Nonlinear Hyperbolic Equations

Chapter
Part of the Applied Mathematical Sciences book series (AMS, volume 117)

Abstract

Here we study nonlinear hyperbolic equations, with emphasis on quasi-linear systems arising from continuum mechanics, describing such physical phenomena as vibrating strings and membranes and the motion of a compressible fluid, such as air.

Keywords

Entropy Vortex Manifold Soliton Vorticity 

References

  1. Al.
    S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Birkhäuser, Boston, 1995.MATHCrossRefGoogle Scholar
  2. AHPR.
    A. Anile, J. Hunter, P. Pantano, and G. Russo, Ray Methods for Nonlinear Waves in Fluids and Plasmas, Longman, New York, 1993.MATHGoogle Scholar
  3. Ant.
    S. Antman, The equations for large vibrations of strings, Am. Math. Mon 87(1980), 359–370.Google Scholar
  4. Ba.
    J. Ball (ed.), Systems of Nonlinear Partial Differential Equations, Reidel, Boston, 1983.MATHGoogle Scholar
  5. BKM.
    T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the 3-d Euler equations, Comm. Math. Phys. 94(1984), 61–66.Google Scholar
  6. Bea.
    M. Beals, Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems, Birkhäuser, Boston, 1989.MATHCrossRefGoogle Scholar
  7. BB.
    M. Beals and M. Bezard, Low regularity solutions for field equations, Commun. Pure Appl. Math. 21(1996), 79–124.Google Scholar
  8. BMR.
    M. Beals, R. Melrose, and J. Rauch (eds.), Microlocal Analysis and Nonlinear Waves, IMA Vols. in Math. and its Appl., Vol. 30, Springer, New York, 1991.Google Scholar
  9. Bon.
    J.-M. Bony, Calcul symbolique et propagation des singularities pour les équations aux derivées nonlinéaires, Ann. Sci. Ecole Norm. Sup. 14(1981), 209–246.Google Scholar
  10. BW.
    P. Brenner and W. von Wahl, Global classical solutions of nonlinear wave equations, Math. Zeit. 176(1981), 87–121.Google Scholar
  11. BCG3.
    R. Bryant, S. Chern, R. Gardner, H. Goldschmidt, and P. Griffiths, Exterior Differential Systems, MSRI Publ. #18, Springer, New York, 1991.Google Scholar
  12. Cafl.
    R. Caflisch, A simplified version of the abstract Cauchy-Kowalevski theorem with weak singularity, Bull. AMS 23(1990), 495–500.Google Scholar
  13. CRS.
    C. Carasso, M. Rascle, and D. Serre, Etude d’un modèle hyperbolique en dynamique des cables, Math. Mod. Numer. Anal. 19(1985), 573–599.Google Scholar
  14. CIP.
    C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer, New York, 1994.MATHGoogle Scholar
  15. CBr.
    Y. Choquet-Bruhat, Theoreme d’existence pour certains systèmes d’équations aux derivées partielles non linéaires, Acta Math. 88(1952), 141–225.Google Scholar
  16. ChM.
    A. Chorin and J. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer, New York, 1979.MATHCrossRefGoogle Scholar
  17. Chr.
    D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, CPAM 39(1986), 267–282.Google Scholar
  18. CCS.
    K. Chueh, C. Conley, and J. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Math. J. 26(1977), 372–411.Google Scholar
  19. CS1.
    C. Conley and J. Smoller, Shock waves as limits of progressive wave solutions of higher order equations, CPAM 24(1971), 459–472.Google Scholar
  20. CS2.
    C. Conley and J. Smoller, On the structure of magnetohydrodynamic shock waves, J. Math. Pures et Appl. 54(1975), 429–444.Google Scholar
  21. CwS.
    E. Conway and J. Smoller, Global solutions of the Cauchy problem for quasilinear first order equations in several space variables, CPAM 19(1966), 95–105.MathSciNetMATHGoogle Scholar
  22. CF.
    R. Courant and K. Friedrichs, Supersonic Flow and Shock Waves, Wiley, New York, 1948.MATHGoogle Scholar
  23. Daf1.
    C. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method, Arch. Rat. Mech. Anal. 52(1973), 1–9.Google Scholar
  24. Daf2.
    C. Dafermos, Hyperbolic systems of conservation laws, pp. 25–70 in J. Ball (ed.), Systems of Nonlinear Partial Differential Equations, Reidel, Boston, 1983.Google Scholar
  25. DD.
    C. Dafermos and R. DiPerna, The Riemann problem for certain classes of hyperbolic conservation laws, J. Diff. Equ. 20(1976), 90–114.Google Scholar
  26. DH.
    C. Dafermos and W. Hrusa, Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics, Arch. Rat. Mech. Anal. 87(1985), 267–292.Google Scholar
  27. Dio.
    P. Dionne, Sur les problèmes de Cauchy bien posés, J. Anal. Math. 10(1962-63), 1–90.Google Scholar
  28. DiP1.
    R. DiPerna, Existence in the large for nonlinear hyperbolic conservation laws, Arch. Rat. Mech. Anal. 52(1973), 244–257.Google Scholar
  29. DiP2.
    R. DiPerna, Singularities of solutions of nonlinear hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal. 60(1975), 75–100.Google Scholar
  30. DiP3.
    R. DiPerna, Uniqueness of solutions of conservation laws, Indiana Math. J. 28(1979), 244–257.Google Scholar
  31. DiP4.
    R. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal. 82(1983), 27–70.Google Scholar
  32. DiP5.
    R. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91(1983), 1–30.Google Scholar
  33. DiP6.
    R. DiPerna, Compensated compactness and general systems of conservation laws, Trans. AMS 292(1985), 383–420.Google Scholar
  34. Ev.
    L. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Reg. Conf. Ser. #74, AMS, Providence, R. I., 1990.Google Scholar
  35. FS.
    J. Fehribach and M. Shearer, Approximately periodic solutions of the elastic string equations, Appl. Anal. 32(1989), 1–14.Google Scholar
  36. Foy.
    R. Foy, Steady state solutions of hyperbolic systems of conservation laws with viscosity terms, CPAM 17(1964), 177–188.Google Scholar
  37. Frei.
    H. Freistühler, Dynamical stability and vanishing viscosity: a case study of a non-strictly hyperbolic system, CPAM 45(1992), 561–582.Google Scholar
  38. Fdm.
    A. Friedman, A new proof and generalizations of the Cauchy-Kowalevski theorem, Trans. AMS 98(1961), 1–20.Google Scholar
  39. FL1.
    K. Friedrichs and P. Lax, On symmetrizable differential operators, Proc. Symp. Pure Math. 10(1967) 128–137.Google Scholar
  40. FL2.
    K. Friedrichs and P. Lax, Systems of conservation laws with a convex extension, Proc. Natl. Acad. Sci. USA 68(1971), 1686–1688.Google Scholar
  41. Gb1.
    P. Garabedian, Partial Differential Equations, Wiley, New York, 1964.MATHGoogle Scholar
  42. Gb2.
    P. Garabedian, Stability of Cauchy’s problem in space for analytic systems of arbitrary type, J. Math. Mech. 9(1960), 905–914.Google Scholar
  43. Gel.
    I. Gel’fand, Some problems in the theory of quasilinear equations, Usp. Mat. Nauk 14(1959), 87–115; AMS Transl. 29(1963), 295–381.Google Scholar
  44. Gl1.
    J. Glimm, Solutions in the large for nonlinear systems of equations, CPAM 18(1965), 697–715.Google Scholar
  45. Gl2.
    J. Glimm, Nonlinear and stochastic phenomena: the grand challenge for partial differential equations, SIAM Rev. 33(1991), 626–643.Google Scholar
  46. GL.
    J. Glimm and P. Lax, Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws, Memoirs AMS #101, Providence, R. I., 1970.Google Scholar
  47. Gril.
    M. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Ann. Math. 132(1990), 485–509.Google Scholar
  48. Hof1.
    D. Hoff, Invariant regions for systems of conservation laws, TAMS 289(1985), 591–610.Google Scholar
  49. Hof2.
    D. Hoff, Global existence for 1D compressible, isentropic Navier-Stokes equations with large initial data, TAMS 303(1987), 169–181.Google Scholar
  50. Hop.
    E. Hopf, The partial differential equation u t + uu x = μu xx, CPAM 3(1950), 201–230.Google Scholar
  51. H.
    L. Hörmander, Non-linear Hyperbolic Differential Equations. Lecture Notes, Lund University, 1986-1987.Google Scholar
  52. HKM.
    T. Hughes, T. Kato, and J. Marsden, Well-posed quasi-linear second order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rat. Mech. Anal. 63(1976), 273–294.Google Scholar
  53. HM.
    T. Hughes and J. Marsden, A Short Course in Fluid Mechanics, Publish or Perish, Boston, 1976.MATHGoogle Scholar
  54. JMR.
    J. Joly, G. Metivier, and J. Rauch, Non linear oscillations beyond caustics, Prepublication 94-14, IRMAR, Rennes, France, 1994.Google Scholar
  55. JRS.
    D. Joseph, M. Renardy, and J. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids, Arch. Rat. Mech. Anal. 87(1985), 213–251.Google Scholar
  56. K.
    T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Springer LNM 448(1974), 25–70.Google Scholar
  57. KK1.
    B. Keyfitz and H. Kranzer, Existence and uniqueness of entropy solutions to the Riemann problem for hyperbolic systems of two nonlinear conservation laws, J. Diff. Equ. 27(1978), 444–476.Google Scholar
  58. KK2.
    B. Keyfitz and H. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Rat. Mech. Anal. 72(1980), 219–241.Google Scholar
  59. KK3.
    B. Keyfitz and H. Kranzer (eds.), Nonstrictly Hyperbolic Conservation Laws, Contemp. Math #60, AMS, Providence, R. I., 1987.Google Scholar
  60. KS.
    B. Keyfitz and M. Shearer (eds.), Nonlinear Evolution Equations that Change Type, IMA Vol. in Math. and its Appl., Springer, New York, 1990.MATHGoogle Scholar
  61. Kic.
    S. Kichenassamy, Nonlinear Wave Equations, Marcel Dekker, New York, 1995.Google Scholar
  62. Kl.
    S. Klainerman, Global existence for nonlinear wave equations, CPAM 33(1980), 43–101.Google Scholar
  63. Kot.
    D. Kotlow, Quasilinear parabolic equations and first order quasilinear conservation laws with bad Cauchy data, J. Math. Anal. Appl. 35(1971), 563–576.Google Scholar
  64. LL.
    L. Landau and E. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, Vol. 6, Pergammon, New York, 1959.Google Scholar
  65. L1.
    P. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, CPAM 7(1954), 159–193.Google Scholar
  66. L2.
    P. Lax, Hyperbolic systems of conservation laws II, CPAM 10(1957), 537–566.Google Scholar
  67. L3.
    P. Lax, The Theory of Hyperbolic Equations, Stanford Lecture Notes, 1963.Google Scholar
  68. L4.
    P. Lax, Shock waves and entropy, pp. 603–634 in E. Zarantonello (ed.), Contributions to Nonlinear Functional Analysis, Academic, New York, 1971.Google Scholar
  69. L5.
    P. Lax, The formation and decay of shock waves, Am. Math. Monthly 79(1972), 227–241.Google Scholar
  70. L6.
    P. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Reg. Conf. Ser. Appl. Math. #11, SIAM, 1973.Google Scholar
  71. Lind.
    W. Lindquist (ed.), Current Progress in Hyperbolic Systems: Riemann Problems and Computations, Contemp. Math., Vol. 100, AMS, Providence, R. I., 1989.Google Scholar
  72. Liu1.
    T.-P. Liu, The Riemann problem for general 2 ×2 conservation laws, Trans. AMS 199(1974), 89–112.Google Scholar
  73. Liu2.
    T.-P. Liu, The Riemann problem for general systems of conservation laws, J. Diff. Equ. 18(1975), 218–234.Google Scholar
  74. Liu3.
    T.-P. Liu, Uniqueness of weak solutions of the Cauchy problem for general 2 ×2 conservation laws, J. Diff. Equ. 20(1976), 369–388.Google Scholar
  75. Liu4.
    T.-P. Liu, Solutions in the large for the equations of non-isentropic gas dynamics, Indiana Math. J. 26(1977), 147–177.Google Scholar
  76. Liu5.
    T.-P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys. 57(1977), 135–148.Google Scholar
  77. Liu6.
    T.-P. Liu, Nonlinear Stability of Shock Waves for Viscous Conservation Laws, Memoirs AMS #328, Providence, R. I., 1985.Google Scholar
  78. LS.
    T.-P. Liu and J.Smoller, The vacuum state in isentropic gas dynamics, Adv. Appl. Math. 1(1980), 345–359.Google Scholar
  79. Mj.
    A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl. Math. Sci. #53, Springer, New York, 1984.Google Scholar
  80. Mj2.
    A. Majda, The Stability of Multi-dimensional Shock Fronts. Memoirs AMS, #275, Providence, R. I., 1983.Google Scholar
  81. Mj3.
    A. Majda, The Existence of Multi-dimensional Shock Fronts. Memoirs AMS, #281, Providence, R. I., 1983.Google Scholar
  82. Mj4.
    A. Majda, Mathematical fluid dynamics: the interaction of nonlinear analysis and modern applied mathematics, Proc. AMS Centennial Symp. (1988), 351–394.Google Scholar
  83. Mj5.
    A. Majda, The interaction of nonlinear analysis and modern applied mathematics, Proc. International Congress Math. Kyoto, Springer, New York, 1991.Google Scholar
  84. MjO.
    A. Majda and S. Osher, Numerical viscosity and the entropy condition, CPAM 32(1979), 797–838.Google Scholar
  85. MjR.
    A. Majda and R. Rosales, A theory for spontaneous Mach stem formation in reacting shock fronts. I, SIAM J. Appl. Math. 43(1983), 1310–1334; II, Stud. Appl. Math. 71(1984), 117–148.Google Scholar
  86. MjT.
    A. Majda and E. Thomann, Multi-dimensional shock fronts for second order wave equations, Comm. PDE 12(1988), 777–828.Google Scholar
  87. Men.
    R. Menikoff, Analogies between Riemann problems for 1-D fluid dynamics and 2-D steady supersonic flow, pp.225–240 in W. Lindquist (ed.), Current Progress in Hyperbolic Systems: Riemann Problems and Computations, Contemp. Math., Vol. 100, AMS, Providence, R. I., 1989.Google Scholar
  88. Met1.
    G. Metivier, Interaction de deux chocs pour un système de deux lois de conservation en dimension deux d’espace, TAMS 296(1986), 431–479.Google Scholar
  89. Met2.
    G. Metivier, Stability of multi-dimensional weak shocks, Comm. PDE 15(1990), 983–1028.Google Scholar
  90. Mora.
    C. Morawetz, An alternative proof of DiPerna’s theorem, CPAM 45(1991), 1081–1090.Google Scholar
  91. Nir.
    L. Nirenberg, An abstract form for the nonlinear Cauchy-Kowalevski theorem, J. Diff. Geom. 6(1972), 561–576.Google Scholar
  92. Nis.
    T. Nishida, Global solutions for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Jpn. Acad. 44(1968), 642–646.Google Scholar
  93. NS.
    T. Nishida and J. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, CPAM 26(1973), 183–200.Google Scholar
  94. OT.
    H. Ockendon and A. Tayler, Inviscid Fluid Flows, Appl. Math. Sci. #43, Springer, New York, 1983.Google Scholar
  95. Ol1.
    O. Oleinik, Discontinuous solutions of non-linear differential equations, Uspekhi Mat. Nauk. 12(1957), 3–73. AMS Transl. 26, 95–172.Google Scholar
  96. Ol2.
    O. Oleinik, On the uniqueness of the generalized solution of the Cauchy problem for a nonlinear system of equations occurring in mechanics, Uspekhi Mat. Nauk. 12(1957), 169–176.Google Scholar
  97. Ovs.
    L. Ovsjannikov, A nonlinear Cauchy problem in a scale of Banach spaces, Sov. Math. Dokl. 12(1971), 1497–1502.Google Scholar
  98. PS.
    R. Pego and D. Serre, Instabilities in Glimm’s scheme for two systems of mixed type, SIAM J. Numer. Anal. 25(1988), 965–989.Google Scholar
  99. Ra.
    J. Rauch, The u 5-Klein-Gordon equation, Pitman Res. Notes in Math. #53, pp. 335–364.Google Scholar
  100. RR.
    J. Rauch and M. Reed, Propagation of singularities for semilinear hyperbolic equations in one space variable, Ann. Math. 111(1980), 531–552.Google Scholar
  101. Re.
    M. Reed, Abstract Non-Linear Wave Equations, LNM #507, Springer, New York, 1976.Google Scholar
  102. RL.
    P. Resibois and M. DeLeener, Classical Kinetic Theory of Fluids, Wiley, New York, 1977.Google Scholar
  103. Rub.
    B. Rubino, On the vanishing viscosity approximation to the Cauchy problem for a 2 × 2 system of conservation laws, Ann. Inst. H. Poincaré (Analyse non linéaire) 10(1993), 627–656.Google Scholar
  104. SS1.
    D. Schaeffer and M. Shearer, The classification of 2 ×2 systems of non-strictly hyperbolic conservation laws with application to oil recovery, CPAM 40(1987), 141–178.Google Scholar
  105. SS2.
    D. Schaeffer and M. Shearer, Riemann problems for nonstrictly hyperbolic 2 ×2 systems of conservation laws, TAMS 304(1987), 267–306.Google Scholar
  106. Seg.
    I. Segal, The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. France 91(1963), 129–135.Google Scholar
  107. Se.
    D. Serre, La compacité par compensation pour les systèmes hyperboliques nonlinéaires de deux equations a une dimension d’espace, J. Math. Pures et Appl. 65(1986), 423–468.Google Scholar
  108. Sha.
    J. Shatah, Weak solutions and development of singularities of the SU(2) σ-model, CPAM 49(1988), 459–469.Google Scholar
  109. Sh1.
    M. Shearer, The Riemann problem for a class of conservation laws of mixed type, J. Diff. Equ. 46(1982), 426–443.Google Scholar
  110. Sh2.
    M. Shearer, Elementary wave solutions of the equations describing the motion of an elastic string, SIAM J. Math. Anal. 16(1985), 447–459.Google Scholar
  111. Sl.
    M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. Rat. Math. Anal. 81(1983), 301–315.Google Scholar
  112. Smi.
    R. Smith, The Riemann problem in gas dynamics, TAMS 249(1979), 1–50.Google Scholar
  113. Smo.
    J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1983.MATHCrossRefGoogle Scholar
  114. SJ.
    J. Smoller and J. Johnson, Global solutions for an extended class of hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal. 32(1969), 169–189.Google Scholar
  115. St.
    W. Strauss, Nonlinear Wave Equations, CBMS Reg. Conf. Ser. #73, AMS, Providence, R. I., 1989.Google Scholar
  116. Str.
    M. Struwe, Semilinear wave equations, Bull. AMS 26(1992), 53–85.Google Scholar
  117. Tar1.
    L. Tartar, Compensated compactness and applications to PDE, pp. 136–212 in Research Notes in Mathematics, Nonlinear Analysis, and Mechanics, Heriot-Watt Symp. Vol. 4, ed. R.Knops, Pitman, Boston, 1979.Google Scholar
  118. Tar2.
    L. Tartar, The compensated compactness method applied to systems of conservation laws, pp. 263–285 in J. Ball (ed.), Systems of Nonlinear Partial Differential Equations, Reidel, Boston, 1983.Google Scholar
  119. Tay.
    M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991.MATHCrossRefGoogle Scholar
  120. Tem.
    B. Temple, Global solutions of the Cauchy problem for a class of 2 ×2 nonstrictly hyperbolic conservation laws, Adv. Appl. Math. 3(1982), 335–375.Google Scholar
  121. Vol.
    A. Volpert, The spaces BV and quasilinear equations, Math. USSR Sb. 2(1967), 257–267.Google Scholar
  122. Wen.
    B. Wendroff, The Riemann problem for materials with non-convex equations of state, I: Isentropic flow, J. Math. Anal. Appl. 38(1972), 454–466.Google Scholar
  123. Wey.
    H. Weyl, Shock waves in arbitrary fluids, CPAM 2(1949), 103–122.Google Scholar
  124. Zar.
    E. Zarantonello (ed.), Contributions to Nonlinear Functional Analysis, Academic, New York, 1971.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations