Skip to main content

Confronting Cellular Heterogeneity in Studies of Protein Metabolism and Homeostasis in Aging Research

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 694))

Abstract

In this chapter we review the different technologies that can be applied in the analysis of protein homeostasis and metabolism in aging research. Special focus will be on technologies with a potential to circumvent the problems associated with cell heterogeneity in biomarker discovery. Often studies aimed at increasing our understanding of cellular senescence take advantage of model systems. This can be in the form of cell culture, where specific cell lines are cultivated, thus undergoing cellular senescence according to the Hayflick phenomenon. 1 Alternatively, model organisms can be included, such as yeast, nematodes and zebra fish.2-5 Even though such model systems allow the researcher to control many parameters of the system, it is well established that even in a simple cell culture system the individual cells are morphologically and functionally different.

The heterogeneity observed even within the least complex systems, makes it a difficult task to identify biomarkers of cellular senescence and to fully understand the various molecular networks. The complexity is further increased when taking the step from model systems of aging to human aging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25(3):585–621.

    Article  Google Scholar 

  2. Kaeberlein M, McVey M, Guarente L. Using yeast to discover the fountain of youth. Sci Aging Knowledge Environ 2001; 2001(1):pe1.

    Article  CAS  PubMed  Google Scholar 

  3. Gershon H, Gershon D. Caenorhabditis elegans—a paradigm for aging research: advantages and limitations. Mech Ageing Dev 2002; 123(4):261–74.

    Article  PubMed  Google Scholar 

  4. Gerhard GS. Comparative aspects of zebrafish (Danio rerio) as a model for aging research. Exp Gerontol 2003; 38(11–12):1333–41.

    Article  CAS  PubMed  Google Scholar 

  5. Partridge L. Some highlights of research on aging with invertebrates, 2009. Aging Cell 2009; 8(5):509–13.

    Article  CAS  PubMed  Google Scholar 

  6. de Magalhaes JP. From cells to ageing: a review of models and mechanisms of cellular senescence and their impact on human ageing. Exp Cell Res 2004; 300(1):1–10.

    Article  PubMed  Google Scholar 

  7. Crick F. Central dogma of molecular biology. Nature 1970; 227(5258):561–3.

    Article  CAS  PubMed  Google Scholar 

  8. Franceschi C, Bezrukov V, Blanche H et al. Genetics of healthy aging in Europe: the EU-integrated project GEHA (GEnetics of Healthy Aging). Ann N Y Acad Sci 2007; 1100:21–45.

    Article  CAS  PubMed  Google Scholar 

  9. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250(10):4007–21.

    PubMed  Google Scholar 

  10. Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004; 4(12):3665–85.

    Article  PubMed  Google Scholar 

  11. Kondo T, Hirohashi S. Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics. Nat Protoc 2006; 1(6):2940–56.

    Article  CAS  PubMed  Google Scholar 

  12. Mann M, Hendrickson RC, Pandey A. Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 2001; 70:437–73.

    Article  CAS  PubMed  Google Scholar 

  13. Chakravarti B, Oseguera M, Dalal N et al. Proteomic profiling of aging in the mouse heart: Altered expression of mitochondrial proteins. Arch Biochem Biophys 2008; 474(1):22–31.

    Article  CAS  PubMed  Google Scholar 

  14. Lombardi A, Silvestri E, Cioffi F et al. Defining the transcriptomic and proteomic profiles of rat ageing skeletal muscle by the use of a cDNA array, 2D-and Blue native-PAGE approach. J Proteomics 2009; 72(4):708–21.

    Article  CAS  PubMed  Google Scholar 

  15. Gromov P, Skovgaard GL, Palsdottir H et al. Protein profiling of the human epidermis from the elderly reveals up-regulation of a signature of interferon-gamma-induced polypeptides that includes manganese-superoxide dismutase and the p85beta subunit of phosphatidylinositol 3-kinase. Mol Cell Proteomics 2003; 2(2):70–84.

    Article  CAS  PubMed  Google Scholar 

  16. Kamino H, Hiratsuka M, Toda T et al. Searching for genes involved in arteriosclerosis: Proteomic analysis of cultured human umbilical vein endothelial cells undergoing replicative senescence. Cell Struct Funct 2003; 28(6):495–503.

    Article  CAS  PubMed  Google Scholar 

  17. Eman MR, Regan-Klapisz E, Pinkse MWH et al. Protein expression dynamics during replicative senescence of endothelial cells studied by 2-D differences in-gel electrophoresis. Electrophoresis 2006; 27(8):1669–82.

    Article  CAS  PubMed  Google Scholar 

  18. Levin Y, Schwarz E, Wang L et al. Label-free LC-MS/MS quantitative proteomics for large-scale biomarker discovery in complex samples. J Sep Sci 2007; 30(14):2198–203.

    Article  CAS  PubMed  Google Scholar 

  19. Wiener MC, Sachs JR, Deyanova EG et al. Differential mass spectrometry: A label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal Chem 2004; 76(20):6085–96.

    Article  CAS  PubMed  Google Scholar 

  20. Lengqvist J, Andrade J, Yang Y et al. Robustness and accuracy of high speed LC-MS separations for global peptide quantitation and biomarker discovery. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877(13):1306–16.

    Article  CAS  PubMed  Google Scholar 

  21. Kaplan A, Söderström M, Fenyö D et al. An automated method for scanning LC-MS data sets for significant peptides and proteins, including quantitative profiling and interactive confirmation. J Proteome Res 2007; 6(7):2888–95.

    Article  CAS  PubMed  Google Scholar 

  22. McCafferty J, Griffiths AD, Winter G et al. Phage antibodies: Filamentous phage displaying antibody variable domains. Nature 1990; 348(6301):552–4.

    Article  CAS  PubMed  Google Scholar 

  23. Huse WD, Sastry L, Iverson SA et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 1989; 246(4935):1275–81.

    Article  CAS  PubMed  Google Scholar 

  24. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005; 23(9):1126–36.

    Article  CAS  PubMed  Google Scholar 

  25. Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol 2005; 23(9):1105–16.

    Article  CAS  PubMed  Google Scholar 

  26. Hoogenboom HR, De Brune AP, Hufton SE et al. Antibody phage display technology and its applications. Immunotechnology 1998; 4(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  27. Benhar I. Biotechnological applications of phage and cell display. Biotechnol Adv 2001; 19(1):1–33.

    Article  CAS  PubMed  Google Scholar 

  28. Knappik A, Ge L, Honegger A et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 2000; 296(1):57–86.

    Article  CAS  PubMed  Google Scholar 

  29. Parsons HL, Earnshaw JC, Wilton J et al. Directing phage selections towards specific epitopes. Protein Eng 1996; 9(11):1043–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hawkins RE, Russell SJ, Winter G. Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J Mol Biol 1992; 226(3):889–96.

    Article  CAS  PubMed  Google Scholar 

  31. Griffiths AD, Duncan AR. Strategies for selection of antibodies by phage display. Curr Opin Biotechnol 1998; 9(1):102–8.

    Article  CAS  PubMed  Google Scholar 

  32. Jarutat T, Nickels C, Frisch C et al. Selection of vimentin-specific antibodies from the HuCAL phage display library by subtractive panning on formalin-fixed, paraffin-embedded tissue. Biol Chem 2007; 388(6):651–8.

    Article  CAS  PubMed  Google Scholar 

  33. Marks JD, Ouwehand WH, Bye JM et al. Human antibody fragments specific for human blood group antigens from a phage display library. Nat Biotechnol 1993; 11(10):1145–9.

    CAS  Google Scholar 

  34. Siegel DL, Chang TY, Russell SL et al. Isolation of cell surface-specific human monoclonal antibodies using phage display and magnetically-activated cell sorting: Applications in immunohematology. J Immunol Methods 1997; 206(1–2):73–85.

    Article  CAS  PubMed  Google Scholar 

  35. Lowman HB, Bass SH, Simpson N et al. Selecting high-affinity binding proteins by monovalent phage display. Biochemistry 1991; 30(45):10832–8.

    Article  CAS  PubMed  Google Scholar 

  36. Kristensen P, Winter G. Proteolytic selection for protein folding using filamentous bacteriophages. Fold Des 1998; 3(5):321–8.

    Article  CAS  PubMed  Google Scholar 

  37. Pavoni E, Monteriu G, Cianfriglia M et al. New display vector reduces biological bias for expression of antibodies in E. coli. Gene 2007; 391(1–2):120–9.

    Article  CAS  PubMed  Google Scholar 

  38. Hoogenboom HR, Lutgerink JT, Pelsers MMAL et al. Selection-dominant and nonaccessible epitopes on cell-surface receptors revealed by cell-panning with a large phage antibody library. Eur J Biochem 1999; 260(3):774–84.

    Article  CAS  PubMed  Google Scholar 

  39. Meulemans EV, Slobbe R, Wasterval P et al. Selection of phage-displayed antibodies specific for a cytoskeletal antigen by competitive elution with a monoclonal antibody. J Mol Biol 1994; 244(4):353–60.

    Article  CAS  PubMed  Google Scholar 

  40. Holliger P, Riechmann L, Williams RL. Crystal structure of the two N-terminal domains of g3p from filamentous phage fd at 1.9 A: evidence for conformational lability. J Mol Biol 1999; 288(4):649–57.

    Article  CAS  PubMed  Google Scholar 

  41. Riechmann L, Holliger P. The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell 1997; 90(2):351–60.

    Article  CAS  PubMed  Google Scholar 

  42. Jensen KB, Jensen ON, Ravn P et al. Identification of keratinocyte-specific markers using phage display and mass spectrometry. Mol Cell Proteomics 2003; 2(2):61–9.

    Article  CAS  PubMed  Google Scholar 

  43. Ridgway JBB, Ng E, Kern JA et al. Identification of a human anti-CD55 single-chain Fv by subtractive panning of a phage library using tumor and nontumor cell lines. Cancer Res 1999; 59(11):2718–23.

    CAS  PubMed  Google Scholar 

  44. Wong C, Waibel R, Sheets M et al. Human scFv antibody fragments specific for the epithelial tumour marker MUC-1, selected by phage display on living cells. Cancer Immunol Immunother 2001; 50(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  45. Roovers RC, Van der Linden E, De Brune AP et al. Identification of colon tumour-associated antigens by phage antibody selections on primary colorectal carcinoma. Eur J Cancer 2001; 37(4):542–9.

    Article  CAS  PubMed  Google Scholar 

  46. Mutuberria R, Satijn S, Huijbers A et al. Isolation of human antibodies to tumor-associated endothelial cell markers by in vitro human endothelial cell selection with phage display libraries. J Immunol Methods 2004; 287(1-2):31–47.

    Article  CAS  PubMed  Google Scholar 

  47. De Kruif J, Terstappen L, Boel E et al. Rapid selection of cell subpopulation-specific human monoclonal antibodies from a synthetic phage antibody library. Proc Natl Acad Sci USA 1995; 92(9):3938–42.

    Article  PubMed  Google Scholar 

  48. Lekkerkerker A, Logtenberg T. Phage antibodies against human dendritic cell subpopulations obtained by flow cytometry-based selection on freshly isolated cells. J Immunol Methods 1999; 231(1–2):53–63.

    Article  CAS  PubMed  Google Scholar 

  49. Geuijen CAW, Bijl N, Smit RCM et al. A proteomic approach to tumour target identification using phage display, affinity purification and mass spectrometry. Eur J Cancer 2005; 41(1):178–87.

    Article  CAS  PubMed  Google Scholar 

  50. Bakker ABH, Van Den Oudenrijn S, Bakker AQ et al. C-type lectin-like molecule-1: A novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res 2004; 64(22):8443–50.

    Article  CAS  PubMed  Google Scholar 

  51. Yuan QA, Robinson MK, Simmons HH et al. Isolation of anti-MISIIR scFv molecules from a phage display library by cell sorter biopanning. Cancer Immunology, Immunotherapy 2008; 57(3):367–78.

    Article  CAS  PubMed  Google Scholar 

  52. Palmer DB, George AJT, Ritter MA. Selection of antibodies to cell surface determinants on mouse thymic epithelial cells using a phage display library. Immunology 1997; 91(3):473–8.

    Article  CAS  PubMed  Google Scholar 

  53. McWhirter JR, Kretz-Rommel A, Saven A et al. Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Natl Acad Sci USA 2006; 103(4):1041–6.

    Article  CAS  PubMed  Google Scholar 

  54. Tordsson J, Abrahmsén L, Kalland T et al. Efficient selection of scFv antibody phage by adsorption to in situ expressed antigens in tissue sections. J Immunol Methods 1997; 210(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  55. Kubo N, Akita N, Shimizu A et al. Identification of oligopeptide binding to colon cancer cells separated from patients using laser capture microdissection. J Drug Target 2008; 16(5):396–404.

    Article  CAS  PubMed  Google Scholar 

  56. Lu H, Jin D, Kapila YL. Application of laser capture microdissection to phage display peptide library screening. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004; 98(6):692–7.

    Article  PubMed  Google Scholar 

  57. Ruan W, Sassoon A, An F et al. Identification of clinically significant tumor antigens by selecting phage antibody library on tumor cells in situ using laser capture microdissection. Mol Cell Proteomics 2006; 5(12):2364–73.

    Article  CAS  PubMed  Google Scholar 

  58. Sun Y, Shukla GS, Weaver D et al. Phage-display selection on tumor histological specimens with laser capture microdissection. J Immunol Methods 2009; 347(1–2):46–53.

    Article  CAS  PubMed  Google Scholar 

  59. Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature 1996; 380(6572):364–6.

    Article  CAS  PubMed  Google Scholar 

  60. Ballard VLT, Sharma A, Duignan I et al. Vascular tenascin-C regulates cardiac endothelial phenotype and neovascularization. FASEB J 2006; 20(6):717–9.

    CAS  PubMed  Google Scholar 

  61. Cai D, Holm JM, Duignan IJ et al. BDNF-mediated enhancement of inflammation and injury in the aging heart. Physiol Genomics 2006; 24(3):191–7.

    CAS  PubMed  Google Scholar 

  62. Chen Y, Shen Y, Guo X et al. Transdermal protein delivery by a coadministered peptide identified via phage display. Nat Biotechnol 2006; 24(4):455–60.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang L, Hoffman JA, Ruoslahti E. Molecular profiling of heart endothelial cells. Circulation 2005; 112(11):1601–11.

    Article  CAS  PubMed  Google Scholar 

  64. Johns M, George AJT, Ritter MA. In vivo selection of sFv from phage display libraries. J Immunol Methods 2000; 239(1–2):137–51.

    Article  CAS  PubMed  Google Scholar 

  65. Mutuberria R, Hoogenboom HR, Van Der Linden E et al. Model systems to study the parameters determining the success of phage antibody selections on complex antigens. J Immunol Methods 1999; 231(1–2):65–81.

    Article  CAS  PubMed  Google Scholar 

  66. Robert R, Jacobin-Valat MJ, Daret D et al. Identification of human scFvs targeting atherosclerotic lesions: Selection by single round in vivo phage display. J Biol Chem 2006; 281(52):40135–43.

    Article  CAS  PubMed  Google Scholar 

  67. Valadon P, Garnett JD, Testa JE et al. Screening phage display libraries for organ-specific vascular immunotargeting in vivo. Proc Natl Acad Sci USA 2006; 103(2):407–12.

    Article  CAS  PubMed  Google Scholar 

  68. Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8(9):729–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kristensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Boisen, L., Kristensen, P. (2010). Confronting Cellular Heterogeneity in Studies of Protein Metabolism and Homeostasis in Aging Research. In: Tavernarakis, N. (eds) Protein Metabolism and Homeostasis in Aging. Advances in Experimental Medicine and Biology, vol 694. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7002-2_16

Download citation

Publish with us

Policies and ethics