Skip to main content

Autophagy and Aging: Lessons from Progeria Models

  • Chapter
Protein Metabolism and Homeostasis in Aging

Abstract

Autophagy is an evolutionarily conserved process essential for cellular homeostasis and organismal viability. In fact, this pathway is one of the major protein degradation mechanisms in eukaryotic cells. It has been repeatedly reported that the autophagic activity of living cells decreases with age, probably contributing to the accumulation of damaged macromolecules and organelles during aging. Moreover, autophagy modulation in different model organisms has yielded very promising results suggesting that the maintenance of a proper autophagic activity contributes to extend longevity. On the other hand, recent findings have shown that distinct premature-aging murine models exhibit an extensive basal activation of autophagy instead of the characteristic decline in this process occurring during normal aging. This unexpected autophagic increase in progeroid models is usually associated with a series of metabolic alterations resembling those occurring under calorie restriction or in other situations reported to prolong life-span. In this chapter, we will discuss the current knowledge on the relationship between the autophagy pathway and aging with a special emphasis on the unexpected and novel link between premature aging and autophagy up-regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirkwood TB. Understanding the odd science of aging. Cell 2005; 120:437–447.

    Article  CAS  PubMed  Google Scholar 

  2. Cuervo AM, Bergamini E, Brunk UT et al. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 2005; 1:131–140.

    Article  PubMed  Google Scholar 

  3. Muratani M, Tansey WP. How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 2003; 4:192–201.

    Article  CAS  PubMed  Google Scholar 

  4. Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 2005; 6:79–87.

    Article  CAS  PubMed  Google Scholar 

  5. Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science 2004; 306:990–995.

    Article  CAS  PubMed  Google Scholar 

  6. Marino G, Lopez-Otin C. Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 2004; 61:1439–1454.

    Article  CAS  PubMed  Google Scholar 

  7. Terman A, Gustafsson B, Brunk UT. Autophagy, organelles and ageing. J Pathol 2007; 211:134–143.

    Article  CAS  PubMed  Google Scholar 

  8. Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biol 2004; 14:70–77.

    Article  PubMed  Google Scholar 

  9. Hara T, Nakamura K, Matsui M et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441:885–889.

    Article  CAS  PubMed  Google Scholar 

  10. Komatsu M, Waguri S, Ueno T et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 2005; 169:425–434.

    Article  CAS  PubMed  Google Scholar 

  11. Del Roso A, Vittorini S, Cavallini G et al. Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis. Exp Gerontol 2003; 38:519–527.

    Article  PubMed  Google Scholar 

  12. Donati A, Cavallini G, Paradiso C et al. Age-related changes in the regulation of autophagic proteolysis in rat isolated hepatocytes. J Gerontol A Biol Sci Med Sci 2001; 56:B288–B293.

    CAS  PubMed  Google Scholar 

  13. Brunk UT, Jones CB, Sohal RS. A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat Res 1992; 275:395–403.

    CAS  PubMed  Google Scholar 

  14. Terman A. The effect of age on formation and elimination of autophagic vacuoles in mouse hepatocytes. Gerontology 1995; 41(Suppl 2):319–326.

    Article  PubMed  Google Scholar 

  15. Donati A, Recchia G, Cavallini G et al. Effect of aging and anti-aging caloric restriction on the endocrine regulation of rat liver autophagy. J Gerontol A Biol Sci Med Sci 2008; 63:550–555.

    PubMed  Google Scholar 

  16. Cuervo AM. Autophag y and aging: keeping that old broom working. Trends Genet 2008; 24:604–612.

    Article  CAS  PubMed  Google Scholar 

  17. Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene 2006; 25:6347–6360.

    Article  CAS  PubMed  Google Scholar 

  18. Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005; 17:596–603.

    Article  CAS  PubMed  Google Scholar 

  19. Droge W, Kinscherf R. Aberrant insulin receptor signaling and amino acid homeostasis as a major cause of oxidative stress in aging. Antioxid Redox Signal 2008; 10:661–678.

    Article  PubMed  Google Scholar 

  20. Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 1993; 333:169–174.

    Article  CAS  PubMed  Google Scholar 

  21. Thumm M, Egner R, Koch B et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 1994; 349:275–280.

    Article  CAS  PubMed  Google Scholar 

  22. Huang WP, Klionsky DJ. Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 2002; 27:409–420.

    Article  CAS  PubMed  Google Scholar 

  23. Hekimi S, Lakowski B, Barnes TM et al. Molecular genetics of life span in C. elegans: how much does it teach us? Trends Genet 1998; 14:14–20.

    Article  CAS  PubMed  Google Scholar 

  24. Melendez A, Talloczy Z, Seaman M et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 2003; 301:1387–1391.

    Article  CAS  PubMed  Google Scholar 

  25. Hansen M, Chandra A, Mitic LL et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 2008; 4:e24.

    Article  PubMed  Google Scholar 

  26. Tavernarakis N, Pasparaki A, Tasdemir E et al. The effects of p53 on whole organism longevity are mediated by autophagy. Autophagy 2008; 4:870–873.

    CAS  PubMed  Google Scholar 

  27. Simonsen A, Cumming RC, Brech A et al. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 2007; 4.

    Google Scholar 

  28. Kuma A, Hatano M, Matsui M et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432:1032–1036.

    Article  CAS  PubMed  Google Scholar 

  29. Komatsu M, Waguri S, Chiba T et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441:880–884.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang C, Cuervo AM. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 2008; 14:959–965.

    Article  CAS  PubMed  Google Scholar 

  31. Harrison DE, Strong R, Sharp ZD et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009; 460:392–395.

    CAS  PubMed  Google Scholar 

  32. Russell SJ, Kahn CR. Endocrine regulation of ageing. Nat Rev Mol Cell Biol 2007; 8:681–691.

    Article  CAS  PubMed  Google Scholar 

  33. Cuervo AM. Calorie restriction and aging: the ultimate “cleansing diet”. J Gerontol A Biol Sci Med Sci 2008; 63:547–549.

    PubMed  Google Scholar 

  34. Boily G, Seifert EL, Bevilacqua L et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 2008; 3:e1759.

    Article  PubMed  Google Scholar 

  35. Colman RJ, Anderson RM, Johnson SC et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009; 325:201–204.

    Article  CAS  PubMed  Google Scholar 

  36. Nakai A, Yamaguchi O, Takeda T et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 2007; 13:619–624.

    Article  CAS  PubMed  Google Scholar 

  37. Mathew R, Karp CM, Beaudoin B et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137:1062–1075.

    Article  CAS  PubMed  Google Scholar 

  38. Mizushima N, Levine B, Cuervo AM et al. Autophagy fights disease through cellular self-digestion. Nature 2008; 451:1069–1075.

    Article  CAS  PubMed  Google Scholar 

  39. Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science 2006; 312:1059–1063.

    Article  CAS  PubMed  Google Scholar 

  40. Haithcock E, Dayani Y, Neufeld E et al. Age-related changes of nuclear architecture in Caenorhabditis elegans. Proc Natl Acad Sci USA 2005; 102:16690–16695.

    Article  CAS  PubMed  Google Scholar 

  41. Navarro CL, Cau P, Levy N. Molecular bases of progeroid syndromes. Hum Mol Genet 2006; 15 Spec No 2:R151–R161.

    Article  CAS  PubMed  Google Scholar 

  42. Schumacher B, Garinis GA, Hoeijmakers JH. Age to survive: DNA damage and aging. Trends Genet 2008; 24:77–85.

    Article  CAS  PubMed  Google Scholar 

  43. Kudlow BA, Kennedy BK, Monnat RJ Jr. Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 2007; 8:394–404.

    Article  CAS  PubMed  Google Scholar 

  44. Marino G, Ugalde AP, Salvador-Montoliu N et al. Premature aging in mice activates a systemic metabolic response involving autophagy induction. Hum Mol Genet. 2008;17(14):2196–211.

    Article  CAS  PubMed  Google Scholar 

  45. Marino G, Lopez-Otin C. Autophagy and aging: new lessons from progeroid mice. Autophagy 2008; 4:807–809.

    CAS  PubMed  Google Scholar 

  46. Chen YF, Kao CH, Chen YT et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev 2009; 23:1183–1194.

    Article  CAS  PubMed  Google Scholar 

  47. Miao D, Su H, He B et al. Severe growth retardation and early lethality in mice lacking the nuclear localization sequence and C-terminus of PTH-related protein. Proc Natl Acad Sci USA 2008; 105:20309–20314.

    Article  CAS  PubMed  Google Scholar 

  48. Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med 2009; 361:147–85.

    Article  Google Scholar 

  49. van de Ven M, Andressoo JO, Holcomb VB et al. Adaptive stress response in segmental progeria resembles long-lived dwarfism and calorie restriction in mice. PLoS Genet 2006; 2:e192.

    Article  PubMed  Google Scholar 

  50. van der Pluijm I, Garinis GA, Brandt RM et al. Impaired genome maintenance suppresses the growth hormone—insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biol 2006; 5:e2.

    Article  Google Scholar 

  51. Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006; 116:1776–1783.

    Article  CAS  PubMed  Google Scholar 

  52. Hardie DG. The AMP-activated protein kinase pathway–new players upstream and downstream. J Cell Sci 2004; 117:5479–5487.

    Article  CAS  PubMed  Google Scholar 

  53. Park YE, Hayashi YK, Bonne G et al. Autophagic degradation of nuclear components in mammalian cells. Autophagy 2009; 5.

    Google Scholar 

  54. Vellai T, Takacs-Vellai K, Zhang Y et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 2003; 426:620.

    Article  CAS  PubMed  Google Scholar 

  55. Bonawitz ND, Chatenay-Lapointe M, Pan Y et al. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 2007; 5:265–277.

    Article  CAS  PubMed  Google Scholar 

  56. Narbonne P, Roy R. Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development 2006; 133:611–619.

    Article  CAS  PubMed  Google Scholar 

  57. Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell 2005; 120:449–460.

    Article  CAS  PubMed  Google Scholar 

  58. Anderson RM, Barger JL, Edwards MG et al. Dynamic regulation of PGC-1 alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell 2008; 7:101–111.

    Article  CAS  PubMed  Google Scholar 

  59. Gerhart-Hines Z, Rodgers JT, Bare O et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 alpha. EMBO J 2007; 26:1913–1923.

    Article  CAS  PubMed  Google Scholar 

  60. Dechat T, Shimi T, Adam SA et al. Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging. Proc Natl Acad Sci USA 2007; 104:4955–4960.

    Article  CAS  PubMed  Google Scholar 

  61. Cao K, Capell BC, Erdos MR et al. A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci USA 2007; 104:4949–4954.

    Article  CAS  PubMed  Google Scholar 

  62. Maiuri MC, Zalckvar E, Kimchi A et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8:741–752.

    Article  CAS  PubMed  Google Scholar 

  63. Merideth MA, Gordon LB, Clauss S et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 2008; 358:592–604.

    Article  CAS  PubMed  Google Scholar 

  64. Pendas AM, Zhou Z, Cadinanos J et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet 2002; 31:94–99.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos López-Otín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Mariño, G., Fernández, A.F., López-Otín, C. (2010). Autophagy and Aging: Lessons from Progeria Models. In: Tavernarakis, N. (eds) Protein Metabolism and Homeostasis in Aging. Advances in Experimental Medicine and Biology, vol 694. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7002-2_6

Download citation

Publish with us

Policies and ethics