Skip to main content

Molecular Modeling Study of Interaction of Anthracenedione Class of Drug Mitoxantrone and Its Analogs with DNA Tetrameric Sequences

  • Chapter
  • First Online:
Software Tools and Algorithms for Biological Systems

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 696))

Abstract

Numbers of drugs are being synthesized every year to meet the target of safe and disease-free society. Presently molecular modeling technique is used to unfold the mechanism of action of drugs alone or in conjunction with experimental methodologies. There are a number of drugs which are successfully developed using this methodology. Mitoxantrone (MTX) – 1, 4-dihydroxy-5, 8-bis {[2-(2-hydroxyethyl) amino] amino}-9, 10-anthracenedione is marketed under the name Novantrone, an anticancer drug used in chemotherapy. Its important analog ametantrone and various other analogs differ from one another in the position of side chain or functionalities on the chromophore eventually exhibit varied biological activities. DNA binding is an important phenomenon for anticancer activity of these drugs. In order to understand the interactions of the drug molecules with its receptor site, at atomic level, we have carried out computer simulations of drug and DNA alone and also in complex mode in water as a medium. All the simulations are being carried out using molecular operating environment (MOE) and X3DNA software tools on SUN SOLARIS platform. Interaction energy of all the drug molecules with DNA is determined and compared. Also the structural changes in DNA and drug before and after complex formation are studied extensively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frederick C. A., Williams L. D., Ughetto G., Van der Marel G. A., Van Boom J. H., Rich A. and Wang A. H. J. 1990. Structural comparison anticancer drug–DNA complex: Adriamycin and Daunomycin. Biochemistry 29: 2538–2549

    Article  PubMed  CAS  Google Scholar 

  2. Arcamone F. 1981. Doxorubicin: Anticancer Antibiotics. Academic Press, New York

    Google Scholar 

  3. Neidle S. and Waring M. J. 1983. Molecular Aspects of Anti-Cancer Drug Action. Macmillan, London

    Google Scholar 

  4. Searle M. S.1993. NMR studies of drug-DNA interactions. Prog. NMR Spectrosc. 25: 403–480

    Article  CAS  Google Scholar 

  5. Lown J. W. 1993. Discovery and development of anthracycline antibiotics. Chem. Soc. Rev. 22: 165–176

    Article  CAS  Google Scholar 

  6. Di Marco A., Arcamone F. and Zunino F. In “Antibiotics”. (Eds. Corcoran J.W. and Hahn I.E.) 1974. Springer-Verlag, Berlin. 101–108

    Google Scholar 

  7. Durr F. E., Wallace R. E. and Citarella R.V. 1983. Molecular and biochemical pharamacology of mitoxantrone. Cancer Treat. Rev. 10: 3–11

    Article  PubMed  Google Scholar 

  8. Islam S. A., Neidle S., Gandecha B. M., Partridge M., Patterson L. H. and Brown J. R. 1985. Comparative computer graphics and solution studies of the DNA interaction of substituted anthraquinones based on doxorubicin and mitoxantrone. J. Med. Chem. 28: 857–864

    Article  PubMed  CAS  Google Scholar 

  9. Lee B. S. and Dutta P. K. 1989. Optical spectroscopic studies of the antitumor drug 1,4-dihydroxy-5,8-bis [[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10-anthracenedione (mitoxantrone). J. Phys. Chem, 93: 5665–5672

    Article  CAS  Google Scholar 

  10. Kolodziejczyk P. and Suillerot A. G. 1987. Circular dichroism study of the interaction of mitoxantrone. Ametantrone and their Pd (II) complexes with deoxyribonucleic acid. Biochem. Biophys. Acta. 926: 249–257

    PubMed  CAS  Google Scholar 

  11. Chen K. X., Gresh N. and Pullman B. 1985. A theoretical investigation on the sequence selective binding of mitoxantrone to double–stranded tetranucleotides. J. Biomol. Struct. Dyn. 3: 445–466

    PubMed  CAS  Google Scholar 

  12. Gresh N. and Kahn P. H. 1990. Theoretical design of novel, 4 base pair selective derivatives of mitoxantrone. J. Biomol. Struct. Dyn. 7: 1141–1159

    PubMed  CAS  Google Scholar 

  13. Chen K. X., Gresh N. and Pullman B. 1986. A theoretical investigation on the sequence selective binding of mitoxantrone to double–stranded tetranucleotides. Nucleic Acids Res. 14: 3799–3812

    Article  PubMed  CAS  Google Scholar 

  14. Reidar L., Alison R. and Bengt N. 1992. The CD of ligand-DNA Systems. 2. Poly (dA-dT) B-DNA. Biopolymers 32: 1201–1214

    Article  Google Scholar 

  15. Reidar L., Alison R. and Bengt N. 1992. The CD of ligand-DNA Systems. 1. Poly (dG-dC) B-DNA. Biopolymers 31: 1709–1720

    Google Scholar 

  16. Lown J. W. and Hanstock C. C. 1985. High field 1H–NMR analysis of the 1:1 intercalation complex of the antitumor agent mitoxantrone and the DNA duplex [d(CpGpCpG)]. J. Biomol. Struc. Dyn. 2: 1097–1106

    CAS  Google Scholar 

  17. Kotovych G., Lown J. W. and Tong P. K. 1986. High field 1H and 31P NMR studies on the binding of the anticancer agent mitoxantrone to d–[CpGpApTpCpG)2. J. Biomol. Struct. Dyn. 4: 111–125

    PubMed  CAS  Google Scholar 

  18. Parker B. S, Cullinane C. and Phillips D. R. 1999. Formation of DNA adducts by formaldehyde–activated mitoxantrone. Nucleic Acids Res. 27: 2918–2923

    Article  PubMed  CAS  Google Scholar 

  19. Parker B. S., Cullinane C. and Phillips D. R. 2000. Formaldehyde activation of mitoxantrone yields CpG and CpA specific DNA adducts. Nucleic Acids Res. 28: 983–989

    Google Scholar 

  20. Panousis C. and Phillips D. R. 1994. DNA sequence specificity of Mitoxantrone. Nucleic Acids Res. 22: 1342–1345

    Article  PubMed  CAS  Google Scholar 

  21. Murdock K. C., Child R. G., Fabio P. F., Angier R. B., Wallace T. E., Durr F. E. and Citarella R. V. 1979. Antitumor agents.1, 4 Bis–[aminoalkyl) amino]–9, 10 anthracenedione. J. Med. Chem. 22: 1024–1030

    Article  PubMed  CAS  Google Scholar 

  22. Collier D. A. and Neidle S. 1988. Synthesis, molecular modeling, DNA binding and antitumor properties of some substituted Amidoanthraquinone. J. Med. Chem. 1: 847–857

    Article  Google Scholar 

  23. Smith I. E. 1983. Mitoxantrone (novantrone): a review of experimental and early clinical studies. Cancer Treat Rev. 10: 103–115

    Article  PubMed  CAS  Google Scholar 

  24. Faulds D., Balfour J. A., Chrisp P. and Langtry H. D. 1991. Mitoxantrone. A review of its pharmacodynamics and pharmacokinetic properties and therapeutic potential in the chemotherapy of cancer. Drugs 41: 440–449

    Google Scholar 

  25. Zee-Cheng R. K-Y and Cheng C. C. 1978. Antineoplastic agents. Structural-activity relationship study of bis(substituted amino-alkyloamino)anthraquinone. J. Med. Chem. 21: 291–294

    Article  Google Scholar 

  26. Parker B. S., Buley T., Evinson B., Cutts S. M., Neumann G. M., Iskander M. N. and Phillips D. R. 2004. Molecular understandings of mitoxantrone–DNA adduct formation: effect of cytosine methylation and flanking sequences. J. Biol. Chem. 279: 18814–18823

    Article  PubMed  CAS  Google Scholar 

  27. Tarasiuk J., Tkaczyk-Gobis K., Stefanska B., Dzieduszycka M., Priebe W., Martelli S. and Borowski E. 1998. The role of structural factors of anthraquinone compounds and their quionone modified analogues in NADH dehydrogenase catalysed oxygen radical formation. Anticancer Drug Des 13: 923–939

    PubMed  CAS  Google Scholar 

  28. Bailly C., Rouier S., Bernier J. L. and Waring M. J. 1986. DNA recognition by two mitoxantrone analogues: influence of the hydroxyl groups. FEBS Lett. 379: 269–272

    Article  Google Scholar 

  29. Zaggatto G., Moro S., Uriatte E., Ferrazzi E., Palu G. and Palumbo M. 1997. Amido analogues of mitoxantrone: physico chemical properties, molecular modeling cellular effects and antineoplastic potential. Anticancer Drug Des. 12: 99–112

    Google Scholar 

  30. Gatto B., Zagatto G., Sissi C., Cera C., Uriate E., Palu G., Caparnici G. and Palumbo M. 1996. Peptidyl anthraquinones as potential antineoplastic drugs: synthesis, DNA binding, redox cycling and biological activity. J. Med. Chem. 39: 3114–3122

    Article  PubMed  CAS  Google Scholar 

  31. Horn D. E., Michael S. L., Amy J. F. and Gray E. 2000. Synthesis of symmetrically substituted 1, 4–bis [(aminoalkyl) amino]–5, 8–Dimethylanthracene–9, 10–diones. ARKIVOC 1: 876–881

    CAS  Google Scholar 

  32. Morier-Teissier E., Boitte N., Helbecque N., Bernier J., Pommery N., Duvalet J., Fournier C., Catteau J. and Honichart J. 1993. Synthesis and antitumor properties of an anthraquionone bisubstituted by the copper chelating peptide Gly-Gly-L-His. J. Med. Chem. 36: 2084–2090

    Article  PubMed  CAS  Google Scholar 

  33. Zagotto G., Sissi C., Gatto B. and Palumbo M. 2004. Aminoacyl-analogues of mitoxantrone as novel DNA-damaging cytotoxic agents. ARKIVOC 204–218

    Google Scholar 

  34. Sakladanowski A. and Konopa J. 2000. Mitoxantrone and Ametantrone induce interstand cross-links in DNA of tumour cells. Br. J. Cancer 82: 1300–1304

    Article  Google Scholar 

  35. Konopa J. 2001. Antitumor acridines with diaminoalkylo pharmacophoric group. Pure Appl. Chem. 73: 1421–1428

    Article  CAS  Google Scholar 

  36. Krapcho A. P., Getahun Z., Avery K. L., Vargas K. J. and Hacker M. P. 1991. Synthesis and antitumor evaluations of symmetrically and unsymmetrically substituted 1,4-bis [(aminoalkyl)amino]anthracene-9,10-diones and 1,4-bis[(aminoalkyl)amino]-5,8-dihydroxyanthracene-9,10-dione. J. Med. Chem. 34: 2373–2380

    Article  PubMed  CAS  Google Scholar 

  37. Mazerski J., Martelli S. and Borowski E. 1998. The geometry of intercalation complex of antitumor mitoxantrone and ametantrone with DNA: molecular dynamics simulations. Acta Biochim. Pol. 45: 1–11

    PubMed  CAS  Google Scholar 

  38. Kaur M. 2006. Structural studies of anticancer drug mitoxantrone and its complex with DNA, Ph.D. Thesis

    Google Scholar 

  39. Rehn C. and Pindur U. 1996. Model building and molecular mechanics calculation of mitoxantrone–deoxytetranucleotide complexes: molecular foundation of DNA intercalation as cytostatic active principle. Monatsh. Chem. 127: 631–644

    Article  CAS  Google Scholar 

  40. Stewart L., Redinobo M. R., Qui X., Hol W. G. and Champoux J. J. 1998. A model for the mechanism of human topoisomerase 1. Science 279: 1534–1541

    Article  PubMed  CAS  Google Scholar 

  41. Barthwal R., Monica, Awasthi P., Srivastava N., Sharma U., Kaur M. and Govil G. 2003. Structure of DNA hexamer sequence d-CGATCG by two-dimensional nuclear magnetic resonance spectroscopy and restrained molecular dynamics. J. Biomol. Struct. Dyn. 21: 407–423

    PubMed  CAS  Google Scholar 

  42. Davies D. B., Eaton R. J., Baranovsky S. F. and Veselkov A. N. 2000. NMR investigation of the complexation of daunomycin with deoxytetranucleotides of different base sequence in aqueous solution. J. Biomol. Struct. Dyn. 17: 887–901

    PubMed  CAS  Google Scholar 

  43. Yang X., Robinson H., Gao Y.-G. and Wang A. H. J. 2000. Binding of a macrocyclic bisacridine and ametantrone to CGTACG involves similar unusual intercalation platforms. Biochemistry 39: 10950–10957

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research work reported in this manuscript is supported by the research grant under R&D, Ministry of Human Resources and Development, Government of India. The facilities provided by the NMR Centre, India Institute of Technology Roorkee (IIT-R), Uttaranchal, are highly acknowledged. (Tables 15 as a supplementary material.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamita Awasthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Awasthi, P., Dogra, S., Awasthi, L.K., Barthwal, R. (2011). Molecular Modeling Study of Interaction of Anthracenedione Class of Drug Mitoxantrone and Its Analogs with DNA Tetrameric Sequences. In: Arabnia, H., Tran, QN. (eds) Software Tools and Algorithms for Biological Systems. Advances in Experimental Medicine and Biology, vol 696. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7046-6_39

Download citation

Publish with us

Policies and ethics