Skip to main content

The Quest for a Dictionary

  • Chapter
  • First Online:
Sparse and Redundant Representations

Abstract

A fundamental ingredient in the definition of Sparse-Land’s signals and its deployment to applications is the dictionary A. How can we wisely choose A to perform well on the signals in question? This is the topic of this chapter, and our emphasis is put on learning methods for dictionaries, based on a group of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. M. Aharon, M. Elad, and A.M. Bruckstein, K-SVD and its non-negative variant for dictionary design, Proceedings of the SPIE conference wavelets, Vol. 5914, July 2005.

    Google Scholar 

  2. M. Aharon, M. Elad, and A.M. Bruckstein, On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them, Journal of Linear Algebra and Applications, 416(1):48–67, July 2006.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Aharon, M. Elad, and A.M. Bruckstein. K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation, IEEE Trans. on Signal Processing, 54(11):4311–4322, November 2006.

    Article  Google Scholar 

  4. E.J. Candès and D.L. Donoho, Recovering edges in ill-posed inverse problems: optimality of curvelet frames, Annals of Statistics, 30(3):784–842, 2000.

    Google Scholar 

  5. E.J. Candès and D.L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise-C2 singularities, Comm. Pure Appl. Math., 57:219–266, 2002.

    Article  Google Scholar 

  6. A. Cichocki, R. Zdunek, A.H. Phan, and S.I. Amari, Nonnegative Matrix and Tensor Factorizations Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, Wiley, Tokyo, Japan, 2009.

    Google Scholar 

  7. V. Chandrasekaran, M. Wakin, D. Baron, R. Baraniuk, Surflets: a sparse representation for multidimensional functions containing smooth discontinuities, IEEE Symposium on Information Theory, Chicago, IL, 2004.

    Google Scholar 

  8. R.R. Coifman and M.V. Wickerhauser, Adapted waveform analysis as a tool for modeling, feature extraction, and denoising, Optical Engineering, 33(7):2170–2174, July 1994.

    Article  Google Scholar 

  9. M.N. Do and M. Vetterli, Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models, IEEE Trans. On Multimedia, 4(4):517–527, December 2002.

    Article  Google Scholar 

  10. M.N. Do and and M. Vetterli, The finite ridgelet transform for image representation, IEEE Trans. On Image Processing, 12(1):16–28, 2003.

    Article  MathSciNet  Google Scholar 

  11. M.N. Do and and M. Vetterli, Framing pyramids, IEEE Trans. On Signal Processing, 51(9):2329–2342, 2003.

    Article  MathSciNet  Google Scholar 

  12. M.N. Do and M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation, IEEE Trans. Image on Image Processing, 14(12):2091–2106, 2005.

    Article  MathSciNet  Google Scholar 

  13. D.L. Donoho and V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts? Advances in Neural Information Processing 16 (Proc. NIPS 2003), MIT Press, 2004.

    Google Scholar 

  14. M. Elad and M. Aharon, Image denoising via learned dictionaries and sparse representation, International Conference on Computer Vision and pattern Recognition, New-York, June 17–22, 2006.

    Google Scholar 

  15. M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. on Image Processing 15(12):3736–3745, December 2006.

    Article  MathSciNet  Google Scholar 

  16. K. Engan, S.O. Aase, and J.H. Husoy, Multi-frame compression: Theory and design, EURASIP Signal Processing, 80(10):2121–2140, 2000.

    MATH  Google Scholar 

  17. R. Eslami and H. Radha, The contourlet transform for image de-noising using cycle spinning, in Proceedings of Asilomar Conference on Signals, Systems, and Computers, pp. 1982–1986, November 2003.

    Google Scholar 

  18. R. Eslami and H. Radha, Translation-invariant contourlet transform and its application to image denoising, IEEE Trans. on Image Processing, 15(11):3362–3374, November 2006.

    Article  Google Scholar 

  19. A. Gersho and R.M. Gray, Vector Quantization And Signal Compression, Kluwer Academic Publishers, Dordrecht, Netherlands, 1992.

    MATH  Google Scholar 

  20. G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins Studies in Mathematical Sciences, Third edition, 1996.

    Google Scholar 

  21. P.O. Hoyer, Non-negative matrix factorization with sparseness constraints, Journal of Machine Learning Research, 1457–1469, 2004.

    Google Scholar 

  22. K. Kreutz-Delgado, J.F. Murray, B.D. Rao, K. Engan, T-W, Lee, and T.J. Sejnowski, Dictionary learning algorithms for sparse representation, Neural Computation, 15(2)349–396, 2003.

    Article  MATH  Google Scholar 

  23. D. Lee and H. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 788–791, 1999.

    Google Scholar 

  24. S. Lesage, R. Gribonval, F. Bimbot, and L. Benaroya, Learning unions of orthonormal bases with thresholded singular value decomposition, ICASSP 2005 (IEEE Conf. on Acoustics, Speech and Signal Proc.).

    Google Scholar 

  25. M.S. Lewicki and B.A. Olshausen, A probabilistic framework for the adaptation and comparison of image codes, Journal of the Optical Society of America A: Optics, Image Science and Vision, 16(7):1587–1601, 1999.

    Article  Google Scholar 

  26. M.S. Lewicki and T.J. Sejnowski, Learning overcomplete representations, Neural Computation, 12:337–365, 2000.

    Article  Google Scholar 

  27. Y. Li, A. Cichocki, and S.-i. Amari, Analysis of sparse representation and blind source separation, Neural Computation, 16(6):1193–1234, 2004.

    Article  MATH  Google Scholar 

  28. F.G. Meyer, A. Averbuch, and J.O. Stromberg, Fast adaptive wavelet packet image compression, IEEE Trans. on Image Processing, 9(5):792–800, 2000.

    Article  Google Scholar 

  29. F.G. Meyer and R.R. Coifman, Brushlets: a tool for directional image analysis and image compression, Applied and Computational Harmonic Analysis, 4:147–187, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  30. B.A. Olshausen and D.J. Field, Natural image statistics and efficient coding, Network - Computation in Neural Systems, 7(2):333–339, 1996.

    Article  Google Scholar 

  31. B.A. Olshausen and B.J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images Nature, 381(6583):607–609, 1996.

    Article  Google Scholar 

  32. B.A. Olshausen and B.J. Field, Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37(23):3311–3325, 1997.

    Article  Google Scholar 

  33. E.P. Simoncelli, W.T. Freeman, E.H. Adelson, and D.J. Heeger, Shiftable multiscale transforms, IEEE Trans. on Information Theory, 38(2):587–607, 1992.

    Article  MathSciNet  Google Scholar 

  34. J.-L. Starck, E.J. Candès, and D.L. Donoho, The curvelet transform for image denoising, IEEE Trans. on Image Processing, 11:670–684, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Elad .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Elad, M. (2010). The Quest for a Dictionary. In: Sparse and Redundant Representations. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7011-4_12

Download citation

Publish with us

Policies and ethics