Monogenic Disorders Within the Energy Balance Pathway

  • Ivy R. Aslan
  • Sayali A. Ranadive
  • Christian Vaisse
Chapter
Part of the Endocrine Updates book series (ENDO, volume 30)

Abstract

The hypothalamus plays a major role in the long-term regulation of body weight in humans. Within the hypothalamus, the leptin–melanocortin system is critical for energy balance, as animal and human studies have shown that disruption of this pathway, which senses peripheral energy stores and signals satiety, leads to the most severe forms of human obesity. The monogenic causes of obesity identified so far in this pathway are very heterogeneous and account for less than 5% of severe obesity. The genetic basis of the remaining 95% of obesity is likely to be even more heterogeneous and polygenic. The melanocortin 4-receptor (MC4R) is the most specialized molecule for body weight maintenance within this system as the clinical phenotype of MC4R deficiency is limited to obesity. Indeed, heterozygous MC4R mutations are the most common cause of monogenic obesity. In addition, novel mechanisms are emerging as important for pathogenicity of obesity, such as abnormal hypothalamic development, alterations in neuronal plasticity, and dysfunction of the primary cilium. This chapter focuses on obesity caused by mutations in genes that have a physiologic role in the hypothalamic leptin–melanocortin system of energy balance.

Keywords

Monogenic obesity Leptin–melanocortin system Melanocortin 4-receptor Leptin Proopiomelanocortin 

References

  1. 1.
    Ogden CL, Flegal KM, Carroll MD, Johnson CL. Prevalence and trends in overweight among US children and adolescents, 1999–2000. JAMA. Oct 9 2002;288(14):1728–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. Jan 20 2010;303(3):235–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Vasan RS, Pencina MJ, Cobain M, Freiberg MS, D’Agostino RB. Estimated risks for developing obesity in the Framingham Heart Study. Ann Intern Med. Oct 4 2005;143(7):473–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA. Jan 20 2010;303(3):242–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. Feb 11 2010;362(6):485–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Hill JO. Genetic and environmental contributions to obesity. Am J Clin Nutr. Nov 1998;68(5):991–2.PubMedGoogle Scholar
  7. 7.
    Swarbrick MM, Vaisse C. Emerging trends in the search for genetic variants predisposing to human obesity. Curr Opin Clin Nutr Metab Care. Jul 2003;6(4):369–75.PubMedGoogle Scholar
  8. 8.
    Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. Jul 1997;27(4):325–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. May 11 2007;316(5826):889–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Loos RJ, Lindgren CM, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. Jun 2008;40(6):768–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Ranadive SA, Vaisse C. Lessons from extreme human obesity: monogenic disorders. Endocrinol Metab Clin North Am. Sep 2008;37(3):733–51.PubMedCrossRefGoogle Scholar
  12. 12.
    Coll AP, Farooqi IS, O’Rahilly S. The hormonal control of food intake. Cell. Apr 20 2007;129(2):251–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Gantz I, Miwa H, Konda Y, et al. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J Biol Chem. Jul 15 1993;268(20):15174–9.PubMedGoogle Scholar
  14. 14.
    Mountjoy KG, Robbins LS, Mortrud MT, Cone RD. The cloning of a family of genes that encode the melanocortin receptors. Science. Aug 28 1992;257(5074):1248–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol. Oct 1994;8(10):1298–308.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwartz MW, Woods SC, Porte D Jr., Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. Apr 6 2000;404(6778):661–71.PubMedGoogle Scholar
  17. 17.
    Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. Mar 20 2003;348(12):1085–95.PubMedCrossRefGoogle Scholar
  18. 18.
    Calton MA, Ersoy BA, Zhang S, et al. Association of functionally significant Melanocortin-4 but not Melanocortin-3 receptor mutations with severe adult obesity in a large North-American case control study. Hum Mol Genet. Dec 17 2008;18:1140–1147.PubMedCrossRefGoogle Scholar
  19. 19.
    Lubrano-Berthelier C, Dubern B, Lacorte JM, et al. Melanocortin 4 receptor mutations in a large cohort of severely obese adults: prevalence, functional classification, genotype-phenotype relationship, and lack of association with binge eating. J Clin Endocrinol Metab. May 2006;91(5):1811–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Hainerova I, Larsen LH, Holst B, et al. Melanocortin 4 receptor mutations in obese Czech children: studies of prevalence, phenotype development, weight reduction response, and functional analysis. J Clin Endocrinol Metab. Sep 2007;92(9):3689–96.PubMedCrossRefGoogle Scholar
  21. 21.
    Lubrano-Berthelier C, Le Stunff C, Bougneres P, Vaisse C. A homozygous null mutation delineates the role of the melanocortin-4 receptor in humans. J Clin Endocrinol Metab. May 2004;89(5):2028–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Dubern B, Bisbis S, Talbaoui H, et al. Homozygous null mutation of the melanocortin-4 receptor and severe early-onset obesity. J Pediatr. Jun 2007;150(6):613–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Kobayashi H, Ogawa Y, Shintani M, et al. A Novel homozygous missense mutation of melanocortin-4 receptor (MC4R) in a Japanese woman with severe obesity. Diabetes. Jan 2002;51(1):243–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet. Oct 1998;20(2):113–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Lubrano-Berthelier C, Cavazos M, Le Stunff C, et al. The human MC4R promoter: characterization and role in obesity. Diabetes. Dec 2003;52(12):2996–3000.PubMedCrossRefGoogle Scholar
  26. 26.
    Mergen M, Mergen H, Ozata M, Oner R, Oner C. A novel melanocortin 4 receptor (MC4R) gene mutation associated with morbid obesity. J Clin Endocrinol Metab. Jul 2001;86(7):3448.PubMedCrossRefGoogle Scholar
  27. 27.
    Greenfield JR, Miller JW, Keogh JM, et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. Jan 1 2009;360(1):44–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Sayk F, Heutling D, Dodt C, et al. Sympathetic function in human carriers of Melanocortin-4 receptor gene mutations. J Clin Endocrinol Metab. Feb 10 2010;95(4):1998–2002.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. Dec 1 1994;372(6505):425–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. Jul 28 1995;269(5223):543–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. Jul 28 1995;269(5223):540–3.PubMedCrossRefGoogle Scholar
  32. 32.
    Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. Jul 28 1995;269(5223):546–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor. OB-R Cell. Dec 29 1995;83(7):1263–71.CrossRefGoogle Scholar
  34. 34.
    Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. Jun 26 1997;387(6636):903–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet. Mar 1998;18(3):213–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Gibson WT, Farooqi IS, Moreau M, et al. Congenital leptin deficiency due to homozygosity for the Delta133G mutation: report of another case and evaluation of response to four years of leptin therapy. J Clin Endocrinol Metab. Oct 2004;89(10):4821–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. Oct 2002;110(8):1093–103.PubMedGoogle Scholar
  38. 38.
    Mazen I, El-Gammal M, Abdel-Hamid M, Amr K. A novel homozygous missense mutation of the leptin gene (N103K) in an obese Egyptian patient. Mol Genet Metab. Aug 2009;97(4):305–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Fischer-Posovszky P, von Schnurbein J, Moepps B, et al. A new missense mutation in the leptin gene causes mild obesity and hypogonadism without affecting T cell responsiveness. J Clin Endocrinol Metab. April 9 2010;95(6):2836–40.Google Scholar
  40. 40.
    Farooqi IS, O’Rahilly S. Monogenic human obesity syndromes. Recent Prog Horm Res. 2004;59:409–24.PubMedCrossRefGoogle Scholar
  41. 41.
    Farooqi IS, Keogh JM, Kamath S, et al. Partial leptin deficiency and human adiposity. Nature. Nov 1 2001;414(6859):34–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Chua SC Jr., Chung WK, Wu-Peng XS, et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science. Feb 16 1996;271(5251):994–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen H, Charlat O, Tartaglia LA, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. Feb 9 1996;84(3):491–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Clement K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. Mar 26 1998;392(6674):398–401.PubMedCrossRefGoogle Scholar
  45. 45.
    Farooqi IS, Wangensteen T, Collins S, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. Jan 18 2007;356(3):237–47.PubMedCrossRefGoogle Scholar
  46. 46.
    Owerbach D, Rutter WJ, Roberts JL, et al. The proopiocortin (adrenocorticotropin/beta-lipoprotein) gene is located on chromosome 2 in humans. Somatic Cell Genet. May 1981;7(3):359–69.PubMedCrossRefGoogle Scholar
  47. 47.
    Farooqi S, O’Rahilly S. Genetics of obesity in humans. Endocr Rev. Dec 2006;27(7):710–8.PubMedGoogle Scholar
  48. 48.
    Coll AP, Challis BG, Lopez M, Piper S, Yeo GS, O’Rahilly S. Proopiomelanocortin-deficient mice are hypersensitive to the adverse metabolic effects of glucocorticoids. Diabetes. Aug 2005;54(8):2269–76.PubMedCrossRefGoogle Scholar
  49. 49.
    Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. Jun 1998;19(2):155–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Krude H, Biebermann H, Schnabel D, et al. Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab. Oct 2003;88(10):4633–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Farooqi IS, Drop S, Clements A, et al. Heterozygosity for a POMC-null mutation and increased obesity risk in humans. Diabetes. Sep 2006;55(9):2549–53.PubMedCrossRefGoogle Scholar
  52. 52.
    Clement K, Dubern B, Mencarelli M, et al. Unexpected endocrine features and normal pigmentation in a young adult patient carrying a novel homozygous mutation in the POMC gene. J Clin Endocrinol Metab. Dec 2008;93(12):4955–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Nillni EA. Regulation of prohormone convertases in hypothalamic neurons: implications for prothyrotropin-releasing hormone and proopiomelanocortin. Endocrinology. Sep 2007;148(9):4191–200.PubMedCrossRefGoogle Scholar
  54. 54.
    Jackson RS, Creemers JW, Ohagi S, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet. Jul 1997;16(3):303–6.PubMedCrossRefGoogle Scholar
  55. 55.
    O’Rahilly S, Gray H, Humphreys PJ, et al. Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med. Nov 23 1995;333(21):1386–90.PubMedCrossRefGoogle Scholar
  56. 56.
    Jackson RS, Creemers JW, Farooqi IS, et al. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest. Nov 2003;112(10):1550–60.PubMedGoogle Scholar
  57. 57.
    Farooqi IS, Volders K, Stanhope R, et al. Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J Clin Endocrinol Metab. Sep 2007;92(9):3369–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Michaud JL, Boucher F, Melnyk A, et al. Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Genet. Jul 1 2001;10(14):1465–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Michaud JL, Rosenquist T, May NR, Fan CM. Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev. Oct 15 1998;12(20):3264–75.PubMedCrossRefGoogle Scholar
  60. 60.
    Holder JL Jr., Butte NF, Zinn AR. Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum Mol Genet. Jan 1 2000;9(1):101–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Villa A, Urioste M, Bofarull JM, Martinez-Frias ML. De novo interstitial deletion q16.2q21 on chromosome 6. Am J Med Genet. Jan 30 1995;55(3):379–83.PubMedCrossRefGoogle Scholar
  62. 62.
    Gilhuis HJ, van Ravenswaaij CM, Hamel BJ, Gabreels FJ. Interstitial 6q deletion with a Prader-Willi-like phenotype: a new case and review of the literature. Eur J Paediatr Neurol. 2000;4(1):39–43.PubMedCrossRefGoogle Scholar
  63. 63.
    Faivre L, Cormier-Daire V, Lapierre JM, et al. Deletion of the SIM1 gene (6q16.2) in a patient with a Prader-Willi-like phenotype. J Med Genet. Aug 2002;39(8):594–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Meyre D, Lecoeur C, Delplanque J, et al. A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31–q23.2. Diabetes. Mar 2004;53(3):803–11.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang JC, Turner L, Lomax B, Eydoux PA. 5-Mb microdeletion at 6q16.1–q16.3 with SIM gene deletion and obesity. Am J Med Genet A. Nov 15 2008;146A(22):2975–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Turleau C, Demay G, Cabanis MO, Lenoir G, de Grouchy J. 6q1 monosomy: a distinctive syndrome. Clin Genet. Jul 1988;34(1):38–42.PubMedCrossRefGoogle Scholar
  67. 67.
    Varela MC, Simoes-Sato AY, Kim CA, Bertola DR, De Castro CI, Koiffmann CP. A new case of interstitial 6q16.2 deletion in a patient with Prader-Willi-like phenotype and investigation of SIM1 gene deletion in 87 patients with syndromic obesity. Eur J Med Genet. Jul–Aug 2006;49(4):298–305.PubMedCrossRefGoogle Scholar
  68. 68.
    Klein OD, Cotter PD, Moore MW, et al. Interstitial deletions of chromosome 6q: genotype-phenotype correlation utilizing array CGH. Clin Genet. Mar 2007;71(3):260–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Stein CK, Stred SE, Thomson LL, Smith FC, Hoo JJ. Interstitial 6q deletion and Prader-Willi-like phenotype. Clin Genet. Jun 1996;49(6):306–10.PubMedCrossRefGoogle Scholar
  70. 70.
    Le Caignec C, Swillen A, Van Asche E, Fryns JP, Vermeesch JR. Interstitial 6q deletion: clinical and array CGH characterisation of a new patient. Eur J Med Genet. Jul–Sep 2005;48(3):339–45.PubMedCrossRefGoogle Scholar
  71. 71.
    Tapia-Arancibia L, Rage F, Givalois L, Arancibia S. Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinol. Jul 2004;25(2):77–107.PubMedCrossRefGoogle Scholar
  72. 72.
    Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736.PubMedCrossRefGoogle Scholar
  73. 73.
    Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–42.PubMedCrossRefGoogle Scholar
  74. 74.
    Kernie SG, Liebl DJ, Parada LF. BDNF regulates eating behavior and locomotor activity in mice. EMBO J. Mar 15 2000;19(6):1290–300.PubMedCrossRefGoogle Scholar
  75. 75.
    Pelleymounter MA, Cullen MJ, Wellman CL. Characteristics of BDNF-induced weight loss. Exp Neurol. Feb 1995;131(2):229–38.PubMedCrossRefGoogle Scholar
  76. 76.
    Rios M, Fan G, Fekete C, et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol. Oct 2001;15(10):1748–57.PubMedCrossRefGoogle Scholar
  77. 77.
    Xu B, Goulding EH, Zang K, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. Jul 2003;6(7):736–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Gray J, Yeo GS, Cox JJ, et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes. Dec 2006;55(12):3366–71.PubMedCrossRefGoogle Scholar
  79. 79.
    Han JC, Liu QR, Jones M, et al. Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med. Aug 28 2008;359(9):918–27.PubMedCrossRefGoogle Scholar
  80. 80.
    Biebermann H, Castaneda TR, van Landeghem F, et al. A role for beta-melanocyte-stimulating hormone in human body-weight regulation. Cell Metab. Feb 2006;3(2):141–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Klein R, Smeyne RJ, Wurst W, et al. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell. Oct 8 1993;75(1):113–22.PubMedGoogle Scholar
  82. 82.
    Lyons WE, Mamounas LA, Ricaurte GA, et al. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA. Dec 21 1999;96(26):15239–44.PubMedCrossRefGoogle Scholar
  83. 83.
    Yeo GS, Connie Hung CC, Rochford J, et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci. Nov 2004;7(11):1187–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Gray J, Yeo G, Hung C, et al. Functional characterization of human NTRK2 mutations identified in patients with severe early-onset obesity. Int J Obes (Lond). Feb 2007;31(2):359–64.CrossRefGoogle Scholar
  85. 85.
    Heymsfield SB, Greenberg AS, Fujioka K, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. Oct 27 1999;282(16):1568–75.PubMedCrossRefGoogle Scholar
  86. 86.
    Fan ZC, Tao YX. Functional characterization and pharmacological rescue of melanocortin-4 receptor mutations identified from obese patients. J Cell Mol Med. Sep 2009;13(9B):3268–82.PubMedCrossRefGoogle Scholar
  87. 87.
    Schmidt H, Pozza SB, Bonfig W, Schwarz HP, Dokoupil K. Successful early dietary intervention avoids obesity in patients with Prader-Willi syndrome: a ten-year follow-up. J Pediatr Endocrinol Metab. Jul 2008;21(7):651–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Reinehr T, Hebebrand J, Friedel S, et al. Lifestyle intervention in obese children with variations in the melanocortin 4 receptor gene. Obesity (Silver Spring). Feb 2009;17(2):382–9.CrossRefGoogle Scholar
  89. 89.
    Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab. Nov 2008;93 11 Suppl 1:S89–96.PubMedCrossRefGoogle Scholar
  90. 90.
    Daskalakis M, Till H, Kiess W, Weiner RA. Roux-en-Y gastric bypass in an adolescent patient with Bardet-Biedl syndrome, a monogenic obesity disorder. Obes Surg. Jan 2010;20(1):121–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Rottembourg D, O’Gorman CS, Urbach S, et al. Outcome after bariatric surgery in two adolescents with hypothalamic obesity following treatment of craniopharyngioma. J Pediatr Endocrinol Metab. Sep 2009;22(9):867–72.PubMedCrossRefGoogle Scholar
  92. 92.
    Inge TH, Pfluger P, Zeller M, et al. Gastric bypass surgery for treatment of hypothalamic obesity after craniopharyngioma therapy. Nat Clin Pract Endocrinol Metab. Aug 2007;3(8):606–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Muller HL, Gebhardt U, Wessel V, et al. First experiences with laparoscopic adjustable gastric banding (LAGB) in the treatment of patients with childhood craniopharyngioma and morbid obesity. Klin Padiatr. Nov–Dec 2007;219(6):323–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Potoczna N, Branson R, Kral JG, et al. Gene variants and binge eating as predictors of comorbidity and outcome of treatment in severe obesity. J Gastrointest Surg. Dec 2004;8(8):971–81, Discussion 981–972.PubMedCrossRefGoogle Scholar
  95. 95.
    List JF, Habener JF. Defective melanocortin 4 receptors in hyperphagia and morbid obesity. N Engl J Med. Mar 20 2003;348(12):1160–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ivy R. Aslan
    • 1
  • Sayali A. Ranadive
    • 1
  • Christian Vaisse
    • 2
  1. 1.Department of EndocrinologyChildren’s Hospital and Research Center, OaklandOaklandUSA
  2. 2.Department of MedicineDiabetes Center, University of CaliforniaSan FranciscoUSA

Personalised recommendations