Skip to main content

Towards Average PerformanceAnalysis

  • Chapter
  • First Online:
Sparse and Redundant Representations

Abstract

The analysis presented so far presents a simple but limited portrait of the ability of concrete algorithms to find sparse solutions and near-solutions. In this chapter we briefly point to the interesting and challenging research territory that lies beyond these worst-case results. We start with some simple simulations to motivate this discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. E.J. Candès and J. Romberg, Practical signal recovery from random projections, in Wavelet XI, Proc. SPIE Conf. 5914, 2005.

    Google Scholar 

  2. E.J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. On Information Theory, 52(2):489–509, 2006.

    Article  Google Scholar 

  3. E. Candès, J. Romberg, and T. Tao, Quantitative robust uncertainty principles and optimally sparse decompositions, to appear in Foundations of Computational Mathematics.

    Google Scholar 

  4. E. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, to appear in Communications on Pure and Applied Mathematics.

    Google Scholar 

  5. E.J. Candès and T. Tao, Decoding by linear programming, IEEE Trans. on Information Theory, 51(12):4203–4215, December 2005.

    Article  Google Scholar 

  6. D.L. Donoho, For most large underdetermined systems of linear equations, the minimal ℓ1-norm solution is also the sparsest solution, Communications on Pure and Applied Mathematics, 59(6):797–829, June 2006.

    Article  MATH  MathSciNet  Google Scholar 

  7. D.L. Donoho, For most large underdetermined systems of linear equations, the minimal-norm near-solution approximates the sparsest near-solution, Communications on Pure and Applied Mathematics, 59(7):907–934, July 2006.

    Article  MathSciNet  Google Scholar 

  8. D.L. Donoho and J. Tanner, Neighborliness of randomly-projected simplices in high dimensions, Proceedings of the National Academy of Sciences, 102(27):9452–9457, March 2005.

    Article  MATH  MathSciNet  Google Scholar 

  9. D.L. Donoho and J. Tanner, Counting faces of randomly-projected polytopes when the projection radically lowers dimension, Journal of the AMS, 22(1):1–53, 2009.

    MathSciNet  Google Scholar 

  10. M. Elad, Sparse representations are most likely to be the sparsest possible, EURASIP Journal on Applied Signal Processing, Paper No. 96247, 2006.

    Google Scholar 

  11. B. Kashin, The widths of certain finite-dimensional sets and classes of smooth functions, Izv. Akad. Nauk SSSR Ser. Mat., 41, pp. 334–351, 1977.

    MATH  MathSciNet  Google Scholar 

  12. S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann, Uniform uncertainty principle for Bernoulli and subgaussian ensembles, to appear in Constructive Approximation, 28(3):277–289, December 2008.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann, Reconstruction and subgaussian processes, Comptes Rendus Mathematique, 340(12):885–888, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. Schnass and P. Vandergheynst, Average performance analysis for thresholding, IEEE Signal Processing Letters, 14(11):828–831, November 2007.

    Article  Google Scholar 

  15. S. Szarek, Condition number of random matrices, J. Complexity, 7, pp. 131–149, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Szarek, Spaces with large distance to ℓ1 and random matrices, Amer. J. Math., 112:899–942, 1990.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Elad .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Elad, M. (2010). Towards Average PerformanceAnalysis. In: Sparse and Redundant Representations. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7011-4_7

Download citation

Publish with us

Policies and ethics