Skip to main content

Proteasome Function Determines Cellular Homeostasis and the Rate of Aging

  • Chapter
Book cover Protein Metabolism and Homeostasis in Aging

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 694))

Abstract

Homeostasis is a key feature of cellular lifespan. Maintenance of cellular homeostasis influences the rate of aging and its efficiency is determined by the cooperation between protein stability and resistance to stress, protein refolding, protein repair and proteolysis of damaged proteins. Protein degradation is predominately catalyzed by the proteasome which is responsible for cell clearance of abnormal, denatured or in general damaged proteins as well as for the regulated degradation of short-lived proteins. Impaired proteasome function has been tightly correlated to aging both in vivo and in vitro and thus, emphasis has been given recently in identifying ways of its activation. A number of studies have shown that the proteasome can be activated by genetic manipulations as well as by factors that affect either its conformation and stability or the expression of its subunits and the rate of proteasome assembly. This “readjustment” has been shown to have a great impact on retention of cellular homeostasis since it promotes lifespan extension. This chapter focuses on protein homeostasis and its direct link to proteasome function, dysfunction and manipulation and provides insights regarding the activation of proteasome-mediated protein degradation that, in turn, ensures health maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petropoulou C, Chondrogianni N, Simões D et al. Aging and longevity: A paradigm of complementation between homeostatic mechanisms and genetic control? Ann NY Acad Sci 2000; 908:133–142.

    Article  CAS  PubMed  Google Scholar 

  2. Trougakos IP, Chondrogianni N, Pimenidou A et al. Slowing down cellular aging in vitro. In: S.I.S. Rattan, ed. Modulating Aging and Longevity Kluwer Academic Publishers, 2003:65–83.

    Google Scholar 

  3. Sohal RS, Sohal BH, Brunk UT. Relationship between antioxidant defenses and longevity in different mammalian species. Mech Aging Dev 1990; 53:217–227.

    Article  CAS  PubMed  Google Scholar 

  4. Pérez VI, Buffenstein R, Masamsetti V et al. Protein stability and resisatnce to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci USA 2009; 106:3059–3064.

    Article  PubMed  Google Scholar 

  5. Salmon AB, Leonard S, Masamsetti V et al. The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J 2009; 23:in press.

    Google Scholar 

  6. Söti C, Csermely P. Protein stress and stress proteins: implications in aging and disease. J Biosci 2007; 32:511–515.

    Article  PubMed  Google Scholar 

  7. Petropoulos I, Friguet B. Maintenance of proteins and aging: the role of oxidized protein repair. Free Radic Res 2006; 40:1269–1276.

    Article  CAS  PubMed  Google Scholar 

  8. Picot CR, Petropoulos I, Perichon M et al. Overexpression of MsrA protects WI-38 SV40 human fibroblasts against H2O2-mediated oxidative stress. Free Radic Biol Med 2005; 39:1332–1341.

    Article  CAS  PubMed  Google Scholar 

  9. Cabreiro F, Picot CR, Perichon M et al. Overexpression of mitochondrial methionine sulfoxide reductase B2 protects leukemia cells from oxidative stress-induced cell death and protein damage. J Biol Chem 2008; 283:16673–16681.

    Article  CAS  PubMed  Google Scholar 

  10. Picot CR, Perichon M, Cintrat JC et al. The peptide methionine sulfoxide reductases, MsrA and MsrB (hCBS-1), are downregulated during replicative senescence of human WI-38 fibroblasts. FEBS Lett 2004; 558:74–78.

    Article  CAS  PubMed  Google Scholar 

  11. Cuervo AM, Bergamini E, Brunk UT et al. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 2007; 1:131–140.

    Article  Google Scholar 

  12. Goldberg AL. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 2007; 35:12–17.

    Article  CAS  PubMed  Google Scholar 

  13. Friguet B, Bulteau AL, Petropoulos I. Mitochondrial protein quality control: implications in ageing. Biotechnol J 2008; 3:757–764.

    Article  CAS  PubMed  Google Scholar 

  14. Ciechanover A. Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Differ 2005; 12:1178–1190.

    Article  CAS  PubMed  Google Scholar 

  15. Hanna J, Finley D. A proteasome for all occasions. FEBS Lett 2007; 581:2854–2861.

    Article  CAS  PubMed  Google Scholar 

  16. Borissenko L, Groll M. Diversity of proteasomal missions: fine tuning of the immune response. Biol Chem 2007; 388:947–955.

    Article  CAS  PubMed  Google Scholar 

  17. Murata S, Sasaki K, Kishimoto T et al. Regulation of CD8+ T-cell development by thymus-specific proteasomes. Science 2007; 316:1349–1353.

    Article  CAS  PubMed  Google Scholar 

  18. Hirano Y, Hayashi H, Iemura S et al. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol Cell 2006; 24:977–984.

    Article  CAS  PubMed  Google Scholar 

  19. Hirano Y, Kaneko T, Okamoto K et al. Dissecting β-ring assembly pathway of the mammalian 20S proteasome. EMBO J 2008; 27:2204–2213.

    Article  CAS  PubMed  Google Scholar 

  20. Heinemeyer W, Ramos PC, Dohmen RJ. The ultimate nanoscale mincer: assembly, structure and active sites of the 20S proteasome core. Cell Mol Life Sci 2004; 61:1562–1578.

    Article  CAS  PubMed  Google Scholar 

  21. Herbig U, Sedivy JM. Regulation of growth arrest in senescence: Telomere damage is not the end of the story. Mech Aging Dev 2006; 127:16–24.

    Article  CAS  PubMed  Google Scholar 

  22. Chondrogianni N, Gonos ES. Proteasome dysfunction in mammalian aging: steps and factors involved. Exp Gerontol 2005; 40:931–938.

    Article  CAS  PubMed  Google Scholar 

  23. Chondrogianni N, Stratford FLL, Trougakos IP et al. Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem 2003; 278:28026–28037.

    Article  CAS  PubMed  Google Scholar 

  24. Chondrogianni N, Gonos ES. Proteasome inhibition induces a senescence-like phenotype in primary human fibroblasts cultures. Biogerontology 2004; 5:55–61.

    Article  CAS  PubMed  Google Scholar 

  25. Grune T, Jung T, Merker K et al. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid and ‘aggresomes’ during oxidative stress, aging and disease. Int J Biochem Cell Biol 2004; 36:2519–2530.

    Article  CAS  PubMed  Google Scholar 

  26. Ponnappan S, Ovaa H, Ponnappan U. Lower expression of catalytic and structural subunits of the proteasome contributes to decreased proteolysis in peripheral blood T-lymphocytes during aging. Int J Biochem Cell Biol 2007; 39:799–809.

    Article  CAS  PubMed  Google Scholar 

  27. Stratford FLL, Chondrogianni N, Trougakos IP et al. Proteasome response to interferon-gamma is altered in senescent human fibroblasts. FEBS Lett 2006; 580:3989–3994.

    Article  CAS  PubMed  Google Scholar 

  28. Ferrington DA, Husom AD, Thompson LV. Altered proteasome structure, function and oxidation in aged muscle. FASEB J. 2005; 19:644–646.

    CAS  PubMed  Google Scholar 

  29. Ly DH, Lockhart DJ, Lerner RA et al. Mitotic misregulation and human aging, Science 2000; 287:2486–2492.

    Article  CAS  PubMed  Google Scholar 

  30. Husom AD, Peters EA, Kolling EA et al. Altered proteasome function and subunit composition in aged muscle. Arch Biochem Biophys 2004; 421:67–76.

    Article  CAS  PubMed  Google Scholar 

  31. Vernace VA, Arnaud L, Schmidt-Glenewinkel T et al. Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J 2007; 21:2672–2682.

    Article  CAS  PubMed  Google Scholar 

  32. Tonoki A, Kuranaga E, Tomioka T et al. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol 2009; 29:1095–1106.

    Article  CAS  PubMed  Google Scholar 

  33. Shang F, Gong X, Palmer HJ et al. Age-related decline in ubiquitin conjugation in response to oxidative stress in the lens. Exp Eye Res 1997; 64:21–30.

    Article  CAS  PubMed  Google Scholar 

  34. Ghazi A, Henis-Korenblit S, Kenyon C. Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex. Proc Natl Acad Sci USA 2007; 104:5947–5952.

    Article  CAS  PubMed  Google Scholar 

  35. Yun C, Stanhill A, Yang Y et al. Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans. Proc Natl Acad Sci USA 2008; 105:7094–7099.

    Article  CAS  PubMed  Google Scholar 

  36. Hassan WM, Merin DA, Fonte V et al. AIP-1 ameliorates ta-amyloid peptide toxicity in a Caenorhabditis elegans Alzheimer’s disease model. Hum Mol Genet 2009; in press.

    Google Scholar 

  37. Gaczynska M, Rock K, Spies T et al. Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complex-encoded genes for LMP2 and LMP7. Proc Natl Acad Sci USA 1994; 91:9213–9217.

    Article  CAS  PubMed  Google Scholar 

  38. Gaczynska M, Goldberg AL, Tanaka K et al. Proteasome subunits X and Y alter peptidase activities in opposite ways to the interferon-gamma-induced subunits LMP2 and LMP7. J Biol Chem 1996; 271:17275–17280.

    Article  CAS  PubMed  Google Scholar 

  39. Chondrogianni N, Tzavelas C, Pemberton AJ et al. Overexpression of proteasome beta 5 subunit increases the amount of assembled proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem 2005; 280:11840–11850.

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Liu X, Zhang T et al. Cytoprotective effects of proteasome bet5 subunit overexpression in lens epithelial cells. Mol Vis 2007; 13:31–38.

    CAS  PubMed  Google Scholar 

  41. Kwak MK, Cho JM, Huang B et al. Role of increased expression of the proteasome in the protective effects of sulphoraphane against hydrogen peroxide-mediated cytotoxicity in murine neuroblastoma cells. Free Radic Biol Med 2007; 43:809–817.

    Article  CAS  PubMed  Google Scholar 

  42. Hwang JS, Hwang JS, Chang I et al. Age-associated decrease in proteasome content and activities in human dermal fibroblasts: restoration of normal level of proteasome subunits reduces aging markers in fibroblasts from elderly persons. J Gerontol A Biol Sci Med Sci 2007; 62:490–499.

    PubMed  Google Scholar 

  43. Chondrogianni N, Gonos ES. Overexpression of hUMP1/POMP proteasome accessory protein enhances proteasome-mediated antioxidant defence. Exp Gerontol 2007; 42:899–903.

    Article  CAS  PubMed  Google Scholar 

  44. Chen Q, Thorpe J, Dohmen JR et al. Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome? Free Radic Biol Med 2006; 40:120–126.

    Article  CAS  PubMed  Google Scholar 

  45. Chen Q, Ding Q, Thorpe J et al. RNA interference toward UMP1 induces proteasome inhibition in Saccharomyces cerevisiae: evidence for protein oxidation and autophagic cell death. Free Radic Biol Med 2005; 38:226–234.

    Article  CAS  PubMed  Google Scholar 

  46. Chen Q, Thorpe J, Ding Q et al. Proteasome synthesis and assembly are required for survival during stationary phase. Free Radic Biol Med 2004; 37:859–868.

    Article  CAS  PubMed  Google Scholar 

  47. Dahlmann B, Rutschmann M, Kuehn L et al. Activation of the multicatalytic proteinase from rat skeletal muscle by fatty acids or sodium dodecyl sulphate. Biochem J 1985; 228:171–177.

    CAS  PubMed  Google Scholar 

  48. Kohler A, Cascio P, Leggett DS et al. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 2001; 7:1143–1152.

    Article  CAS  PubMed  Google Scholar 

  49. Kisselev AF, Kaganovich D, Goldberg AL. Binding of hydrophobic peptides to several noncatalytic sites promotes peptide hydrolysis by all active sites of 20S proteasomes. Evidence for peptide-induced channel opening in the alpha-rings. J Biol Chem 2002; 277:22260–22270.

    Article  CAS  PubMed  Google Scholar 

  50. Bonoli M, Bendini A. Qualitative and semiquantitative analysis of phenoloic compounds in extra virgin olive oils as a function of the ripening degree of olive fruits by different analytical techniques. J Agric Food Chem 2004; 52:7026–7032.

    Article  CAS  PubMed  Google Scholar 

  51. Katsiki M, Chondrogianni N, Chinou I et al. The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res 2007; 10:157–172.

    Article  CAS  PubMed  Google Scholar 

  52. Bulteau AL, Moreau M, Saunois A et al. Algae extract-mediated stimulation and protection of proteasome activity within human keratinocytes exposed to UVA and UVB irradiation. Antioxid Redox Signal 2006; 8:136–143.

    Article  CAS  PubMed  Google Scholar 

  53. Kwak MK, Wakabayashi N, Greenlaw JL et al. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol 2003; 23:8786–8794.

    Article  CAS  PubMed  Google Scholar 

  54. Kwak MK, Cho JM, Huang B et al. Role of increased expression of the proteasome in the protective effects of sulforaphane against hydrogen peroxide-mediated cytotoxicity in murine neuroblastoma cells. Free Radic Biol Med 2007; 43:809–817.

    Article  CAS  PubMed  Google Scholar 

  55. Park HM, Kim JA, Kwak MK. Protection against amyloid beta cytotoxicity by sulforaphane: role of the proteasome. Arch Pharm Res 2009; 32:109–115.

    Article  CAS  PubMed  Google Scholar 

  56. Kwak MK, Wakabayashi N, Kensler TW. Chemoprevention through the Keap1-Nrf2 signaling pathway by phase 2 enzyme inducers. Mutat Res 2004; 555:133–148.

    CAS  PubMed  Google Scholar 

  57. Pearson KJ, Lewis KN, Price NL et al. Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci USA 2008; 105:2325–2330.

    Article  CAS  PubMed  Google Scholar 

  58. Kapeta S, Chondrogianni N, Gonos ES. Nuclear erythroid factor 2 (Nrf2) mediated proteasome activation delays senescence in human fibroblasts. J Biol Chem 2010; in press.

    Google Scholar 

  59. Chondrogianni N, Petropoulos I, Franceschi C et al. Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol 2000; 35:721–728.

    Article  CAS  PubMed  Google Scholar 

  60. Bonelli MA, Desenzani S, Cavallini G et al. Low-level caloric restriction rescues proteasome activity and Hsc70 level in liver of aged rats. Biogerontology 2008; 9:1–10.

    Article  CAS  PubMed  Google Scholar 

  61. Goto S, Takahashi R, Radak Z et al. Beneficial biochemical outcomes of late-onset dietary restriction in rodents. Ann NY Acad Sci 2007; 1100:431–441.

    Article  CAS  PubMed  Google Scholar 

  62. Salesby JT, Judge AR, Yimlamai T et al. Life long calorie restriction increases heat shock proteins and proteasome activity in soleus muscles of Fisher 344 rats. Exp Gerontol 2005; 40:37–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstathios S. Gonos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Chondrogianni, N., Gonos, E.S. (2010). Proteasome Function Determines Cellular Homeostasis and the Rate of Aging. In: Tavernarakis, N. (eds) Protein Metabolism and Homeostasis in Aging. Advances in Experimental Medicine and Biology, vol 694. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7002-2_4

Download citation

Publish with us

Policies and ethics