Acad Sci USA. 90, 3182–6.

    Article  PubMed  CAS  Google Scholar 

  • Roos, J., Kelly, R. B., 2000. Preassembly and transport of nerve terminals: a new concept of axonal transport. Nat Neurosci. 3, 415–7.

    Article  PubMed  CAS  Google Scholar 

  • Roucou, X., et al. 2003. Cytosolic prion protein is not toxic and protects against Bax-mediated cell death in human primary neurons. J Biol Chem. 278, 40877.

    Article  PubMed  CAS  Google Scholar 

  • Roucou, X., LeBlanc, A. C., 2005. Cellular prion protein neuroprotective function: implications in prion diseases. J Mol Med. 83, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Roy, S., et al. 2005. Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol. 109, 5–13.

    Article  PubMed  Google Scholar 

  • Rudd, P. M., et al. 2001. Prion glycoprotein: structure, dynamics, and roles for the sugars. Biochemistry. 40, 3759–66.

    Article  PubMed  CAS  Google Scholar 

  • Safar, J., et al. 1993. Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity. Protein Sci. 2, 2206–16.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi, S., et al. 1996. Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature. 380, 528–31.

    Article  PubMed  CAS  Google Scholar 

  • Sales, N., et al. 1998. Cellular prion protein localization in rodent and primate brain. Eur J Neurosci. 10, 2464–71.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg, M. K., Low, P., 2005. Altered interaction and expression of proteins involved in neurosecretion in scrapie-infected GT1–1 cells. J Biol Chem. 280, 1264–71.

    Article  PubMed  CAS  Google Scholar 

  • Sanes, J. R., Lichtman, J. W., 1999. Development of the vertebrate neuromuscular junction. Annu Rev Neurosci. 22, 389–442.

    Article  PubMed  CAS  Google Scholar 

  • Santuccione, A., et al. 2005. Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol. 169, 341–54.

    Article  PubMed  CAS  Google Scholar 

  • Sarac, H., et al. 2008. Magnetic resonance spectroscopy and measurement of tau epitopes of autopsy proven sporadic Creutzfeldt-Jakob disease in a patient with non-specific initial EEG, MRI and negative 14–3–3 immunoblot. Coll Antropol. 32 Suppl 1, 199–204.

    PubMed  CAS  Google Scholar 

  • Scallet, A. C., Ye, X., 1997. Excitotoxic mechanisms of neurodegeneration in transmissible spongiform encephalopathies. Ann N Y Acad Sci. 825, 194–205.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt-Ulms, G., et al. 2001. Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol. 314, 1209–25

    Article  PubMed  CAS  Google Scholar 

  • Schneider, B., et al. 2003. NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc Natl Acad Sci USA. 100, 13326–31

    Article  PubMed  CAS  Google Scholar 

  • Scott, J. R., et al. 1994. Unsuspected early neuronal loss in scrapie-infected mice revealed by morphometric analysis. Ann N Y Acad Sci. 724, 338–43

    Article  PubMed  CAS  Google Scholar 

  • Shankar, G. M., et al. 2008. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 14, 837–42

    Article  PubMed  CAS  Google Scholar 

  • Shmerling, D., et al. 1998. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell. 93, 203–14

    Article  PubMed  CAS  Google Scholar 

  • Siskova, Z., et al. 2009. Degenerating synaptic boutons in prion disease: microglia activation without synaptic stripping. Am J Pathol. 175, 1610–21.

    Google Scholar 

  • Siso, S., et al. 2002. Abnormal synaptic protein expression and cell death in murine scrapie. Acta Neuropathol (Berl). 103, 615–26.

    Article  CAS  Google Scholar 

  • Solforosi, L., et al. 2004. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science. 303, 1514.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C., 1999. Alzheimer’s and prion disease as disorders of protein conformation: implications for the design of novel therapeutic approaches. J Mol Med. 77, 412–8.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C., Castilla, J., 2004. The controversial protein-only hypothesis of prion propagation. Nat Med. 10 Suppl, S63–7

    Article  PubMed  CAS  Google Scholar 

  • Soto, C., Estrada, L. D., 2008. Protein misfolding and neurodegeneration. Arch Neurol. 65, 184–9

    Article  PubMed  Google Scholar 

  • Spielhaupter, C., Schatzl, H. M., 2001. PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem. 276, 44604–12

    Article  PubMed  CAS  Google Scholar 

  • Stahl, N., et al. 1993. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry. 32, 1991–2002

    Article  PubMed  CAS  Google Scholar 

  • Steele, A. D., et al. 2006. Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci USA. 103, 3416–21

    Article  PubMed  CAS  Google Scholar 

  • Stefani, M., Dobson, C. M., 2003. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med. 81, 678–99

    Article  PubMed  CAS  Google Scholar 

  • Stockel, J., et al. 1998. Prion protein selectively binds copper(II) ions. Biochemistry. 37, 7185–93

    Article  PubMed  CAS  Google Scholar 

  • Stutzmann, G. E., 2005. Calcium dysregulation, IP3 signaling, and Alzheimer’s disease. Neuroscientist. 11, 110–5

    Article  PubMed  CAS  Google Scholar 

  • Sudhof, T. C., 2004. The synaptic vesicle cycle. Annu Rev Neurosci. 27, 509–47

    Article  PubMed  CAS  Google Scholar 

  • Swanson, D. A., et al. 1998. Identification and characterization of the human ortholog of rat STXBP1, a protein implicated in vesicle trafficking and neurotransmitter release. Genomics. 48, 373–6

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, R. H., et al. 2010. Co-occurrence of Alzheimer’s disease beta-amyloid and tau pathologies at synapses. Neurobiol Aging. 31, 1145–52

    Google Scholar 

  • Taylor, D. R., Hooper, N. M., 2007. The low-density lipoprotein receptor-related protein 1 (LRP1) mediates the endocytosis of the cellular prion protein. Biochem J. 402, 17–23

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D. R., et al. 2005. Assigning functions to distinct regions of the N-terminus of the prion protein that are involved in its copper-stimulated, clathrin-dependent endocytosis. J Cell Sci. 118, 5141–53

    Article  PubMed  CAS  Google Scholar 

  • Telling, G. C., et al. 1995. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell. 83, 79

    Article  PubMed  CAS  Google Scholar 

  • Thackray, A. M., et al. 2002. Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem J. 362, 253–8.

    Article  PubMed  CAS  Google Scholar 

  • Thannickal, V. J., Fanburg, B. L., 2000. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 279, L1005–28

    PubMed  CAS  Google Scholar 

  • Theiss, C., Meller, K., 2000. Taxol impairs anterograde axonal transport of microinjected horseradish peroxidase in dorsal root ganglia neurons in vitro. Cell Tissue Res. 299, 213–24

    Article  PubMed  CAS  Google Scholar 

  • Tiruchinapalli, D. M., et al. 2003. Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and beta-actin mRNA in dendrites and spines of hippocampal neurons. J Neurosci. 23, 3251–61

    PubMed  CAS  Google Scholar 

  • Tobler, I., et al. 1996. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature. 380, 639–42

    Article  PubMed  CAS  Google Scholar 

  • Toggas, S. M., et al. 1996. Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine. Brain Res. 706, 303–7

    Article  PubMed  CAS  Google Scholar 

  • Tu, J. C., et al. 1998. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron. 21, 717–26

    Article  PubMed  CAS  Google Scholar 

  • Tuite, M. F., Cox, B. S., 2003. Propagation of yeast prions. Nat Rev Mol Cell Biol. 4, 878–90

    Article  PubMed  CAS  Google Scholar 

  • Unterberger, U., et al. 2005. Pathogenesis of prion diseases. Acta Neuropathol. 109, 32–48

    Article  PubMed  CAS  Google Scholar 

  • Ushkaryov, Y. A., et al. 1992. Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science. 257, 50–6

    Article  PubMed  CAS  Google Scholar 

  • Vassallo, N., Herms, J., 2003. Cellular prion protein function in copper homeostasis and redox signalling at the synapse. J Neurochem. 86, 538–44

    Article  PubMed  CAS  Google Scholar 

  • Vey, M., et al. 1996. Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc Natl Acad Sci USA. 93, 14945–9

    Article  PubMed  CAS  Google Scholar 

  • Waites, C. L., et al. 2005. Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci. 28, 251–74

    Article  PubMed  CAS  Google Scholar 

  • Wadia, J. S., et al. 2008. Pathologic prion protein infects cells by lipid-raft dependent macropinocytosis. PLoS One. 3, e3314

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Tiedge, H., 2004. Translational control at the synapse. Neuroscientist. 10, 456–66

    Article  PubMed  CAS  Google Scholar 

  • Ward, R. J., et al. 1998. Copper and iron homeostasis in mammalian cells and cell lines. Biochem Soc Trans. 26, S191

    PubMed  CAS  Google Scholar 

  • Watt, N. T., Hooper, N. M., 2003. The prion protein and neuronal zinc homeostasis. Trends Biochem Sci. 28, 406–10

    Article  PubMed  CAS  Google Scholar 

  • Watt, N. T., et al. 2005. Reactive oxygen species-mediated beta-cleavage of the prion protein in the cellular response to oxidative stress. J Biol Chem. 280, 35914–21

    Article  PubMed  CAS  Google Scholar 

  • Weise, J., et al. 2004. Upregulation of cellular prion protein (PrPc) after focal cerebral ischemia and influence of lesion severity. Neurosci Lett. 372, 146–50

    Article  PubMed  CAS  Google Scholar 

  • White, A. R., et al. 1999. Prion protein-deficient neurons reveal lower glutathione reductase activity and increased susceptibility to hydrogen peroxide toxicity. Am J Pathol. 155, 1723–30

    Article  PubMed  CAS  Google Scholar 

  • White, A. R., et al. 2001. Sublethal concentrations of prion peptide PrP106–126 or the amyloid beta peptide of Alzheimer’s disease activates expression of proapoptotic markers in primary cortical neurons. Neurobiol Dis. 8, 299–316

    Article  PubMed  CAS  Google Scholar 

  • Wong, B. S., et al. 2001. Aberrant metal binding by prion protein in human prion disease. J Neurochem. 78, 1400–8

    Article  PubMed  CAS  Google Scholar 

  • Wong, B. S., et al. 2000. Prion disease: A loss of antioxidant function? Biochem Biophys Res Commun. 275, 249–52

    Article  PubMed  CAS  Google Scholar 

  • Xia, C. H., et al. 2003. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J Cell Biol. 161, 55–66

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., Lyubchenko, Y. L., 2009. Early stages for Parkinson’s development: alpha-synuclein misfolding and aggregation. J Neuroimmune Pharmacol. 4, 10–6

    Article  PubMed  Google Scholar 

  • Yuan, J., Yankner, B. A., 2000. Apoptosis in the nervous system. Nature. 407, 802–9

    Article  PubMed  CAS  Google Scholar 

  • Zakharov, V. V., et al. 2003. Natural N-terminal fragments of brain abundant myristoylated protein BASP1. Biochim Biophys Acta. 1622, 14–9

    Article  PubMed  CAS  Google Scholar 

  • Zanata, S. M., et al. 2002. Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J. 21, 3307–16

    Article  PubMed  CAS  Google Scholar 

  • Zhai, R. G., Bellen, H. J., 2004. The architecture of the active zone in the presynaptic nerve terminal. Physiology (Bethesda). 19, 262–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Šišková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Šišková, Z., Perry, V.H., Asuni, A.A. (2011). Prion Protein Misfolding at the Synapse. In: Wyttenbach, A., O'Connor, V. (eds) Folding for the Synapse. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7061-9_15

Download citation

Publish with us

Policies and ethics