Skip to main content

VAPB Aggregates and Neurodegeneration

  • Chapter
  • First Online:
Folding for the Synapse
  • 627 Accesses

Abstract

VAP proteins are a small family of type II membrane proteins enriched on the endoplasmic reticulum that have been conserved from yeast to mammals. The N-terminal half of the proteins consists of a domain highly homologous to a polypeptide found in the motile sperm of nematodes known as the major sperm protein (MSP). A mis-sense mutation in human vapB that changes a proline residue to a serine in the most highly conserved region of the MSP domain causes a rare form of motor neuron disease, amyotrophic lateral sclerosis type 8. Whether vapB P56S is a gain or loss of function mutation is not yet clear, however, it causes the protein to aggregate and may disrupt the normal function and regulation of the ER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, K., M. Aoki, et al. (1996). “Clinical characteristics of familial amyotrophic lateral sclerosis with Cu/Zn superoxide dismutase gene mutations.” J Neurol Sci 136(1–2): 108–16.

    Article  PubMed  CAS  Google Scholar 

  • Amarilio, R., S. Ramachandran, et al. (2005). “Differential regulation of endoplasmic reticulum structure through VAP-Nir protein interaction.” J Biol Chem 280(7): 5934–44.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, P. M. (2006). “Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene.” Curr Neurol Neurosci Rep 6(1): 37–46.

    Article  PubMed  CAS  Google Scholar 

  • Arrasate, M., S. Mitra, et al. (2004). “Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death.” Nature 431(7010): 805–10.

    Article  PubMed  CAS  Google Scholar 

  • Atkin, J. D., M. A. Farg, et al. (2006). “Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein disulfide isomerase with superoxide dismutase 1.” J Biol Chem 281: 30152–65.

    Article  PubMed  CAS  Google Scholar 

  • Bernales, S., F. R. Papa, et al. (2006). “Intracellular signaling by the unfolded protein response.” Annu Rev Cell Dev Biol 22(1): 487–508.

    Article  PubMed  CAS  Google Scholar 

  • Brickner, J. H. and P. Walter (2004). “Gene recruitment of the activated INO1 locus to the nuclear membrane.” PLoS Biol 2(11): e342.

    Article  PubMed  Google Scholar 

  • Chai, A., J. Withers, et al. (2008). “hVAPB, the causative gene of a heterogeneous group of motor neuron diseases in humans, is functionally interchangeable with its Drosophila homologue DVAP-33A at the neuromuscular junction.” Hum Mol Genet 17(2): 266–80.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H. J., S. A. Jesch, et al. (2004). “Role of the unfolded protein response pathway in secretory stress and regulation of INO1 expression in Saccharomyces cerevisiae.” Genetics 168(4): 1899–913.

    Article  PubMed  CAS  Google Scholar 

  • Dominic M., D. J. S. Walsh (2007). “Aβ Oligomers – a decade of discovery.” J Neurochem 101(5): 1172–84.

    Article  Google Scholar 

  • Edwards, D. R., M. M. Handsley, et al. (2008). “The ADAM metalloproteinases.” Mol Aspects Med 29(5): 258–89.

    Article  PubMed  CAS  Google Scholar 

  • Foster, L., M. Weir, et al. (2000). “A functional role for VAP-33 in insulin-stimulated GLUT4 traffic.” Traffic 1(6): 512–21.

    Article  PubMed  CAS  Google Scholar 

  • Gao, L., H. Aizaki, et al. (2004). “Interactions between viral nonstructural proteins and host protein hVAP-33.” J Virol 78(7): 3480–8.

    Article  PubMed  CAS  Google Scholar 

  • Gkogkas, C., S. Middleton, et al. (2008). “VAPB interacts with and modulates the activity of ATF6.” Hum Mol Genet 17: 1517–26.

    Article  PubMed  CAS  Google Scholar 

  • Haass, C. and D. J. Selkoe (2007). “Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide.” Nat Rev Mol Cell Biol 8(2): 101–12.

    Article  PubMed  CAS  Google Scholar 

  • Hamamoto, I., Y. Nishimura, et al. (2005). “Human VAP-B is involved in hepatitis C virus replication through interaction with NS5A and NS5B.” J Virol 79(21): 13473–82.

    Article  PubMed  CAS  Google Scholar 

  • Hand, C. and G. Rouleau (2002). “Familial amyotrophic lateral sclerosis.” Muscle Nerve 25(2): 135–59.

    Article  PubMed  CAS  Google Scholar 

  • Ito, K., T. Uchiyama, et al. (2002). “[Different clinical phenotypes of siblings with familial amyotrophic lateral sclerosis showing Cys146Arg point mutation of superoxide dismutase 1 gene].” Rinsho Shinkeigaku 42(2): 175–7.

    PubMed  Google Scholar 

  • Kaiser, S. E., J. H. Brickner, et al. (2005). “Structural basis of FFAT motif-mediated ER targeting.” Structure 13(7): 1035–45.

    Article  PubMed  CAS  Google Scholar 

  • Kanekura, K., I. Nishimoto, et al. (2006). “Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8).” J Biol Chem 281(40): 30223–33.

    Article  PubMed  CAS  Google Scholar 

  • Katayama, T., K. Imaizumi, et al. (2001). “Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer’s disease-linked Presenilin-1 mutations.” J Biol Chem 276(46): 43446–54.

    Article  PubMed  CAS  Google Scholar 

  • Kawano, M., K. Kumagai, et al. (2006). “Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT.” J Biol Chem 281(40): 30279–88.

    Article  PubMed  CAS  Google Scholar 

  • King, K. L., M. Stewart, et al. (1992). “Structure and macromolecular assembly of two isoforms of the major sperm protein (MSP) from the amoeboid sperm of the nematode, Ascaris suum.” J Cell Sci 101(4): 847–857.

    PubMed  CAS  Google Scholar 

  • Klein, R. (2009). “Bidirectional modulation of synaptic functions by Eph/ephrin signaling.” Nat Neurosci 12(1): 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Lapierre, L., P. Tuma, et al. (1999). “VAP-33 localizes to both an intracellular vesicle population and with.” J Cell Sci 112(Pt 21): 3723–32.

    PubMed  CAS  Google Scholar 

  • Loewen, C., A. Roy, et al. (2003). “A conserved ER targeting motif in three families of lipid binding proteins.” EMBO J 22(9): 2025–35.

    Article  PubMed  CAS  Google Scholar 

  • Loewen, C. J. and T. P. Levine (2005). “A highly conserved binding site in vesicle-associated membrane protein-associated protein (VAP) for the FFAT motif of lipid-binding proteins.” J Biol Chem 280(14): 14097–104.

    Article  PubMed  CAS  Google Scholar 

  • Marciniak, S. J. and D. Ron (2006). “Endoplasmic reticulum stress signaling in disease.” Physiol Rev 86(4): 1133–49.

    Article  PubMed  CAS  Google Scholar 

  • Marques, V. D., A. A. Barreira, et al. (2006). “Expanding the phenotypes of the Pro56Ser VAPB mutation: proximal SMA with dysautonomia.” Muscle Nerve 34(6): 731–9.

    Article  PubMed  CAS  Google Scholar 

  • Menzies, F., A. Grierson, et al. (2002). “Selective loss of neurofilament expression in Cu/Zn superoxide dismutase.” J Neurochem 82(5): 1118–28.

    Article  PubMed  CAS  Google Scholar 

  • Nikawa, J.-I., A. Murakami, et al. (1995). “Cloning and sequence of the SCS2 gene, which can suppress the defect of IN01 expression in an inositol auxotrophic mutant of Saccharomyces cerevisiae.” J Biochem 118(1): 39–45.

    PubMed  CAS  Google Scholar 

  • Nishimura, A., M. Mitne-Neto, et al. (2004a). “A novel locus for late onset amyotrophic lateral sclerosis/motor neurone.” J Med Genet 41(4): 315–20.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, A. L., M. Mitne-Neto, et al. (2004b). “A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis.” Am J Hum Genet 75(5): 822–31.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, Y., M. Hayashi, et al. (1999). “Molecular cloning and characterization of mammalian homologues of vesicle-associated membrane protein-associated (VAMP-associated) proteins.” Biochem Biophys Res Commun 254(1): 21–26.

    Article  PubMed  CAS  Google Scholar 

  • Pennetta, G., P. Hiesinger, et al. (2002). “Drosophila VAP-33A directs bouton formation at neuromuscular junctions in a dosage dependent manner.” Neuron 35(2): 291–306.

    Article  PubMed  CAS  Google Scholar 

  • Prosser, D. C., D. Tran, et al. (2008). “FFAT rescues VAPA-mediated inhibition of ER-to-Golgi transport and VAPB-mediated ER aggregation.” J Cell Sci 121(18): 3052–61.

    Article  PubMed  CAS  Google Scholar 

  • Ratnaparkhi, A., G. M. Lawless, et al. (2008). “A Drosophila model of ALS: human ALS-associated mutation in VAP33A suggests a dominant negative mechanism.” PLoS ONE 3(6): e2334.

    Article  PubMed  Google Scholar 

  • Rosen, D. R., T. Siddique, et al. (1993). “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.” Nature 362: 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Schroder, M. and R. J. Kaufman (2005). “The mammalian unfolded protein response.” Annu Rev Biochem 74: 739–89.

    Article  PubMed  Google Scholar 

  • Schymick, J. C., K. Talbot, et al. (2007). “Genetics of sporadic amyotrophic lateral sclerosis.” Hum Mol Genet 16(R2): R233–242.

    Article  PubMed  CAS  Google Scholar 

  • Sepsenwol, S., H. Ris, et al. (1989). “A unique cytoskeleton associated with crawling in the amoeboid sperm of the nematode, Ascaris suum.” J Cell Biol 108(1): 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Shen, J., X. Chen, et al. (2002). “ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals.” Dev Cell 3(1): 99–111.

    Article  PubMed  CAS  Google Scholar 

  • Simon, A. M., R. L. de Maturana, et al. (2009). “Early changes in hippocampal Eph receptors precede the onset of memory decline in mouse models of Alzheimer’s disease.” J Alzheimers Dis 17: 773–86.

    PubMed  CAS  Google Scholar 

  • Skehel, P., R. Fabian-Fine, et al. (2000). “Mouse VAP33 is associated with the endoplasmic reticulum and microtubules.” Proc Natl Acad Sci U S A 97(3): 1101–6.

    Article  PubMed  CAS  Google Scholar 

  • Skehel, P., K. Martin, et al. (1995). “A VAMP-binding protein from Aplysia required for neurotransmitter release.” Science 269(5230): 1580–3.

    Article  PubMed  CAS  Google Scholar 

  • Snapp, E. L., R. S. Hegde, et al. (2003). “Formation of stacked ER cisternae by low affinity protein interactions.” J Cell Biol 163(2): 257–69.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C. (2003). “Unfolding the role of protein misfolding in neurodegenerative diseases.” Nat Rev Neurosci 4(1): 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Soussan, L., D. Burakov, et al. (1999). “ERG30, a VAP-33-related protein, functions in protein transport mediated.” J Cell Biol 146(2): 301–11.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, K. (2002). “Motor neurone disease.” Postgrad Med J 78(923): 513–519.

    Article  PubMed  CAS  Google Scholar 

  • Tardif, K. D., K. Mori, et al. (2004). “Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response.” J Biol Chem 279(17): 17158–64.

    Article  PubMed  CAS  Google Scholar 

  • Teuling, E., S. Ahmed, et al. (2007). “Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates.” J Neurosci 27(36): 9801–15.

    Article  PubMed  CAS  Google Scholar 

  • Tomita, T., S. Tanaka, et al. (2006). “Presenilin-dependent intramembrane cleavage of ephrin-B1.” Mol Neurodegener 1: 2.

    Article  PubMed  Google Scholar 

  • Tompkins, M. M. and W. D. Hill (1997). “Contribution of somal Lewy bodies to neuronal death.” Brain Res 775(1–2): 24–9.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda, H., S. M. Han, et al. (2008). “The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors.” Cell 133(6): 963–977.

    Article  PubMed  CAS  Google Scholar 

  • Tu, H., L. Gao, et al. (1999). “Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like.” Virology 263(1): 30–41.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., J. Shen, et al. (2000). “Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response.” J Biol Chem 275(35): 27013–20.

    PubMed  CAS  Google Scholar 

  • Weir, M., A. Klip, et al. (1998). “Identification of a human homologue of the vesicle-associated membrane.” Biochem J 333(Pt 2): 247–51.

    PubMed  CAS  Google Scholar 

  • Welsem, M. v., J. Hogenhuis, et al. (2002). “The relationship between Bunina bodies, skein-like inclusions and neuronal.” Acta Neuropathol 103(6): 583–9.

    Article  PubMed  Google Scholar 

  • Williamson, T., L. Corson, et al. (2000). “Toxicity of ALS-linked SOD1 mutants.” Science 288(5465): 399.

    Article  PubMed  CAS  Google Scholar 

  • Wyles, J. P., C. R. McMaster, et al. (2002). “Vesicle-associated membrane protein-associated protein-A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum.” J. Biol. Chem. 277(33): 29908–18.

    Article  PubMed  CAS  Google Scholar 

  • Ye, J., R. B. Rawson, et al. (2000). “ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs.” Mol Cell 6(6): 1355–64.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, H., K. Haze, et al. (1998). “Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors.” J Biol Chem 273(50): 33741–9.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, K. and R. J. Kaufman (2005). “The unfolded protein response. A stress signaling pathway critical for health and disease.” Neurology 2006 66(2 Suppl 1): S102–9.

    Google Scholar 

  • Zheng, Y., B. Gao, et al. (2005). “Hepatitis C virus non-structural protein NS4B can modulate an unfolded protein response.” J Microbiol 43(6): 529–36.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Skehel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Skehel, P. (2011). VAPB Aggregates and Neurodegeneration. In: Wyttenbach, A., O'Connor, V. (eds) Folding for the Synapse. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7061-9_11

Download citation

Publish with us

Policies and ethics