Skip to main content

Other Applications

  • Chapter
  • First Online:
Sparse and Redundant Representations

Abstract

This book is not meant to be a comprehensive textbook on image processing, and therefore it is not our intention to show how every familiar application in image processing finds a good use for the Sparse-Land model. Indeed, such a claim would not be true to begin with, as there are image processing problems for which the relation to this model has not been (and perhaps will never be) shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. E. Abreu, M. Lightstone, S.K. Mitra SK, and K. Arakawa, A new efficient ap- proach for the removal of impulse noise from highly corrupted images, IEEE Trans. on Image Processing, 5(6):1012–1025, June, 1996.

    Article  Google Scholar 

  2. P. Abrial, Y. Moudden, J.-L. Starck, J. Bobin, M.J. Fadili, B. Afeyan and M. Nguyen, Morphological component analysis and inpainting on the sphere: Ap- plication in physics and astrophysics, Journal of Fourier Analysis and Applica- tions (JFAA), special issue on “Analysis on the Sphere”, 13(6):729–748, 2007.

    MATH  MathSciNet  Google Scholar 

  3. M. Aharon, M. Elad, and A.M. Bruckstein, The K-SVD: An algorithm for de- signing of overcomplete dictionaries for sparse representation, IEEE Trans. on Signal Processing, 54(11):4311–4322, November 2006.

    Article  Google Scholar 

  4. M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, Image coding us- ing wavelet transform, IEEE Trans. on Image Processing, 1(2):205–220, April 1992.

    Article  Google Scholar 

  5. J. Aujol, G. Aubert, L. Blanc-Feraud, and A. Chambolle, Image decomposi- tion: Application to textured images and SAR images, INRIA Project ARIANA, Sophia Antipolis, France, Tech. Rep. ISRN I3S/RR- 2003-01-FR, 2003.

    Google Scholar 

  6. J. Aujol and A. Chambolle, Dual norms and image decomposition models, IN- RIA Project ARIANA, Sophia Antipolis, France, Tech. Rep. ISRN 5130, 2004.

    Google Scholar 

  7. J. Aujol and B. Matei, Structure and texture compression, INRIA Project ARI- ANA, Sophia Antipolis, France, Tech. Rep. ISRN I3S/RR-2004-02-FR, 2004.

    Google Scholar 

  8. M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image in-painting, in Proc. 27th Annu. Conf. Computer Graphics and Interactive Techniques, pp. 417–424, 2000.

    Google Scholar 

  9. M. Bertalmio, L. Vese, G. Sapiro, and S. Osher, Simultaneous structure and texture image inpainting, IEEE Trans. on Image Processing, 12(8):882–889, August 2003.

    Article  Google Scholar 

  10. A.L. Bertozzi, M. Bertalmio, and G. Sapiro, NavierStokes fluid dynamics and image and video inpainting, IEEE Computer Vision and Pattern Recognition (CVPR), 2001.

    Google Scholar 

  11. J. Bobin, Y. Moudden, J.-L. Starck, M.J. Fadili, and N. Aghanim, SZ and CMB reconstruction using GMCA, Statistical Methodology, 5(4):307–317, 2008.

    Article  MathSciNet  Google Scholar 

  12. J. Bobin, Y. Moudden, J.-L. Starck and M. Elad, Morphological diversity and source separation, IEEE Trans. on Signal Processing, 13(7):409–412, 2006.

    Article  Google Scholar 

  13. J. Bobin, J.-L. Starck, M.J. Fadili, and Y. Moudden, Sparsity, morphologi- cal diversity and blind source separation, IEEE Trans. on Image Processing, 16(11):2662–2674, 2007.

    Article  MathSciNet  Google Scholar 

  14. J. Bobin, J.-L. Starck J. Fadili, Y. Moudden and D.L Donoho, Morphological component analysis: an adaptive thresholding strategy, IEEE Trans. on Image Processing, 16(11):2675–2681, 2007.

    Article  MathSciNet  Google Scholar 

  15. E.J. Candès and F. Guo, New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction, Signal Pro- cessing, 82(5):1516–1543, 2002.

    Google Scholar 

  16. V. Caselles, G. Sapiro, C. Ballester, M. Bertalmio, J. Verdera, Filling-in by joint interpolation of vector fields and grey levels, IEEE Trans. on Image Processing, 10:1200–1211, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Chan and J. Shen, Local inpainting models and TV inpainting, SIAM J. Ap- plied Mathematics, 62:1019–1043, 2001.

    MathSciNet  Google Scholar 

  18. T. Chen T, K.K. Ma, and L.H. Chen, Tri-state median filter for image denoising, IEEE Trans.on Image Processing, 8(12):1834–1838, December, 1999.

    Article  Google Scholar 

  19. R. Coifman and F. Majid, Adapted waveform analysis and denoising, in Progress in Wavelet Analysis and Applications, Frontiers ed., Y. Meyer and S. Roques, Eds., pp. 6376, 1993.

    Google Scholar 

  20. A. Criminisi, P. Perez, and K. Toyama, Object removal by exemplar based in- painting, IEEE Computer Vision and Pattern Recognition (CVPR), Madison, WI, June 2003.

    Google Scholar 

  21. J.S. De Bonet, Multiresolution sampling procedure for analysis and synthesis of texture images, Proceedings of SIGGRAPH, 1997.

    Google Scholar 

  22. A.A. Efros and T.K. Leung, Texture synthesis by non-parametric sampling, International Conference on Computer Vision, Corfu, Greece, pp. 1033–1038, September 1999.

    Google Scholar 

  23. M. Elad and M. Aharon, Image denoising via learned dictionaries and sparse representation, IEEE Computer Vision and Pattern Recognition, New-York, June 17–22, 2006.

    Google Scholar 

  24. M. Elad and M. Aharon, Image denoising via sparse and redundant representa- tions over learned dictionaries, IEEE Trans. on Image Processing 15(12):3736–3745, December 2006.

    Article  MathSciNet  Google Scholar 

  25. M. Elad, J-L. Starck, P. Querre, and D.L. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Journal on Applied and Computational Harmonic Analysis, 19:340–358, November 2005.

    Article  MATH  MathSciNet  Google Scholar 

  26. H.L. Eng and K.K. Ma, Noise adaptive soft-switching median filter, IEEE Trans.on Image Processing, 10(2):242–251, February, 2001.

    Article  MATH  Google Scholar 

  27. M.J. Fadili, J.-L. Starck and F. Murtagh, Inpainting and zooming using sparse representations, The Computer Journal, 52(1):64–79, 2009.

    Article  Google Scholar 

  28. G. Gilboa, N. Sochen, and Y.Y. Zeevi, Texture preserving variational denoising using an adaptive fidelity term, in Proc. VLSM, Nice, France, pp. 137144, 2003.

    Google Scholar 

  29. O.G. Guleryuz, Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising - Part I: Theory, IEEE Trans. on Image Processing, 15(3):539–554, 2006.

    Article  Google Scholar 

  30. O.G. Guleryuz, Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising - Part II: Adaptive algorithms, IEEE Trans. on Image Processing, 15(3):555–571, 2006.

    Article  Google Scholar 

  31. J. Mairal, F. Bach, J. Ponce, G. Sapiro and A. Zisserman, Discriminative learned dictionaries for local image analysis, IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, 2008.

    Google Scholar 

  32. J. Mairal, M. Elad, and G. Sapiro, Sparse representation for color image restora- tion, IEEE Trans. on Image Processing, 17(1):53–69, January 2008.

    Article  MathSciNet  Google Scholar 

  33. J. Mairal, M. Leordeanu, F. Bach, M. Hebert and J. Ponce, Discriminative sparse image models for class-specific edge detection and image interpretation, European Conference on Computer Vision (ECCV) Marseille, France, 2008.

    Google Scholar 

  34. J. Mairal, G. Sapiro, and M. Elad, Learning multiscale sparse representations for image and video restoration, SIAM Multiscale Modeling and Simulation, 7(1):214–241, April 2008.

    Article  MATH  MathSciNet  Google Scholar 

  35. F. Malgouyres, Minimizing the total variation under a general convex constraint for image restoration, IEEE Trans. on Image Processing, 11(12):1450–1456, December 2002.

    Article  MathSciNet  Google Scholar 

  36. F. Meyer, A. Averbuch, and R. Coifman, Multilayered image representation: Application to image compression, IEEE Trans. on Image Processing, 11(9):1072–1080, September 2002.

    Article  MathSciNet  Google Scholar 

  37. Y. Meyer, Oscillating patterns in image processing and non linear evolution equations, in Univ. Lecture Ser., vol. 22, AMS, 2002.

    Google Scholar 

  38. M. Nikolova, A variational approach to remove outliers and impulse noise, Journal Of Mathematical Imaging And Vision, 20(1–2):99–120, January 2004.

    Article  MathSciNet  Google Scholar 

  39. G. Peyré, J. Fadili and J.-L. Starck, Learning the morphological diversity, to appear in SIAM Journal on Imaging Sciences.

    Google Scholar 

  40. L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation noise removal al- gorithm, Phys. D, 60:259–268, 1992.

    Article  MATH  Google Scholar 

  41. A. Said and W. Pearlman, A new, fast, and efficient image codec based on set partitioning in hierarchial trees, IEEE Trans. on Circuits Systems for Video Technology, 6(3):243–250, June 1996.

    Article  Google Scholar 

  42. J. Shapiro, Embedded image coding using zerotrees of wavelet coefficients, IEEE Trans. on Signal Processing, 41(12):3445–3462, December 1993.

    Article  MATH  Google Scholar 

  43. N. Shoham and M. Elad, Alternating KSVD-denoising for texture separation, The IEEE 25-th Convention of Electrical and Electronics Engineers in Israel, Eilat Israel, December, 2008.

    Google Scholar 

  44. J.-L. Starck, E.J. Candès, and D. Donoho, The curvelet transform for image denoising, IEEE Trans. on Image Processing, 11(6):131–141, June 2002.

    Google Scholar 

  45. J.-L. Starck, D. Donoho, and E.J. Candès, Very high quality image restora- tion, the 9th SPIE Conf. Signal and Image Processing: Wavelet Applications in Signal and Image Processing, A. Laine, M. Unser, and A. Aldroubi, Eds., San Diego, CA, August 2001.

    Google Scholar 

  46. J.L. Starck, M. Elad, and D.L. Donoho, Image decomposition via the combina- tion of sparse representations and a variational approach, IEEE Trans. on Image Processing, 14(10):1570–1582, October 2005.

    Article  MathSciNet  Google Scholar 

  47. J.-L. Starck, M. Elad, and D.L. Donoho, Redundant multiscale transforms and their application for morphological component analysis, Journal of Advances in Imaging and Electron Physics, 132:287–348, 2004.

    Google Scholar 

  48. J.-L. Starck and F. Murtagh, Astronomical Image and Data Analysis, New York: Springer-Verlag, 2002.

    Google Scholar 

  49. J.-L. Starck, F. Murtagh, and A. Bijaoui, Image Processing and data analysis: The multiscale approach, Cambridge, U.K.: Cambridge Univ. Press, 1998.

    Book  Google Scholar 

  50. J.-L. Starck, M. Nguyen, and F. Murtagh, Wavelets and curvelets for image deconvolution: A combined approach, Signal Processing, 83(10):2279–2283, 2003.

    Article  MATH  Google Scholar 

  51. G. Steidl, J. Weickert, T. Brox, P. Mrazek, and M. Welk, On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides, Dept. Math., Univ. Bremen, Bremen, Germany, Tech. Rep. 26, 2003.

    Google Scholar 

  52. L. Vese and S. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing, Journal of Scientific Computing, 19:553–577, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  53. M. Vetterli, Wavelets, approximation, and compression, IEEE Signal Process- ing Magazine, 18(5):59–73, September 2001.

    Article  Google Scholar 

  54. J. Yang, J. Wright, T. Huang, and Y. Ma, Image super-resolution as sparse repre- sentation of raw image patches, IEEE Computer Vision and Pattern Recognition (CVPR), 2008.

    Google Scholar 

  55. J. Yang, J. Wright, T. Huang, and Y. Ma, Image super-resolution via sparse rep- resentation, submitted to IEEE Trans. on Image Processing, September 2009.

    Google Scholar 

  56. M. Zibulevsky and B. Pearlmutter, Blind source separation by sparse decompo- sition in a signal dictionary, Neur. Comput., 13:863–882, 2001.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Elad .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Elad, M. (2010). Other Applications. In: Sparse and Redundant Representations. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7011-4_15

Download citation

Publish with us

Policies and ethics