Skip to main content

Telomeres And Telomerase in Adult Stem Cells and Pluripotent Embryonic Stem Cells

  • Chapter
The Cell Biology of Stem Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 695))

Abstract

Telomerase expression is silenced in most adult somatic tissues with the exception of adult stem cell (SC) compartments, which have the property of having the longest telomeres within a given tissue. Adult SC compartments suffer from telomere shortening associated with organismal aging until telomeres reach a critically short length, which is sufficient to impair SC mobilization and tissue regeneration. p53 is essential to prevent that adult SC carrying telomere damage contribute to tissue regeneration, indicating a novel role for p53 in SC behavior and therefore in the maintenance of tissue fitness and tumor protection. Reprogramming of adult differentiated cells to a more pluripotent state has been achieved by various means, including somatic cell nuclear transfer and, more recently, by over expression of specific transcription factors to generate the so-called induced pluripotent stem (iPS) cells. Recent work has demonstrated that telomeric chromatin is remodeled and telomeres are elongated by telomerase during nuclear reprogramming. These findings suggest that the structure of telomeric chromatin is dynamic and controlled by epigenetic programs associated with the differentiation potential of cells, which are reversed by reprogramming. This chapter will focus on the current knowledge of the role of telomeres and telomerase in adult SC, as well as during nuclear reprograming to generate pluripotent embryonic-like stem cells from adult differentiated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Epel ES, Blackburn EH, Lin J et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 2004; 101:17312ā€“17315.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Valdes AM, Andrew T, Gardner JP et al. Obesity, cigarette smoking and telomere length in women. Lancet 2005; 366:662ā€“664.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Canela A, Vera E, Klatt P et al. High-thoughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci USA 2007; 104:5300ā€“5305.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Cherkas LF, Aviv A, Valdes AM et al. The effects of social status on biological aging as measured by white-blood-cell telomere length. Aging Cell 2006; 5:361ā€“365.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Oh H, Wang SC, Prahash A et al. Telomere attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci USA 2003; 100:5378ā€“5383.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Oā€™sullivan JN, Bronner MP, Brentnall TA et al. Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet 2002; 32:280ā€“284.

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Wiemann SU, Satyanarayana A, Tsahuridu M et al. Hepatocyte telomer shortening and senescence are general markers of human liver cirrhosis. FASEB J 2002; 16:935ā€“942.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Samani NJ, Boultby R, Butler R et al. Telomere shortening in atherosclerosis. Lancet 2001; 358:472ā€“473.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Wolthers KC, Bea G, Wisman A et al. T-cell telomere length in HIV-1 infection: no evidence for increased CD4+ T-cell turnover. Science 1996; 274:1543ā€“1547.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Cawthon RM, Smith KR, Oā€™Brien E et al. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 2003; 361:393ā€“395.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Honig LS, Schupf N, Lee JH et al. Shorter telomeres are associated with mortality in those with APOE epsilon4 and dementia. Ann Neurol 2006; 60:181ā€“187.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  12. Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenital. Nature 1999; 402:551ā€“555.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Yamaguchi H, Calado RT, Ly H et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 2005; 352:1413ā€“1424.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Tsakiri KD, Cronkhite JT, Kuan PJ et al. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci USA 2007; 104:7552ā€“7557.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Armanios MY, Chen JJ, Cogan JD et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med 2007; 356:1317ā€“1326.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol 2007; 3:640ā€“649.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Serrano M, Blasco MA. Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol 2007; 9:715ā€“722.

    ArticleĀ  Google ScholarĀ 

  18. Finkel T, Serrano M, Blasco MA. The common biology of cancer and ageing. Nature 2007; 448:767ā€“774.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell 2007; 130:223ā€“233.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Gurdon JB, Melton DA. Nuclear reprogramming in cells. Science 2008; 322:1811ā€“1815.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Rideout WM 3rd, Eggan K, Jaenisch R. Nuclear cloning and epigenetic reprogramming of the genome. Science 2001; 293:1093ā€“1098.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Yang X, Smith SL, Tian XC et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 2007; 39:295ā€“302.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development 2009; 136:509ā€“523.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Wilmut I, Schnieke AE, McWhir J et al. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385:810ā€“813.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Tada M, Takahama Y, Abe K et al. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 2001; 11:1553ā€“1558.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Wakayama T, Perry AC, Zuccotti M et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998; 394:369ā€“374.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Kato Y, Tani T, Sotomaru Y et al. Eight calves cloned from somatic cells of a single adult. Science 1998; 282:2095ā€“2098.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Polejaeva IA, Chen SH, Vaught TD et al. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 2000; 407:86ā€“90.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. ChesnĆ© P, Adenot PG, Viglietta C et al. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 2002; 20:366ā€“369.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  30. Shin T, Kraemer D, Pryor J et al. A cat cloned by nuclear transplantation. Nature 2002; 415:859.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663ā€“676.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861ā€“872.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med 2009; 15:59ā€“68.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Chan SR, Blackburn EH. Telomeres and telomerase. Philos Trans R Soc Lond B Biol Sci 2004; 359:109ā€“121.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet 2008; 42:301ā€“334.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Blackburn EH. Switching and signaling at the telomere. Cell 2001; 106:661ā€“673.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19:2100ā€“2110.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  38. dā€™Adda di Fagagna F, Reaper PM, Clay-Farrace L et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426:194ā€“198.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  39. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345:458ā€“460.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 2005; 6:611ā€“622.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Chan SW, Blackburn EH. New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 2002; 21:553ā€“563.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Collins K, Mitchell JR. Telomerase in the human organism. Oncogene 2002; 21:564ā€“579.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Dunham MA, Neumann AA, Fasching CL et al. Telomere maintenance by recombination in human cells. Nature Genet 2000; 26:447ā€“450.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Schoeftner S, Blasco MA. A ā€˜higher orderā€™ of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J 2009; 28:2323ā€“2336.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Schoeftner S, Blasco MA. Chromatin regulation and noncoding RNAs at mammalian telomeres. Semin Cell Dev Biol 2009; doi:10.1016/j.semcdb.2009.09.015.

    Google ScholarĀ 

  46. GarcĆ­a-Cao M, Oā€™sullivan R, Peters AH et al. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 2004; 36:94ā€“99.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  47. Gonzalo S, Jaco I, Fraga MF et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 2006; 8:416ā€“424.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Benetti R, Gonzalo S, Jaco I et al. Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. J Cell Biol 2007; 178:925ā€“936.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Benetti R, Gonzalo S, Jaco I et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 2008; 15:268ā€“279.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Azzalin CM, Reichenbach P, Khoriauli L et al. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007; 318:798ā€“801.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 2008; 10:228ā€“236.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature 1997; 385:740ā€“743.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  53. MuƱoz P, Blanco R, Flores JM et al. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet 2005; 37:1063ā€“1071.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  54. Ye JZ, de Lange T. TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat Genet 2004; 36:618ā€“623.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Smith S, de Lange T. Tankyrase promotes telomere elongation in human cells. Curr Biol 2000; 10:1299ā€“1302.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Flores I, Cayuela ML, Blasco MA. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 2005; 309:1253ā€“1256.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Flores I, Benetti R, Blasco MA. Telomerase regulation and stem cell behavior. Curr Opin Cell Biol 2006; 18:254ā€“260.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Liu L, Bailey SM, Okuka M et al. Telomere lengthening early in development. Nat Cell Biol 2007; 9:1436ā€“1441.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. Flores I, Canela A, Vera E et al. The longest telomeres: A general signature of adult stem cell compartments. Genes Dev 2008; 22:654ā€“667.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Blasco MA, Lee HW, Hande MP et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 1997; 91:25ā€“34.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Lee HW, Blasco MA, Gottlieb GJ et al. Essential role of mouse telomerase in highly proliferative organs. Nature 1998; 392:569ā€“574.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  62. Herrera E, Samper E, MartĆ­n-Caballero J et al. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 1999; 18:2950ā€“2960.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  63. Samper E, FernĆ”ndez P, EguĆ­a R et al. Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 2002; 99:2767ā€“2775.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  64. FerrĆ³n S, Mira H, Franco S et al. Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development 2004; 131:4059ā€“4070.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  65. Bell DR, Van Zant G. Stem cells, aging and cancer: inevitabilities and outcomes. Oncogene 2004; 23:7290ā€“7296.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Vulliamy T, Marrone A, Goldman F et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 2001; 413:432ā€“435.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Vulliamy T, Marrone A, Szydlo R et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet 2004; 36:447ā€“449.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Marrone A, Stevens D, Vulliamy T et al. Heterozygous telomerase RNA mutations found in dyskeratosis congenita and aplastic anemia reduce telomerase activity via haploinsufficiency. Blood 2004; 104:3936ā€“3942.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. GarcĆ­a-Cao I, GarcĆ­a-Cao M, TomĆ”s-Loba A et al. Increased p53 activity does not accelerate telomere-driven ageing. EMBO Rep 2006; 7:546ā€“552.

    PubMedĀ  Google ScholarĀ 

  70. Vaziri H, Dragowska W, Allsopp RC et al. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 1994; 91:9857ā€“9860.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Allsopp RC, Cheshier S, Weissman IL. Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells. J Exp Med 2001; 193:917ā€“924.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  72. Allsopp RC, Morin GB, DePinho R et al. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 2003; 102:517ā€“520.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. Allsopp RC, Morin GB, Horner JW et al. Effect of TERT over-expression on the long-term transplantation capacity of hematopoietic stem cells. Nat Med 2003; 9:369ā€“371.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Sarin KY, Cheung P, Gilison D et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 2005; 436:1048ā€“1052.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  75. Siegl-Cachedenier I, Flores I, Klatt P et al. Telomerase reverses epidermal hair follicle stem cell defects and loss of long-term survival associated with critically short telomeres. J Cell Biol 2007; 179:277ā€“290.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  76. Flores I, Blasco MA. A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres. PLoS One 2009; 4(3):e4934. doi:10.1371/journal.pone.0004934

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  77. Ju Z, Jiang H, Jaworski M et al. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 2007; 3:742ā€“747.

    ArticleĀ  Google ScholarĀ 

  78. TomĆ”s-Loba A, Flores I, FernĆ”ndez-Marcos PJ et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 2008; 135:609ā€“622.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  79. Shiels PG, Kind AJ, Campbell KH et al. Analysis of telomere lengths in cloned sheep. Nature 1999; 399:316ā€“317.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  80. Wakayama T, Shinkai Y, Tamashiro KL et al. Cloning of mice to six generations. Nature 2000; 407:318ā€“319.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  81. Lanza RP, Cibelli JB, Blackwell C et al. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 2000; 288:665ā€“669.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  82. Tian XC, Xu J, Yang X. Normal telomere lengths found in cloned cattle. Nat Genet 2000; 26:272ā€“273.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  83. Betts D, Bordignon V, Hill J et al. Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc Natl Acad Sci USA 2001; 98:1077ā€“1082.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  84. Clark AJ, Ferrier P, Aslam S et al. Proliferative lifespan is conserved after nuclear transfer. Nat Cell Biol 2003; 5:535ā€“538.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  85. Miyashita N, Shiga K, Yonai M et al. Remarkable differences in telomere lengths among cloned cattle derived from different cell types. Biol Reprod 2002; 66:1649ā€“1655.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  86. Schaetzlein S, Lucas-Hahn A, Lemme E et al. Telomere length is reset during early mammalian embryogenesis. Proc Natl Acad Sci USA 2004; 101:8034ā€“8038.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  87. Xu J, Yang X. Telomerase activity in early bovine embryos derived from parthenogenetic activation and nuclear transfer. Biol Reprod 2001; 64:770ā€“774.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  88. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145ā€“1147.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  89. Stadtfeld M, Maherali N, Breault DT et al. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2008; 2:230ā€“240.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  90. Zhu J, Wang H, Bishop JM et al. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc Natl Acad Sci USA 1999; 96:3723ā€“3728.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  91. Marion RM, Strati K, Li H et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 2009; 4:141ā€“154.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  92. Meshorer E, Yellajoshula D, George E et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 2006; 10:105ā€“116.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  93. Wong LH, Ren H, Williams E et al. Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells. Genome Res 2009; 19:404ā€“414.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  94. Wong LH, McGhie JD, Sim M. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res 2010; doi 10.1101/gr.101477.109.

    Google ScholarĀ 

  95. MariĆ³n RM, Strati K, Li H et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 2009; 460:1149ā€“1153.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  96. Li H, Collado M, Villasante A et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 2009; 460:1136ā€“1139.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  97. Hong H, Takahashi K, Ichisaka T et al. Suppression of induced pluripotent stem cell generation by the p53ā€“p21 pathway. Nature 2009; 460:1132ā€“1135.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  98. Kawamura T, Suzuki J, Wang YV et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 2009; 460:1140ā€“1144.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  99. Utikal J, Polo JM, Stadtfeld M et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 2009; 460:1145ā€“1148.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  100. Wang J, Xie LY, Allan S et al. Myc activates telomerase. Genes Dev 1998; 12:1769ā€“1774.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Blasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

MariĆ³n, R.M., Blasco, M.A. (2010). Telomeres And Telomerase in Adult Stem Cells and Pluripotent Embryonic Stem Cells. In: Meshorer, E., Plath, K. (eds) The Cell Biology of Stem Cells. Advances in Experimental Medicine and Biology, vol 695. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7037-4_9

Download citation

Publish with us

Policies and ethics