Synaptic Dysfunction in Parkinson’s Disease: From Protein Misfolding to Functional Alterations

Chapter

Abstract

Neurodegenerative disorders are devastating human diseases that include Parkinson’s, Huntington’s and Alzheimer’s disease, amyotrophic lateral sclerosis, and the frontal temporal dementias. Although the clinical manifestations of these disorders have been known for some time, our understanding of the molecular underpinnings is only starting to emerge. Protein misfolding and aggregation is a common hallmark among these diseases, and these events are likely to produce a number of cellular and functional alterations. In Parkinson’s disease (PD), alpha-synuclein misfolds and forms intracellular inclusions known as Lewy bodies (LBs). Accumulating evidence suggests that these events lead to the disruption of intracellular trafficking which will, undoubtedly, lead to defects in synaptic transmission. Dysfunction in the basal ganglia circuitry is strongly associated with PD, with loss of dopaminergic neurons in the substantia nigra. Here, we present an overview of how misfolding and aggregation of alpha-­synuclein might be related to synaptic dysfunction in PD. A deeper understanding of the molecular basis of PD will enable us to devise novel strategies for therapeutic intervention which may be applied to several neurodegenerative disorders that seem to have similar roots.

Keywords

Dopamine Dementia Proline Lysine Oligomer 

Notes

Acknowledgements

TFO is supported by the Michael J. Fox Foundation, Calouste Gulbenkian Foundation, Fundação para a Ciência e Tecnologia and by a Marie Curie International Reintegration Grant from the European Commission. LVL is supported by Fundação para a Ciência e Tecnologia.

References

  1. Abeliovich, A., Schmitz, Y., Farinas, I., Choi-Lundberg, D., Ho, W.H., Castillo, P.E., Shinsky, N., Verdugo, J.M., Armanini, M., Ryan, A., Hynes, M., Phillips, H., Sulzer, D. and Rosenthal, A. (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system, Neuron, 25, 239–252.PubMedCrossRefGoogle Scholar
  2. Albin, R.L., Aldridge, J.W., Young, A.B. and Gilman, S. (1989) Feline subthalamic nucleus ­neurons contain glutamate-like but not GABA-like or glycine-like immunoreactivity, Brain Res, 491, 185–188.PubMedCrossRefGoogle Scholar
  3. Alexander, G.E., DeLong, M.R. and Strick, P.L. (1986) Parallel organization of functionally ­segregated circuits linking basal ganglia and cortex, Annu Rev Neurosci, 9, 357–381.PubMedCrossRefGoogle Scholar
  4. Auluck, P.K., Chan, H.Y., Trojanowski, J.Q., Lee, V.M. and Bonini, N.M. (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease, Science, 295, 865–868.PubMedCrossRefGoogle Scholar
  5. Bender, A., Koch, W., Elstner, M., Schombacher, Y., Bender, J., Moeschl, M., Gekeler, F., Muller-Myhsok, B., Gasser, T., Tatsch, K. and Klopstock, T. (2006) Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial, Neurology, 67, 1262–1264.PubMedCrossRefGoogle Scholar
  6. Caughey, B. and Lansbury, P.T. (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders, Annu Rev Neurosci, 26, 267–298.PubMedCrossRefGoogle Scholar
  7. Cepeda, C., Buchwald, N.A. and Levine, M.S. (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated, Proc Natl Acad Sci U S A, 90, 9576–9580.PubMedCrossRefGoogle Scholar
  8. Chandra, S., Gallardo, G., Fernandez-Chacon, R., Schluter, O.M. and Sudhof, T.C. (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration, Cell, 123, 383–396.PubMedCrossRefGoogle Scholar
  9. Chiti, F. and Dobson, C.M. (2006) Protein misfolding, functional amyloid, and human disease, Annu Rev Biochem, 75, 333–366.PubMedCrossRefGoogle Scholar
  10. Chua, C.E. and Tang, B.L. (2006) alpha-synuclein and Parkinson’s disease: the first roadblock, J Cell Mol Med, 10, 837–846.PubMedCrossRefGoogle Scholar
  11. Cookson, M.R. (2006) Hero versus antihero: the multiple roles of alpha-synuclein in neurodegeneration, Exp Neurol, 199, 238–242.PubMedCrossRefGoogle Scholar
  12. Cookson, M.R. and van der Brug, M. (2007) Cell systems and the toxic mechanism(s) of alpha-synuclein, Exp Neurol, 209, 5–11.PubMedCrossRefGoogle Scholar
  13. Cooper, A.A., Gitler, A.D., Cashikar, A., Haynes, C.M., Hill, K.J., Bhullar, B., Liu, K., Xu, K., Strathearn, K.E., Liu, F., Cao, S., Caldwell, K.A., Caldwell, G.A., Marsischky, G., Kolodner, R.D., Labaer, J., Rochet, J.C., Bonini, N.M. and Lindquist, S. (2006) {alpha}-Synuclein blocks ER-golgi traffic and Rab1 rescues neuron loss in Parkinson’s models, Science, 313, 3234–328.CrossRefGoogle Scholar
  14. Dawson, T.M. and Dawson, V.L. (2003) Molecular pathways of neurodegeneration in Parkinson’s disease, Science, 302, 819–822.PubMedCrossRefGoogle Scholar
  15. DeLong, M.R. (1990) Primate models of movement disorders of basal ganglia origin, Trends Neurosci, 13, 281–285.PubMedCrossRefGoogle Scholar
  16. DeLong, M.R. and Wichmann, T. (2007) Circuits and circuit disorders of the basal ganglia, Arch Neurol, 64, 20–24.PubMedCrossRefGoogle Scholar
  17. Ding, T.T., Lee, S.J., Rochet, J.C. and Lansbury, P.T., Jr. (2002) Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes, Biochemistry, 41, 10209–10217.PubMedCrossRefGoogle Scholar
  18. Dobson, C.M. (2001) The structural basis of protein folding and its links with human disease, Philos Trans R Soc Lond B Biol Sci, 356, 133–145.PubMedCrossRefGoogle Scholar
  19. Dobson, C.M. (2003) Protein folding and misfolding, Nature, 426, 884–890.PubMedCrossRefGoogle Scholar
  20. Feany, M.B. and Bender, W.W. (2000) A Drosophila model of Parkinson’s disease, Nature, 404, 394–398.PubMedCrossRefGoogle Scholar
  21. Forman, M.S., Lee, V.M. and Trojanowski, J.Q. (2005) Nosology of Parkinson’s disease: looking for the way out of a quagmire, Neuron, 47, 479–482.PubMedCrossRefGoogle Scholar
  22. Forman, M.S., Trojanowski, J.Q. and Lee, V.M. (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs, Nat Med, 10, 1055–1063.PubMedCrossRefGoogle Scholar
  23. Forno, L.S. (1996) Neuropathology of Parkinson’s disease, J Neuropathol Exp Neurol, 55, 259–272.PubMedCrossRefGoogle Scholar
  24. Galvan, A. and Wichmann, T. (2008) Pathophysiology of parkinsonism, Clin Neurophysiol, 119, 1459–1474.PubMedCrossRefGoogle Scholar
  25. Gasser, T. (2001) Genetics of Parkinson’s disease, J Neurol, 248, 833–840.PubMedCrossRefGoogle Scholar
  26. Gasser, T. (2007) Update on the genetics of Parkinson’s disease, Mov Disord, 22 Suppl 17, S343–S350.PubMedCrossRefGoogle Scholar
  27. Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J., Jr. and Sibley, D.R. (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons, Science, 250, 1429–1432.PubMedCrossRefGoogle Scholar
  28. Gitler, A.D., Bevis, B.J., Shorter, J., Strathearn, K.E., Hamamichi, S., Su, L.J., Caldwell, K.A., Caldwell, G.A., Rochet, J.C., McCaffery, J.M., Barlowe, C. and Lindquist, S. (2008) The Parkinson’s disease protein alpha-synuclein disrupts cellular Rab homeostasis, Proc Natl Acad Sci U S A, 105, 145–150.PubMedCrossRefGoogle Scholar
  29. Gitler, A.D. and Shorter, J. (2007) Prime time for alpha-synuclein, J Neurosci, 27, 2433–2434.PubMedCrossRefGoogle Scholar
  30. Goedert, M. (2001) Alpha-synuclein and neurodegenerative diseases, Nat Rev Neurosci, 2, 492–501.PubMedCrossRefGoogle Scholar
  31. Goetz, C.G., Poewe, W., Rascol, O. and Sampaio, C. (2005) Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001 to 2004, Mov Disord, 20, 523–539.PubMedCrossRefGoogle Scholar
  32. Hardy, J. and Selkoe, D.J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science, 297, 353–356.PubMedCrossRefGoogle Scholar
  33. Irizarry, M.C., Growdon, W., Gomez-Isla, T., Newell, K., George, J.M., Clayton, D.F. and Hyman, B.T. (1998) Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity, J Neuropathol Exp Neurol, 57, 334–337.PubMedCrossRefGoogle Scholar
  34. Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., de Silva, H.A., Kittel, A. and Saitoh, T. (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system, Neuron, 14, 467–475.PubMedCrossRefGoogle Scholar
  35. Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J.T., Schols, L. and Riess, O. (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease, Nat Genet, 18, 106–108.PubMedCrossRefGoogle Scholar
  36. Lakso, M., Vartiainen, S., Moilanen, A.M., Sirvio, J., Thomas, J.H., Nass, R., Blakely, R.D. and Wong, G. (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein, J Neurochem, 86, 165–172.PubMedCrossRefGoogle Scholar
  37. Lo Bianco, C., Ridet, J.L., Schneider, B.L., Deglon, N. and Aebischer, P. (2002) alpha -Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease, Proc Natl Acad Sci U S A, 99, 10813–10818.PubMedCrossRefGoogle Scholar
  38. Lucking, C.B. and Brice, A. (2000) Alpha-synuclein and Parkinson’s disease, Cell Mol Life Sci, 57, 1894–1908.PubMedCrossRefGoogle Scholar
  39. Lynch, T., Farrer, M., Hutton, M. and Hardy, J. (1997) Genetics of Parkinson’s disease, Science, 278, 1212–1213.PubMedCrossRefGoogle Scholar
  40. Maroteaux, L., Campanelli, J.T. and Scheller, R.H. (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal, J Neurosci, 8, 2804–2815.PubMedGoogle Scholar
  41. Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., Sagara, Y., Sisk, A. and Mucke, L. (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders, Science, 287, 1265–1269.PubMedCrossRefGoogle Scholar
  42. Moore, D.J., West, A.B., Dawson, V.L. and Dawson, T.M. (2005) Molecular pathophysiology of Parkinson’s disease, Annu Rev Neurosci, 28, 57–87.PubMedCrossRefGoogle Scholar
  43. Muchowski, P.J. (2002) Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron, 35, 9–12.PubMedCrossRefGoogle Scholar
  44. Nussbaum, R.L. and Polymeropoulos, M.H. (1997) Genetics of Parkinson’s disease, Hum Mol Genet, 6, 1687–1691.PubMedCrossRefGoogle Scholar
  45. Obeso, J.A., Rodriguez-Oroz, M.C., Rodriguez, M., Lanciego, J.L., Artieda, J., Gonzalo, N. and Olanow, C.W. (2000) Pathophysiology of the basal ganglia in Parkinson’s disease, Trends Neurosci, 23, S8–19.PubMedCrossRefGoogle Scholar
  46. Outeiro, T.F. and Lindquist, S. (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology, Science, 302, 1772–1775.PubMedCrossRefGoogle Scholar
  47. Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E.S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W.G., Lazzarini, A.M., Duvoisin, R.C., Di Iorio, G., Golbe, L.I. and Nussbaum, R.L. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease, Science, 276, 2045–2047.PubMedCrossRefGoogle Scholar
  48. Ross, C.A. and Poirier, M.A. (2004) Protein aggregation and neurodegenerative disease, Nat Med, 10 Suppl, S10–S17.PubMedCrossRefGoogle Scholar
  49. Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M.R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J. and Gwinn-Hardy, K. (2003) alpha-Synuclein locus triplication causes Parkinson’s disease, Science, 302, 841.PubMedCrossRefGoogle Scholar
  50. Soto, C., Estrada, L. and Castilla, J. (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates, Trends Biochem Sci, 31, 150–155.PubMedCrossRefGoogle Scholar
  51. Spillantini, M.G. and Goedert, M. (2000) The alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy, Ann N Y Acad Sci, 920, 16–27.PubMedCrossRefGoogle Scholar
  52. Spillantini, M.G., Schmidt, M.L., Lee, V.M., Trojanowski, J.Q., Jakes, R. and Goedert, M. (1997) Alpha-synuclein in Lewy bodies, Nature, 388, 839–840.PubMedCrossRefGoogle Scholar
  53. Thomas, P.J., Qu, B.H. and Pedersen, P.L. (1995) Defective protein folding as a basis of human disease, Trends Biochem Sci, 20, 456–459.PubMedCrossRefGoogle Scholar
  54. Vila, M. and Przedborski, S. (2004) Genetic clues to the pathogenesis of Parkinson’s disease, Nat Med, 10 Suppl, S58–S62.PubMedCrossRefGoogle Scholar
  55. Yavich, L., Oksman, M., Tanila, H., Kerokoski, P., Hiltunen, M., van Groen, T., Puolivali, J., Mannisto, P.T., Garcia-Horsman, A., MacDonald, E., Beyreuther, K., Hartmann, T. and Jakala, P. (2005) Locomotor activity and evoked dopamine release are reduced in mice overexpressing A30P-mutated human alpha-synuclein, Neurobiol Dis, 20, 303–313.PubMedCrossRefGoogle Scholar
  56. Yavich, L., Tanila, H., Vepsalainen, S. and Jakala, P. (2004) Role of alpha-synuclein in presynaptic dopamine recruitment, J Neurosci, 24, 11165–11170.PubMedCrossRefGoogle Scholar
  57. Zarranz, J.J., Alegre, J., Gomez-Esteban, J.C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares, B., Llorens, V., Tortosa, E.G., Del Ser, T., Munoz, D.G. and De Yebenes, J.G. (2004) The new mutation, E46K, of alpha-synuclein causes parkinson and Lewy body dementia, Ann Neurol, 55, 164–173.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Cell and Molecular Neuroscience UnitInstituto de Medicina MolecularLisboaPortugal

Personalised recommendations