Skip to main content

Dirac Operators and Index Theory

  • Chapter
  • First Online:
Partial Differential Equations II

Part of the book series: Applied Mathematical Sciences ((AMS,volume 116))

  • 7611 Accesses

Abstract

The physicist P. A. M. Dirac constructed first-order differential operators whose squares were Laplace operators, or more generally wave operators, for the purpose of extending the Schrodinger–Heisenberg quantum mechanics to the relativistic setting. Related operators have been perceived to have central importance in the interface between PDE and differential geometry, and we discuss some of this here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. AMS 2(1989), 455–490.

    Google Scholar 

  2. M. Atiyah, R. Bott, and V. Patodi, On the heat equation and the index theorem, Inventiones Math. 19(1973), 279–330.

    Google Scholar 

  3. M. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3(1964), 3–38.

    Google Scholar 

  4. M. Atiyah, N. Hitchen, and I. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Royal Soc. London A 362(1978), 425–461.

    Google Scholar 

  5. M. Atiyah and I. Singer, The index of elliptic operators I, Ann. Math. 87(1968), 484–530; III, Ann. Math. 87(1968), 546–664; IV, Ann. Math. 93(1971), 119–138; V, Ann. Math. 93(1971), 139–149.

    Google Scholar 

  6. P. Baum, R. Douglas, and M. Taylor, Cycles and relative cycles in analytic K-homology, J. Diff. Geom. 30(1989), 761–804.

    Google Scholar 

  7. F. Berezin, The Method of Second Quantization, Academic, New York, 1966.

    Google Scholar 

  8. M. Berger, P. Gauduchon, and E. Mazet, Le Spectre d’une Variété Riemannienne, LNM #194, Springer, New York, 1971.

    Book  MATH  Google Scholar 

  9. N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Springer, New York, 1992.

    Book  MATH  Google Scholar 

  10. N. Berline and M. Vergne, A computation of the equivariant index of the Dirac operator, Bull. Soc. Math. France 113(1985), 305–345.

    Google Scholar 

  11. N. Berline and M. Vergne, A proof of Bismut local index theorem for a family of Dirac operators, Topology 26(1987), 438–464.

    Google Scholar 

  12. A. Besse, Einstein Manifolds, Springer, New York, 1987.

    Book  MATH  Google Scholar 

  13. J. Bismut, The Atiyah–Singer theorems for classical elliptic operators, a probabilistic approach, J. Func. Anal. 57(1984), 56–99.

    Google Scholar 

  14. J. Bismut, The Atiyah–Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83(1986), 91–151.

    Google Scholar 

  15. J. Bismut and J. Cheeger, Families index for manifolds with boundary, superconnections, and cones, I, J. Func. Anal. 89(1990), 313–363; II, J. Func. Anal. 90(1990), 306–354.

    Google Scholar 

  16. B. Blackadar, K-theory for Operator Algebras, Springer, New York, 1986.

    Book  MATH  Google Scholar 

  17. R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer, New York, 1982.

    Book  MATH  Google Scholar 

  18. J. Cheeger, Analytic torsion and the heat equation, Ann. Math. 109(1979), 259–322.

    Google Scholar 

  19. S. S. Chern, A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds., Ann. Math. 45(1944), 747–752.

    Google Scholar 

  20. C. Chevalley, Theory of Lie Groups, Princeton University Press, Princeton, NJ, 1946.

    MATH  Google Scholar 

  21. A. Connes, Noncommutative Geometry, Academic, New York, 1994.

    MATH  Google Scholar 

  22. H. Cycon, R. Froese, W. Kirsch, and B. Simon, Schrödinger Operators, Springer, New York, 1987.

    MATH  Google Scholar 

  23. S. Donaldson, The Seiberg–Witten equations and 4-manifold topology, Bull. AMS 33(1996), 45–70.

    Google Scholar 

  24. H. Donnelly, Local index theorems for families, Mich. Math. J. 35(1988), 11–20.

    Google Scholar 

  25. T. Eguchi, P. Gilkey, and A. Hanson, Gravitation, Gauge Theories, and Differential Geometry, Physics Reports, Vol. 66, no. 6(1980).

    Google Scholar 

  26. B. Fedosov, Direct proof of the formula for the index of an elliptic system in Euclidean space, Funct. Anal. Appl. 4(1970), 339–341.

    Google Scholar 

  27. D. Freed and K. Uhlenbeck, Instantons and Four-Manifolds, Springer, New York, 1984.

    Book  MATH  Google Scholar 

  28. E. Getzler, Pseudodifferential operators on supermanifolds and the Atiyah–Singer index theorem, Comm. Math. Phys. 92(1983), 163–178.

    Google Scholar 

  29. E. Getzler, A short proof of the local Atiyah–Singer index theorem, Topology 25(1986), 111–117.

    Google Scholar 

  30. P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, CRC, Boca Raton, FL, 1995.

    MATH  Google Scholar 

  31. R. Gunning, Lectures on Riemann Surfaces, Princeton University Press, Princeton, NJ, 1967.

    MATH  Google Scholar 

  32. R. Hartshorne, Algebraic Geometry, Springer, New York, 1977.

    Book  MATH  Google Scholar 

  33. N. Hicks, Notes on Differential Geometry, Van Nostrand, New York, 1965.

    MATH  Google Scholar 

  34. L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32(1979), 359–443.

    Google Scholar 

  35. F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, New York, 1966.

    Book  MATH  Google Scholar 

  36. S. Kobayashi and N. Nomizu, Foundations of Differential Geometry, Interscience, New York, Vol.1, 1963; Vol. 2, 1969.

    Google Scholar 

  37. K. Kodaira, The theorem of Riemann–Roch on compact analytic surfaces, Am. J. Math. 73(1951), 813–875.

    Google Scholar 

  38. K. Kodaira, The theorem of Riemann–Roch for adjoint systems on 3-dimensional algebraic varieties, Ann. Math. 56(1952), 298–342.

    Google Scholar 

  39. T. Kotake, An analytical proof of the classical Riemann–Roch theorem, Proc. Symp. Pure Math. 16(1970), 137–146.

    Google Scholar 

  40. H. B. Lawson and M. L. Michelson, Spin Geometry, Princeton University Press, Princeton, NJ, 1989.

    Google Scholar 

  41. A. Lichnerowicz, Spineurs harmoniques, C.R. Acad. Sci. Paris, Ser. A 257(1963), 7–9.

    Google Scholar 

  42. H. McKean and I. Singer, Curvature and the eigenvalues of the Laplacian, J. Diff. Geom. 1(1967), 43–69.

    Google Scholar 

  43. R. Melrose, Index Theory on Manifolds with Corners, A. K. Peters, Boston, 1994.

    Google Scholar 

  44. J. Milnor, Morse Theory, Princeton University Press, Princeton, NJ, 1963.

    MATH  Google Scholar 

  45. J. Milnor and J. Stasheff, Characteristic Classes, Princeton University Press, Princeton, NJ, 1974.

    MATH  Google Scholar 

  46. J. Morgan, The Seiberg–Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Princeton University Press, Princeton, NJ, 1996.

    MATH  Google Scholar 

  47. R. Palais, ed., Seminar on the Atiyah–Singer Index Theorem, Princeton University Press, Princeton, NJ, 1963.

    MATH  Google Scholar 

  48. V. Patodi, Curvature and the eigenforms of the Laplace operator, J. Diff. Geom. 5(1971), 233–249.

    Google Scholar 

  49. V. Patodi, An analytic proof of the Riemann–Roch–Hirzebruch theorem for Kahler manifolds, J. Diff. Geom. 5(1971), 251–283.

    Google Scholar 

  50. W. Poor, Differential Geometric Structures, McGraw-Hill, New York, 1981.

    MATH  Google Scholar 

  51. J. Roe, Elliptic Operators, Topology, and Asymptotic Methods, Longman, New York, 1988.

    MATH  Google Scholar 

  52. A. Rogers, A superspace path integral proof of the Gauss–Bonnet–Chern theorem, J. Geom. Phys. 4(1987), 417–437.

    Google Scholar 

  53. E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  54. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1–5, Publish or Perish, Berkeley, 1979.

    Google Scholar 

  55. S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, 1964.

    MATH  Google Scholar 

  56. A. Tromba, A classical variational approach to Teichmuller theory, pp.155–185 in LNM #1365, Springer, New York, 1989.

    Google Scholar 

  57. E. Witten, Constraints on supersymmetry breaking, Nucl. Phys. B202(1982), 253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Taylor .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Taylor, M.E. (2011). Dirac Operators and Index Theory. In: Partial Differential Equations II. Applied Mathematical Sciences, vol 116. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7052-7_4

Download citation

Publish with us

Policies and ethics