Linear Evolution Equations

  • Michael E. Taylor
Part of the Applied Mathematical Sciences book series (AMS, volume 115)


Here we study linear PDE for which one poses an initial-value problem, also called a “Cauchy problem,” say at time t=t 0. The emphasis is on the wave and heat equations:
$$\frac{{\partial }^{2}u} {\partial {t}^{2}} -\Delta u = 0,\quad\frac{\partial u} {\partial t} -\Delta u = 0,$$
though some other sorts of PDE, such as symmetric hyperbolic systems, are also discussed.


Wave Equation Riemannian Manifold Heat Equation Dirichlet Boundary Condition Airy Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. AVG.
    V. Arnold, A. Varchenko, and S. Gusein-Zade, Singularities of Differentiable Mappings, I, Classification of Critical Points, Caustics, and Wave Fronts, Birkhauser, Boston, 1985; II, Monodromy and Asymptotics of Integrals, Nauka, Moscow, 1984.Google Scholar
  2. Az.
    R. Azencott, Behavior of diffusion semi-groups at infinity, Bull. Soc. Math. Fr. 102(1974), 193–240.Google Scholar
  3. BW.
    M. Born and E. Wolf, Principles of Optics, Pergammon, New York, 1980.Google Scholar
  4. CGT.
    J. Cheeger, M. Gromov, and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17(1982), 15–53.Google Scholar
  5. CLY.
    S. Cheng, P. Li, and S.-T. Yau, On the upper estimate of the heat kernel of a complete Riemannian manifold, Am. J. Math. 103(1981), 1021–1063.Google Scholar
  6. CFU.
    C. Chester, B. Friedman, and F. Ursell, An extension of the method of steepest descents, Proc. Camb. Phil. Soc. 53(1957), 599–611.Google Scholar
  7. CLx.
    R. Courant and P. Lax, The propagation of discontinuities in wave motion, Proc. NAS, USA 42(1956), 872–876.Google Scholar
  8. Dav.
    E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989.MATHCrossRefGoogle Scholar
  9. Dui.
    J. J. Duistermaat, Oscillatory integrals, Lagrange immersions, and unfolding of singularities, Comm. Pure Appl. Math. 27(1974), 207–281.Google Scholar
  10. DS.
    N. Dunford and J. Schwartz, Linear Operators, Wiley, New York, 1958.MATHGoogle Scholar
  11. Fedo.
    M. Fedoryuk, Asymptotic methods in analysis, Encycl. Math. Sci., Vol. 13, pp. 83–191. Springer, New York, 1989.Google Scholar
  12. Frl.
    F. G. Friedlander, Sound Pulses, Cambridge University Press, London, 1958.MATHGoogle Scholar
  13. Frd.
    A. Frievdman, Partial Differential Equations, Holt, Rinehart, and Winston, New York, 1969.Google Scholar
  14. GoG.
    M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer, New York, 1973.MATHCrossRefGoogle Scholar
  15. GS.
    V. Guillemin and S. Sternberg, Geometric Asymptotics, AMS, Providence, R. I., 1977.MATHGoogle Scholar
  16. Had.
    J. Hadamard, Le Problème de Cauchy et les Equations aux Derivées Partielles Linéaires Hyperboliques, Hermann, Paris, 1932.Google Scholar
  17. HP.
    E. Hille and R. Phillips, Functional Analysis and Semi-groups, Colloq. Publ. AMS, Providence, R. I., 1957.Google Scholar
  18. Ho.
    L. Hörmander, The Analysis of Linear Partial Differential Operators, Vols. 1,2, Springer, New York, 1983; Vols. 3,4, Springer, New York, 1985.Google Scholar
  19. J.
    F. John, Partial Differential Equations, Springer, New York, 1982.Google Scholar
  20. K.
    T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966.MATHGoogle Scholar
  21. Lad.
    O. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York, 1985.MATHGoogle Scholar
  22. Lx.
    P. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24(1957), 627–646.Google Scholar
  23. LP.
    P. Lax and R. Phillips, Scattering Theory, Academic, New York, 1967.MATHGoogle Scholar
  24. Leb.
    N. Lebedev, Special Functions and their Applications, Dover, New York, 1972.MATHGoogle Scholar
  25. Ler.
    J. Leray, Hyperbolic Differential Equations, Princeton University Press, Princeton, N. J., 1952.Google Scholar
  26. Lud.
    D. Ludwig, Uniform asymptotic expansions at a caustic, Comm. Pure Appl. Math. 19(1966), 215–250.Google Scholar
  27. MaT.
    A. Mazzucato and M. Taylor, Vanishing viscosity limits for a class of circular pipe flows, Comm. PDE, to appear.Google Scholar
  28. MeT.
    R. Melrose and M. Taylor, Boundary Problems for Wave Equations with Grazing and Gliding Rays, Preprint, 2010.Google Scholar
  29. Mil.
    J. C. P. Miller, The Airy Integral, British Assn. for Advancement of Science, Math. Tables, Cambridge University Press, Cambridge, 1946.Google Scholar
  30. Olv.
    F. W. J. Olver, Asymptotics and Special Functions, Academic, New York, 1974.Google Scholar
  31. Ph.
    R. Phillips, Dissipative operators and hyperbolic systems of partial differential equations, Trans. AMS 90(1959), 193–254.Google Scholar
  32. PW.
    M. Protter and H. Weinberger, Maximum Principles in Differential Equations, Springer, New York, 1984.MATHCrossRefGoogle Scholar
  33. RS.
    M. Reed and B. Simon, Methods of Mathematical Physics, Academic, New York, Vols. 1,2, 1975; Vols. 3,4, 1978.Google Scholar
  34. RN.
    F. Riesz and B. Sz. Nagy, Functional Analysis, Ungar, New York, 1955.Google Scholar
  35. Stk.
    I. Stakgold, Boundary Value Problems of Mathematical Physics, Macmillan, New York, 1968.MATHGoogle Scholar
  36. Str.
    R. Strichartz, Analysis of the Laplacian on a complete Riemannian manifold, J. Funct. Anal. 52(1983), 48–79.Google Scholar
  37. Tay.
    M. Taylor, Pseudodifferential Operators, Princeton University Press, Princeton, N. J., 1981.MATHGoogle Scholar
  38. Tr1.
    F. Treves, Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach, New York, 1967.Google Scholar
  39. Tr2.
    F. Treves, Basic Linear Partial Differential Equations, Academic, New York, 1975.MATHGoogle Scholar
  40. Yo.
    K. Yosida, Functional Analysis, Springer, New York, 1965.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations