Skip to main content

Function Space and Operator Theory for Nonlinear Analysis

  • Chapter
  • First Online:
Partial Differential Equations III

Part of the book series: Applied Mathematical Sciences ((AMS,volume 117))

  • 7645 Accesses

Abstract

This chapter examines a number of analytical techniques, which will be applied to diverse nonlinear problems in the remaining chapters. For example, we study Sobolev spaces based on Lp, rather than just L2. Sections 1 and 2 discuss the definition of Sobolev spaces Hk, p, for \(k \in {\mathbb{Z}}^{+}\), and inclusions of the form Hk, pLq. Estimates based on such inclusions have refined forms, due to E. Gagliardo and L. Nirenberg. We discuss these in § 3, together with results of J. Moser on estimates on nonlinear functions of an element of a Sobolev space, and on commutators of differential operators and multiplication operators. In § 4 we establish some integral estimates of N. Trudinger, on functions in Sobolev spaces for which L-bounds just fail. In these sections we use such basic tools as Hölder’s inequality and integration by parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Adams, Sobolev Spaces, Academic, New York, 1975.

    MATH  Google Scholar 

  2. S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions, CPAM 12(1959), 623–727.

    Google Scholar 

  3. S. Ahlinac and P. Gerard, Operateurs Pseudo-differentiels et Théoreme de Nash-Moser, Editions du CNRS, Paris, 1991.

    Google Scholar 

  4. T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampere Equations, Springer, New York, 1982.

    Google Scholar 

  5. P. Auscher and M. Taylor, Paradifferential operators and commutator estimates, Comm. PDE 20(1995), 1743–1775.

    Google Scholar 

  6. J. Ball (ed.), Systems of Nonlinear Partial Differential Equations, Reidel, Boston, 1983.

    MATH  Google Scholar 

  7. J. Bergh and J. Löfstrom, Interpolation Spaces, an Introduction, Springer, New York, 1976.

    Book  Google Scholar 

  8. L. Bers, F. John, and M. Schechter, Partial Differential Equations, Wiley, New York, 1964.

    MATH  Google Scholar 

  9. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux derivées nonlinéaires, Ann. Sci. Ecole Norm. Sup. 14(1981), 209–246.

    Google Scholar 

  10. G. Bourdaud, Une algèbre maximale d’operateurs pseudodifferentiels, Comm. PDE 13(1988), 1059–1083.

    Google Scholar 

  11. H. Brezis and T. Gallouet, Nonlinear Schrodinger evolutions, J. Nonlin. Anal. 4(1980), 677–681.

    Google Scholar 

  12. H. Brezis and S. Wainger, A note on limiting cases of Sobolev imbeddings, Comm. PDE 5(1980), 773–789.

    Google Scholar 

  13. A. P. Calderon, Intermediate spaces and interpolation, the complex method, Studia Math. 24(1964), 113–190.

    Google Scholar 

  14. R. Coifman, P. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures et Appl. 72(1993), 247–286.

    Google Scholar 

  15. E. B. Davies, B. Simon, and M. Taylor, Lp spectral theory of Kleinian groups, J. Funct. Anal. 78(1988), 116–136.

    Google Scholar 

  16. R. DiPerna, Measure-valued solutions to conservation laws, Arch. Rat. Mech. Anal. 88(1985), 223–270.

    Google Scholar 

  17. L. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Reg. Conf. Ser. #74, Providence, R. I., 1990.

    Google Scholar 

  18. L. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rat. Mech. Anal. 116(1991), 101–113.

    Google Scholar 

  19. C. Fefferman and E. Stein, Hp spaces of several variables, Acta Math. 129(1972), 137–193.

    Google Scholar 

  20. G. Folland, Lectures on Partial Differential Equations, Tata Institute, Bombay, Springer, New York, 1983.

    Book  Google Scholar 

  21. M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Reg. Conf. Ser. Math. #79, AMS, Providence, R. I., 1991.

    Google Scholar 

  22. A. Friedman, Generalized Functions and Partial Differential Equations, Prentice-Hall, Englewood Cliffs, N. J., 1963.

    Book  Google Scholar 

  23. E. Gagliardo, Ulteriori proprietá di alcune classi di funzioni in più variabili, Ricerche Mat. 8(1959), 24–51.

    Google Scholar 

  24. L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 1, Springer, New York, 1983.

    MATH  Google Scholar 

  25. L. Hörmander, Pseudo-differential operators of type 1,1. Comm. PDE 13(1988), 1085–1111.

    Google Scholar 

  26. L. Hörmander, Non-linear Hyperbolic Differential Equations. Lecture Notes, Lund University, 1986–1987.

    Google Scholar 

  27. S. Jansen and P. Jones, Interpolation between Hp spaces: the complex method, J. Funct. Anal. 48 (1982), 58–80.

    Article  MathSciNet  Google Scholar 

  28. J. Jost, Nonlinear Methods in Riemannian and Kahlerian Geometry, Birkhäuser, Boston, 1988.

    Book  Google Scholar 

  29. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic, NY, 1980.

    MATH  Google Scholar 

  30. J. Marschall, Pseudo-differential operators with non regular symbols, Inaugural-Dissertation, Freien Universität Berlin, 1985.

    MATH  Google Scholar 

  31. J. Marschall, Pseudo-differential operators with coefficients in Sobolev spaces, Trans. AMS 307(1988), 335–361.

    Google Scholar 

  32. Y. Meyer, Regularité des solutions des équations aux derivées partielles non linéaires, Sem. Bourbaki 1979/80, 293–302, LNM #842, Springer, New York, 1980.

    Google Scholar 

  33. S. Mikhlin, Multidimensional Singular Integral Equations, Pergammon Press, New York, 1965.

    MATH  Google Scholar 

  34. C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, New York, 1966.

    MATH  Google Scholar 

  35. J. Moser, A rapidly convergent iteration method and nonlinear partial differential equations, I, Ann. Sc. Norm. Sup. Pisa 20(1966), 265–315.

    Google Scholar 

  36. J. Moser, A sharp form of an inequality of N. Trudinger, Indiana Math. J. 20(1971), 1077–1092.

    Google Scholar 

  37. F. Murat, Compacité par compensation, Ann. Sc. Norm. Sup. Pisa 5(1978), 485–507.

    Google Scholar 

  38. N. Muskheleshvili, Singular Integral Equations, P. Nordhoff, Groningen, 1953.

    Google Scholar 

  39. L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Sup. Pisa, 13(1959), 116–162.

    Google Scholar 

  40. M. Reed and B. Simon, Methods of Mathematical Physics, Academic, New York, Vols. 1, 2, 1975; Vols. 3, 4, 1978.

    Google Scholar 

  41. J. Robbins, R. Rogers, and B. Temple, On weak continuity and the Hodge decomposition, Trans. AMS 303(1987), 609–618.

    Google Scholar 

  42. L. Schwartz, Theorié des Distributions, Hermann, Paris, 1950.

    MATH  Google Scholar 

  43. S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Comm. PDE 19(1994), 277–319.

    Google Scholar 

  44. S. Sobolev, On a theorem of functional analysis, Mat. Sb. 4(1938), 471–497; AMS Transl. 34(1963), 39–68.

    Google Scholar 

  45. S. Sobolev, Partial Differential Equations of Mathematical Physics, Dover, New York, 1964.

    MATH  Google Scholar 

  46. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N. J., 1970.

    MATH  Google Scholar 

  47. E. Stein, Singular Integrals and Pseudo-differential Operators, Graduate Lecture Notes, Princeton Univ., 1972.

    Google Scholar 

  48. E. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, N. J., 1993.

    Google Scholar 

  49. E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Space, Princeton Univ. Press, Princeton, N. J., 1971.

    MATH  Google Scholar 

  50. R. Strichartz, A note on Trudinger’s extension of Sobolev’s inequalities, Indiana Math. J. 21(1972), 841–842.

    Google Scholar 

  51. L. Tartar, Compensated compactness and applications to partial differential equations, Heriot-Watt Symp. Vol. IV, Pitman, New York, 1979, pp. 136–212.

    Google Scholar 

  52. L. Tartar, The compensated compactness method applied to systems of conservation laws, pp. 263–285 in J. Ball (ed.), Systems of Nonlinear Partial Differential Equations, Reidel, Boston, 1983.

    Google Scholar 

  53. M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, Princeton, N. J., 1981.

    Book  Google Scholar 

  54. M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991.

    Book  Google Scholar 

  55. M. Taylor, Lp-estimates on functions of the Laplace operator, Duke Math. J. 58(1989), 773–793.

    Google Scholar 

  56. H. Triebel, Theory of Function Spaces, Birkhäuser, Boston, 1983.

    Book  Google Scholar 

  57. N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17(1967), 473–483.

    Google Scholar 

  58. L. Young, Lectures on the Calculus of Variations and Optimal Control Theory, W. B. Saunders, Philadelphia, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Taylor .

A Variations on complex interpolation

A Variations on complex interpolation

Let X and Y be Banach spaces, assumed to be linear subspaces of a Hausdorff locally convex space V (with continuous inclusions). We say (X, Y, V) is a compatible triple. For θ ∈ (0, 1), the classical complex interpolation space [X, Y]θ, introduced in Chap. 4 and much used in this chapter, is defined as follows. First, Z = X + Y gets a natural norm; for vX + Y,

$$\|{v\|}_{Z} =\inf \,\{\| {v{}_{1}\|}_{X} +\| {v{}_{2}\|}_{Y } : v = {v}_{1} + {v}_{2},\,{v}_{1} \in X,\,{v}_{2} \in Y \}.$$
(A.1)

One has X + YXYL, where L = { (v, − v) : xXY } is a closed linear subspace, so X + Y is a Banach space. Let \(\Omega =\{ z \in \mathbb{C} : 0 < \text{ Re}\,z < 1\}\), with closure \(\overline{\Omega }\). Define \({\mathcal{H}}_{\Omega }(X,Y)\) to be the space of functions \(f : \overline{\Omega } \rightarrow Z = X + Y\), continuous on \(\overline{\Omega }\), holomorphic on Ω (with values in X + Y), satisfying f: {Im z = 0} → X continuous, f: {Im z = 1} → Y continuous, and

$$\|u{(z)\|}_{Z} \leq C,\quad \|u{(iy)\|}_{X} \leq C,\quad \|u{(1 + iy)\|}_{Y } \leq C,$$
(A.2)

for some C < , independent of \(z \in \overline{\Omega }\) and \(y \in \mathbb{R}\). Then, for θ ∈ (0, 1),

$${[X,Y ]}_{\theta } =\{ u(\theta) : u \in {\mathcal{H}}_{\Omega }(X,Y)\}.$$
(A.3)

One has

$${[X,Y ]}_{\theta } \approx {\mathcal{H}}_{\Omega }(X,Y)/\{u \in {\mathcal{H}}_{\Omega }(X,Y) : u(\theta) = 0\},$$
(A.4)

giving [X, Y]θ the sructure of a Banach space. Here

$$\|{u\|}_{{\mathcal{H}}_{\Omega }(X,Y)} {=\sup\limits_{z\in \overline{\Omega }}}\,\|u{(z)\|}_{Z} {+\sup\limits_{y}}\,\|u{(iy)\|}_{X} {+\sup\limits_{y}}\,\|u{(1 + iy)\|}_{Y }.$$
(A.5)

If I is an interval in \(\mathbb{R}\), we say a family of Banach spaces Xs, sI (subspaces of V) forms a complex interpolation scale provided that for s, tI, θ ∈ (0, 1),

$${[{X}_{s},{X}_{t}]}_{\theta } = {X}_{(1-\theta)s+\theta t}.$$
(A.6)

Examples of such scales include Lp-Sobolev spaces \({X}_{s} = {H}^{s,p}(M),\ s \in \mathbb{R}\), provided p ∈ (1, ), as shown in § 6 of this chapter, the case p = 2 having been done in Chap. 4. It turns out that (A.6) fails for Zygmund spaces \({X}_{s} = {C}_{\ast}^{s}(M)\), but an analogous identity holds for some closely related interpolation functors, which we proceed to introduce.

If (X, Y, V) is a compatible triple, as defined in above, we define \({\mathcal{H}}_{\Omega }(X,Y,V)\) to be the space of functions \(u : \overline{\Omega } \rightarrow X + Y = Z\) such that

$$u : \Omega \rightarrow Z\ \text{ is holomorphic,}$$
(A.7)
$$\|u{(z)\|}_{Z} \leq C,\quad \|u{(iy)\|}_{X} \leq C,\quad \|u{(1 + iy)\|}_{Y } \leq C,$$
(A.8)

and

$$u : \overline{\Omega }\rightarrow V \ \text{ is continuous}.$$
(A.9)

For such u, we again use the norm (A.5). Note that the only difference with \({\mathcal{H}}_{\Omega }(X,Y)\) is that we are relaxing the continuity hypothesis for u on \(\overline{\Omega }\). \({\mathcal{H}}_{\Omega }(X,Y,V)\) is also a Banach space, and we have a natural isometric inclusion

$${\mathcal{H}}_{\Omega }(X,Y)\hookrightarrow {\mathcal{H}}_{\Omega }(X,Y,V).$$
(A.10)

Now for θ ∈ (0, 1) we set

$${[X,Y ]}_{\theta ;V } =\{ u(\theta) : u \in {\mathcal{H}}_{\Omega }(X,Y,V)\}.$$
(A.11)

Again this space gets a Banach space structure, via

$${[X,Y ]}_{\theta ;V } \approx {\mathcal{H}}_{\Omega }(X,Y,V)/\{u \in {\mathcal{H}}_{\Omega }(X,Y,V) : u(\theta) = 0\},$$
(A.12)

and there is a natural continuous injection

$${[X,Y ]}_{\theta }\hookrightarrow {[X,Y ]}_{\theta ;V }.$$
(A.13)

Sometimes this is an isomorphism. In fact, sometimes [X, Y]θ = [X, Y]θ; V for practically all reasonable choices of V. For example, one can verify this for \(X = {L}^{p}({\mathbb{R}}^{n}),\ Y = {H}^{s,p}({\mathbb{R}}^{n})\), the Lp-Sobolev space, with p ∈ (1, ), s ∈ (0, ). On the other hand, there are cases where equality in (A.10) does not hold, and where [X, Y]θ; V is of greater interest than [X, Y]θ.

We next define [X, Y]θb. In this case we assume X and Y are Banach spaces and YX (continuously). We take Ω as above, and set \(\widetilde{\Omega } =\{ z \in \mathbb{C} : 0 < \text{ Re}\,z \leq 1\}\), i.e., we throw in the right boundary but not the left boundary. We then define \({\mathcal{H}}_{\Omega }^{b}(X,Y)\) to be the space of functions \(u :\widetilde{ \Omega } \rightarrow X\) such that

$$\begin{array}{rcl} & u : \Omega \rightarrow X\ \text{ is holomorphic,} & \\ & \|u{(z)\|}_{X} \leq C,\quad \|u{(1 + iy)\|}_{Y } \leq C,& \\ & u :\widetilde{ \Omega }\rightarrow X\ \text{ is continuous}.\end{array}$$
(A.14)

Note that the essential difference between \({\mathcal{H}}_{\Omega }(X,Y)\) and the space we have just introduced is that we have completely dropped any continuity requirement at {{ Re} z = 0}. We also do not require continuity from {{ Re} z = 1} to Y. The space \({\mathcal{H}}_{\Omega }^{b}(X,Y)\) is a Banach space, with norm

$$\|{u\|}_{{\mathcal{H}}_{\Omega }^{b}(X,Y)} {=\sup\limits_{z\in \widetilde{\Omega }}}\,\|u{(z)\|}_{X} {+\sup\limits_{y}}\,\|u{(1 + iy)\|}_{Y }. $$
(A.15)

Now, for θ ∈ (0, 1), we set

$${[X,Y ]}_{\theta }^{b} =\{ u(\theta) : u \in {\mathcal{H}}_{ \Omega }^{b}(X,Y)\},$$
(A.16)

with the same sort of Banach space structure as arose in (A.4) and (A.12). We have continuous injections

$${[X,Y ]}_{\theta }\hookrightarrow {[X,Y ]}_{\theta ;X}\hookrightarrow {[X,Y ]}_{\theta }^{b}.$$
(A.17)

Our next task is to extend the standard result on operator interpolation from the setting of [X, Y]θ to that of [X, Y]θ; V and \({[X,Y ]}_{\theta }^{b}\).

Proposition A.1.

Let (Xj,Yj,Vj) be compatible triples, j = 1,2. Assume that T : V1 → V2 is continuous and that

$$T : {X}_{1}\rightarrow {X}_{2},\quad T : {Y }_{1}\rightarrow {Y }_{2},$$
(A.18)

continuously. (Continuity is automatic, by the closed graph theorem.) Then, for each θ ∈ (0,1),

$$T : {[{X}_{1},{Y }_{1}]}_{\theta ;{V }_{1}}\rightarrow {[{X}_{2},{Y }_{2}]}_{\theta ;{V }_{2}}.$$
(A.19)

Furthermore, if Yj ⊂ Xj (continuously) and T is a continuous linear map satisfying (A.18), then for each θ ∈ (0,1),

$$T : {[{X}_{1},{Y }_{1}]}_{\theta }^{b}\rightarrow {[{X}_{ 2},{Y }_{2}]}_{\theta }^{b}.$$
(A.20)

Proof.

Given f ∈ [X1, Y2]θ; V, pick \(u \in {\mathcal{H}}_{\Omega }({X}_{1},{Y }_{1},{V }_{1})\) such that f = u(θ). Then we have

$$\mathcal{T} : {\mathcal{H}}_{\Omega }({X}_{1},{Y }_{1},{V }_{1}) \rightarrow {\mathcal{H}}_{\Omega }({X}_{2},{Y }_{2},{V }_{2}),\quad (\mathcal{T} u)(z) = Tu(z),$$
(A.21)

and hence

$$Tf = (\mathcal{T} u)(\theta) \in {[{X}_{2},{Y }_{2}]}_{\theta ;{V }_{2}}. $$
(A.22)

This proves (A.19). The proof of (A.20) is similar.

Remark:

In case V = X + Y, with the weak topology, [X, Y]θ; V is what is denoted \({(X,Y)}_{\theta }^{w}\) in (JJ), and called the weak complex interpolation space.

Alternatives to (A.6) for a family Xs of Banach spaces include

$${[{X}_{s},{X}_{t}]}_{\theta ;V } = {X}_{(1-\theta)s+\theta t} $$
(A.23)

and

$${[{X}_{s},{X}_{t}]}_{\theta }^{b} = {X}_{ (1-\theta)s+\theta t}.$$
(A.24)

Here, as before, we take θ ∈ (0, 1). It is an exercise, using results of § 6, to show that both (A.23) and (A.24), as well as (A.6), hold when Xs = Hs, p(M), given p ∈ (1, ), where M can be \({\mathbb{R}}^{n}\) or a compact Riemannian manifold. We now discuss the situation for Zygmund spaces.

We start with Zygmund spaces on the torus \({\mathbb{T}}^{n}\). We recall from § 8 that the Zygmund space \({C}_{\ast}^{r}({\mathbb{T}}^{n})\) is defined for \(r \in \mathbb{R}\), as follows. Take \(\varphi \in {C}_{0}^{\infty }({\mathbb{R}}^{n})\), radial, satisfying φ(ξ) = 1 for |ξ| ≤ 1. Set φk(ξ) = φ(2kξ). Then set ψ0 = φ, ψk = φk − φk − 1 for \(k \in \mathbb{N}\), so {ψk : k ≥ 0} is a Littlewood–Paley partition of unity. We define \({C}_{\ast}^{r}({\mathbb{T}}^{n})\) to consist of \(f \in \mathcal{D}^\prime({\mathbb{T}}^{n})\) such that

$$\|{f\|}_{{C}_{\ast}^{r}} {=\sup\limits_{k\geq 0}}\,{2}^{kr}\|{\psi }_{ k}(D){f\|}_{{L}^{\infty }} < \infty. $$
(A.25)

With Λ = (I − Δ)1 ∕ 2 and \(s,t \in \mathbb{R}\), we have

$${\Lambda }^{s+it} : {C}_{ {\ast}}^{r}({\mathbb{T}}^{n})\rightarrow {C}_{ {\ast}}^{r-s}({\mathbb{T}}^{n}).$$
(A.26)

By material developed in § 8,

$$r \in {\mathbb{R}}^{+} \setminus {\mathbb{Z}}^{+}\Longrightarrow{C}_{ {\ast}}^{r}({\mathbb{T}}^{n}) = {C}^{r}({\mathbb{T}}^{n}),$$
(A.27)

where, if r = k + α with \(k \in {\mathbb{Z}}^{+}\) and 0 < α < 1, \({C}^{r}({\mathbb{T}}^{n})\) consists of functions whose derivatives of order ≤ k are Hölder continuous of exponent α.

We aim to show the following.

Proposition A.2.

If r < s < t and 0 < θ < 1, then

$${[{C}_{\ast}^{s}({\mathbb{T}}^{n}),{C}_{ {\ast}}^{t}({\mathbb{T}}^{n})]}_{ \theta ;{C}_{\ast}^{r}({\mathbb{T}}^{n})} = {C}_{\ast}^{(1-\theta)s+\theta t}({\mathbb{T}}^{n}),$$
(A.28)

and

$${[{C}_{\ast}^{s}({\mathbb{T}}^{n}),{C}_{ {\ast}}^{t}({\mathbb{T}}^{n})]}_{ \theta }^{b} = {C}_{ {\ast}}^{(1-\theta)s+\theta t}({\mathbb{T}}^{n}). $$
(A.29)

Proof.

First, suppose \(f \in {[{C}_{\ast}^{s},{C}_{\ast}^{t}]}_{\theta ;{C}_{\ast}^{r}}\), so f = u(θ) for some \(u \in {\mathcal{H}}_{\Omega }({C}_{\ast}^{s},{C}_{\ast}^{t},{C}_{\ast}^{r})\). Then consider

$$v(z) = {e}^{{z}^{2} }{\Lambda }^{(t-s)z}{\Lambda }^{s}u(z).$$
(A.30)

Bounds of the type (A.8) on u, together with (8.13) in the torus setting, yield

$$\|v{(iy)\|}_{{C}_{\ast}^{0}},\ \|v{(1 + iy)\|}_{{C}_{\ast}^{0}} \leq C,$$
(A.31)

with C independent of \(y \in \mathbb{R}\). In other words,

$$\|{\psi }_{k}(D)v{(z)\|}_{{L}^{\infty }} \leq C,\quad \text{ Re}\,z = 0,1,$$
(A.32)

with C independent of Im z and k. Also, for each \(k \in {\mathbb{Z}}^{+}\), \({\psi }_{k}(D)v : \overline{\Omega } \rightarrow {L}^{\infty }({\mathbb{T}}^{n})\) continuously, so the maximum principle implies

$$\|{\psi }_{k}(D){\Lambda }^{(t-s)\theta }{\Lambda }^{s}{f\|}_{{ L}^{\infty }} \leq C,$$
(A.33)

independent of \(k \in {\mathbb{Z}}^{+}\). This gives \({\Lambda }^{(1-\theta)s+\theta t}f \in {C}_{\ast}^{0}\), hence \(f \in {C}_{\ast}^{(1-\theta)s+\theta t}({\mathbb{T}}^{n})\).

Second, suppose \(f \in {C}_{\ast}^{(1-\theta)s+\theta t}({\mathbb{T}}^{n})\). Set

$$u(z) = {e}^{{z}^{2} }{\Lambda }^{(\theta -z)(t-s)}f.$$
(A.34)

Then \(u(\theta) = {e}^{{\theta }^{2} }f\). We claim that

$$u \in {\mathcal{H}}_{\Omega }({C}_{\ast}^{s},{C}_{ {\ast}}^{t},{C}_{ {\ast}}^{r}),$$
(A.35)

as long as r < s < t. Once we establish this, we will have the reverse containment in (A.28). Bounds of the form

$$\|u{(z)\|}_{{C}_{\ast}^{s}} \leq C,\quad \|u{(1 + iy)\|}_{{C}_{\ast}^{t}} \leq C$$
(A.36)

follow from (8.13), and are more than adequate versions of (A.8). It remains to establish that

$$u : \overline{\Omega }\rightarrow {C}_{\ast}^{r}({\mathbb{T}}^{n}),\ \text{ continuously.}$$
(A.37)

Indeed, we know \(u : \overline{\Omega } \rightarrow {C}_{\ast}^{s}({\mathbb{T}}^{n})\) is bounded. It is readily verified that

$$u : \overline{\Omega }\rightarrow \mathcal{D}^\prime({\mathbb{T}}^{n}),\ \text{ continuously,} $$
(A.38)

and that

$$r < s\Longrightarrow{C}_{\ast}^{s}({\mathbb{T}}^{n})\hookrightarrow {C}_{ {\ast}}^{r}({\mathbb{T}}^{n})\ \text{ is compact.}$$
(A.39)

The result (A.37) follows from these observations. Thus the proof of (A.28) is complete.

We turn to the proof of (A.29). If \(u \in {\mathcal{H}}_{\Omega }^{b}({C}_{\ast}^{s},{C}_{\ast}^{t})\), form v(z) as in (A.30), and for ε ∈ (0, 1] set

$${v}_{\epsilon }(z) = {e}^{-\epsilon \Lambda }v(z),\quad {v}_{ \epsilon } :\widetilde{ \Omega } \rightarrow {C}_{\ast}^{0}({\mathbb{T}}^{n})\ \text{ bounded and continuous}$$
(A.40)

(with bound that might depend on ε). We have

$${\psi }_{k}(D){v}_{\epsilon }(\epsilon + iy) = {e}^{{(\epsilon +iy)}^{2} }{\psi }_{k}(D){e}^{-\epsilon \Lambda }{\Lambda }^{(t-s)\epsilon }{\Lambda }^{i(t-s)y}{\Lambda }^{s}u(z).$$
(A.41)

Now \(\{{\Lambda }^{s}u(z) : z \in \widetilde{ \Omega }\}\) is bounded in \({C}_{\ast}^{0}({\mathbb{T}}^{n})\), and the operator norm of Λi(ts)y on \({C}_{\ast}^{0}({\mathbb{T}}^{n})\) is exponentially bounded in |y|. We have

$$\{{e}^{-\epsilon \Lambda }{\Lambda }^{\epsilon (t-s)} : 0 < \epsilon \leq 1\}\ \text{ bounded in }{OPS }_{ 1,0}^{0}({\mathbb{T}}^{n}), $$
(A.42)

hence bounded in operator norm on \({C}_{\ast}^{0}({\mathbb{T}}^{n})\). We deduce that

$$\|{\psi }_{k}(D){v}_{\epsilon }{(\epsilon + iy)\|}_{{L}^{\infty }} \leq C,$$
(A.43)

independent of \(y \in \mathbb{R}\) and ε ∈ (0, 1]. The hypothesis on u also implies

$$\|{\psi }_{k}(D){v}_{\epsilon }{(1 + iy)\|}_{{L}^{\infty }} \leq C,$$
(A.44)

independent of \(y \in \mathbb{R}\) and ε ∈ (0, 1]. Now the maximum principle applies. Given θ ∈ (0, 1),

$$\|{\psi }_{k}(D){e}^{-\epsilon \Lambda }v{(\theta)\|}_{{ L}^{\infty }} \leq C,$$
(A.45)

independent of ε. Taking ε ↘ 0 yields \(v(\theta) \in {C}_{\ast}^{0}({\mathbb{T}}^{n})\), hence \(u(\epsilon) \in {C}_{\ast}^{(1-\theta)s+\theta t}({\mathbb{T}}^{n})\).

This proves one inclusion in (A.29). The proof of the reverse inclusion is similar to that for (A.28). Given \(f \in {C}_{\ast}^{(1-\theta)s+\theta t}({\mathbb{T}}^{n})\), take u(z) as in (A.34). The claim is that \(u \in {\mathcal{H}}_{\Omega }^{b}({C}_{\ast}^{s},{C}_{\ast}^{t})\). We already have (A.36), and the only thing that remains is to check that

$$u :\widetilde{ \Omega }\rightarrow {C}_{\ast}^{s}({\mathbb{T}}^{n})\ \text{ continuously},$$
(A.46)

and this is straightforward. (What fails is continuity of \(u : \overline{\Omega } \rightarrow {C}_{\ast}^{s}({\mathbb{T}}^{n})\) at the left boundary of \(\overline{\Omega }\).)

Remark:

In contrast to (A.28)–(A.29), one has

$${[{C}_{\ast}^{s}({\mathbb{T}}^{n}),{C}_{ {\ast}}^{t}({\mathbb{T}}^{n})]}_{ \theta } = \text{ closure of }{C}^{\infty }({\mathbb{T}}^{n})\text{ in }{C}_{ {\ast}}^{(1-\theta)s+\theta t}({\mathbb{T}}^{n}).$$
(A.47)

Related results are given in [Tri].

If \({OPS}_{1,0}^{m}({\mathbb{T}}^{n})\) denotes the class of pseudodifferential operators on \({\mathbb{T}}^{n}\) with symbols in \({S}_{1,0}^{m}\), then for all \(s,m \in \mathbb{R}\),

$$P \in { OPS}_{1,0}^{m}({\mathbb{T}}^{n})\Longrightarrow P : {C}_{ {\ast}}^{s}({\mathbb{T}}^{n}) \rightarrow {C}_{ {\ast}}^{s-m}({\mathbb{T}}^{n}). $$
(A.48)

Cf. Proposition 8.6. Using coordinate invariance of \(OP{S}_{1,0}^{m}\) and of \({C}^{r}({\mathbb{T}}^{n})\) for \(r \in {\mathbb{R}}^{+} \setminus {\mathbb{Z}}^{+}\), we deduce invariance of \({C}_{\ast}^{s}({\mathbb{T}}^{n})\) under diffeomorphisms, for all \(s \in \mathbb{R}\).

From here, we can develop the spaces \({C}_{\ast}^{s}(M)\) on a compact Riemannian manifold M and the spaces \({C}_{\ast}^{s}(\overline{M})\) on a compact manifold with boundary. These developments are done in § 8.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Taylor, M.E. (2011). Function Space and Operator Theory for Nonlinear Analysis. In: Partial Differential Equations III. Applied Mathematical Sciences, vol 117. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7049-7_1

Download citation

Publish with us

Policies and ethics