Skip to main content

Synthesis, Modification and Turnover of Proteins during Aging

  • Chapter
Protein Metabolism and Homeostasis in Aging

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 694))

Abstract

Alterations in the rate and extent of protein synthesis, accuracy, post-translational modifications and turnover are among the main molecular characteristics of aging. A decline in the cellular capacity through proteasomal and lysosomal pathways to recognize and preferentially degrade damaged proteins leads to the accumulation of abnormal proteins during aging. The consequent increase in molecular heterogeneity and impaired functioning of proteins is the basis of several age-related pathologies, such as cataracts, sarcopenia and neurodegerative diseases. Understanding the proteomic spectrum and its functional implications during aging can facilitate developing effective means of intervention, prevention and therapy of aging and age-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rattan SIS. Synthesis, modifications and turnover of proteins during aging. Exp Gerontol 1996; 31:33–47.

    Article  CAS  PubMed  Google Scholar 

  2. Rattan SIS. Transcriptional and translational dysregulation during aging. In: von Zglinicki T, ed. Aging at the Molecular Level. Dordrecht: Kluwer Acad Publ, 2003:179–91.

    Google Scholar 

  3. Abbott CM, Proud CG. Translational factors: in sickness and in health. Trends Biochem Sci 2004; 29:25–31.

    Article  CAS  PubMed  Google Scholar 

  4. Holliday R. The current status of the protein error theory of aging. Exp Gerontol 1996; 31:449–52.

    Article  CAS  PubMed  Google Scholar 

  5. Hipkiss A. Accumulation of altered proteins and ageing: causes and effects. Exp Gerontol 2006; 41:464–73.

    Article  CAS  PubMed  Google Scholar 

  6. Rattan SIS. Translation and post-translational modifications during aging. In: Macieira-Coelho A, ed. Molecular Basis of Aging. Boca Raton, Florida: CRC Press, 1995:389–420.

    Google Scholar 

  7. Luce MC, Bunn CL. Altered sensitivity of protein synthesis to paromomycin in extracts from aging human diploid fibroblasts. Exp Gerontol 1987; 22:165–77.

    Article  CAS  PubMed  Google Scholar 

  8. Luce MC, Bunn CL. Decreased accuracy of protein synthesis in extracts from aging human diploid fibroblasts. Exp Gerontol 1989; 24:113–25.

    Article  CAS  PubMed  Google Scholar 

  9. Holliday R, Rattan SIS. Evidence that paromomycin induces premature ageing in human fibroblasts. Monogr Devl Biol 1984; 17:221–33.

    CAS  Google Scholar 

  10. Buchanan JH, Stevens A, Sidhu J. Aminoglycoside antibiotic treatment of human fibroblasts: intracellular accumulation, molecular changes and the loss of ribosomal accuracy. Eur J Cell Biol 1987; 43:141–7.

    CAS  PubMed  Google Scholar 

  11. Nyström T. Translational fidelity, protein oxidation and senescence: lessons from bacteria. Ageing Res Rev 2002; 1:693–703.

    Article  PubMed  Google Scholar 

  12. Nyström T. Aging in bacteria. Curr Opin Microbiol 2002; 5:596–601.

    Article  PubMed  Google Scholar 

  13. Silar P, Rossignol M, Haedens V et al. Deletion and dosage modulation of the eEF1A gene in Podospora anserina: effect on the life cycle. Biogerontology 2000; 1:47–54.

    Article  CAS  PubMed  Google Scholar 

  14. Holbrook MA, Menninger JR. Erythromycin slows aging of Saccharomyces cerevisiae. J Gerontol Biol Sci 2002; 57A:B29–B36.

    CAS  Google Scholar 

  15. Dever TE. Translation initiation: adept at adapting. TIBS 1999; 24:398–403.

    CAS  PubMed  Google Scholar 

  16. Hershey JWB, Merrick WC. The pathway and mechanism of inititation of protein synthesis. In: Sonenberg N, Hershey JWB, Mathews MB, eds. Translational Control of Gene Expression. New York: Cold Spring Harbor Laboratory Press, 2000:33–88.

    Google Scholar 

  17. Chen ZP, Chen KY. Dramatic attenuation of hypusine formation on eukaryotic initiation factor 5A during senescence of IMR-90 human diploid fibroblasts. J Cell Physiol 1997; 170:248–54.

    Article  CAS  PubMed  Google Scholar 

  18. Saini P, Eyler DE, Green R et al. Hypusine-containing protein eIF5A promotes translation elongation. Nature 2009; 459:118–21.

    Article  CAS  PubMed  Google Scholar 

  19. Ward W, Richardson A. Effect of age on liver protein synthesis and degradation. Hepatol 1991; 14:935–48.

    Article  CAS  Google Scholar 

  20. Van Remmen H, Ward WF, Sabia RV et al. Gene expression and protein degradation. In: Masoro E, editor. Handbook of Physiology: Aging. Oxford University Press, 1995:171–234.

    Google Scholar 

  21. Riis B, Rattan SIS, Clark BFC et al. Eukaryotic protein elongation factors. TIBS 1990; 15:420–4.

    PubMed  Google Scholar 

  22. Andersen GR, Nissen P, Nyborg J. Elongation factors in protein biosynthesis. Trends Biochem Sci 2003; 28:434–41.

    Article  CAS  PubMed  Google Scholar 

  23. Merrick WC. Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev 1992; 56:291–315.

    CAS  PubMed  Google Scholar 

  24. Richardson A, Semsei I. Effect of aging on translation and transcription. Rev Biol Res Aging 1987; 3:467–83.

    CAS  Google Scholar 

  25. Merry BJ, Holehan AM. Effect of age and restricted feeding on polypeptide chain assembly kinetics in liver protein synthesis in vivo. Mech Ageing Develop 1991; 58:139–50.

    Article  CAS  Google Scholar 

  26. Rattan SIS. Regulation of protein synthesis during ageing. Eur J Gerontol 1992; 1:128–36.

    Google Scholar 

  27. Webster GC. Protein synthesis in aging organisms. In: Sohal RS, Birnbaum LS, Cutler RG, editors. Molecular Biology of Aging: Gene Stability and Gene Expression. New York: Raven Press; 1985:263–89.

    Google Scholar 

  28. Webster GC. Effect of aging on the components of the protein synthesis system. In: Collatz KG, Sohal RS, eds. Insect Aging. Berlin: Springer-Verlag, 1986:207–16.

    Google Scholar 

  29. Takahashi R, Mori N, Goto S. Accumulation of heat-labile elongation factor 2 in the liver of mice and rats. Exp Gerontol 1985; 20:325–31.

    Article  CAS  PubMed  Google Scholar 

  30. Riis B, Rattan SIS, Derventzi A et al. Reduced levels of ADP-ribosylatable elongation factor-2 in aged and SV40-transformed human cells. FEBS Lett 1990; 266:45–7.

    Article  CAS  PubMed  Google Scholar 

  31. Rattan SIS, Ward WF, Glenting M et al. Dietary calorie restriction does not affect the levels of protein elongation factors in rat livers during ageing. Mech Ageing Develop 1991; 58:85–91.

    Article  CAS  Google Scholar 

  32. Parrado J, Bougria M, Ayala A et al. Effects of aging on the various steps of protein synthesis: fragmentation of elongation factor 2. Free Rad Biol Med 1999; 26:362–70.

    Article  CAS  PubMed  Google Scholar 

  33. Jäger M, Holtz J, Redpath NT et al. The ageing heart: influence of cellular and tissue ageing on total content and distribution of the variants of elongation factor-2. Mech Ageing Dev 2002; 123:1305–19.

    Article  PubMed  Google Scholar 

  34. Soskic V, Groebe K, Schrattenholz A. Nonenzymatic post-translational protein modifications in ageing. Exp Gerontol 2008; 43:247–57.

    Article  CAS  PubMed  Google Scholar 

  35. Stefani M. Protein folding and misfolding, relevance to disease and biological function. In: Smith HJ, Simons C, Seewell RDE, eds. Protein Misfolding in Neurodegenerative Diseases: Mechanisms and Therapeutic Strategies. Boca Raton: CRC Press, 2008:2–66.

    Google Scholar 

  36. Dephoure N, Zhou C, Villén J et al. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 2008; 105:10762–7.

    Article  CAS  PubMed  Google Scholar 

  37. Rattan SIS. Cellular senescence in vitro. Encyclopedia of Life Sciences 2008; doi:10.1002/9780470015902. a0002567.pub2.

    Google Scholar 

  38. Stein GH, Dulic V. Origins of G1 arrest in senescent human fibroblasts. BioEssays 1995; 17:537–43.

    Article  CAS  PubMed  Google Scholar 

  39. Tresini M, Lorenzini A, Torres C et al. Modulation of replicative senescence of diploid human cells by nuclear ERK signaling. J Biol Chem 2007; 282:4136–51.

    Article  CAS  PubMed  Google Scholar 

  40. Sedding DG. FoxO transcription factors in oxidative stress response and ageing—a new fork on the way to longevity? Biol Chem 2008; 389:279–83.

    Article  CAS  PubMed  Google Scholar 

  41. Riis B, Rattan SIS, Palmquist K et al. Elongation factor 2-specific calcium and calmodulin dependent protein kinase III activity in rat livers varies with age and calorie restriction. Biochem Biophys Res Commun 1993; 192:1210–6.

    Article  CAS  PubMed  Google Scholar 

  42. Riis B, Rattan SIS, Palmquist K et al. Dephosphorylation of the phosphorylated elongation factor-2 in the livers of calorie-restricted and freely-fed rats during ageing. Biochem Mol Biol Int 1995; 35:855–9.

    CAS  PubMed  Google Scholar 

  43. Meinnel T, Mechulam Y, Blanquet S. Aminoacyl-tRNA synthetases: occurrence, structure and function. In: Söll D, RajBhandary UL, eds. tRNA: Structure, Biosynthesis and Function. Washington D.C.: ASM Press, 1995:251–92.

    Google Scholar 

  44. Kihara F, Ninomyia-Tsuji J, Ishibashi S et al. Failure in S6 protein phosphorylation by serum stimulation of senescent human diploid fibroblasts, TIG-1. Mech Ageing Dev 1986; 20:305–13.

    Google Scholar 

  45. Blumenthal EJ, Miller ACK, Stein GH et al. Serine/threonine protein kinases and calcium-dependent protease in senescent IMR-90 fibroblasts. Mech Ageing Dev 1993; 72:13–24.

    Article  CAS  PubMed  Google Scholar 

  46. De Tata V, Ptasznik A, Cristofalo VJ. Effect of tumor promoter phorbol 12-myristate 13-acetate (PMA) on proliferation of young and senescent WI-38 human diploid fibroblasts. Exp Cell Res 1993; 205:261–9.

    Article  PubMed  Google Scholar 

  47. Farber A, Chang C, Sell C et al. Failure of senescent human fibroblasts to express the insulin-like growth factor-1 gene. J Biol Chem 1993; 268:17883–8.

    Google Scholar 

  48. Derventzi A, Rattan SIS, Clark BFC. Phorbol ester PMA stimulates protein synthesis and increases the levels of active elongation factors EF-1a and EF-2 in ageing human fibroblasts. Mech Ageing Dev 1993; 69:193–205.

    Article  CAS  PubMed  Google Scholar 

  49. Miller RA. Aging and immune function: cellular and biochemical analyses. Exp Gerontol 1994; 29:21–35.

    Article  CAS  PubMed  Google Scholar 

  50. Pardo VG, Facchinetti MM, Curino A et al. Age-related alteration of 1alpha,25(OH)(2)-vitamin D (3)-dependent activation of p38 MAPK in rat intestinal cells. Biogerontology 2007; 8:13–24.

    Article  CAS  PubMed  Google Scholar 

  51. Battaini F, Govoni S, Trabucchi M. Protein kinase C signal transmission during aging. In: Macieira-Coelho A, ed. Molecular Basis of Aging. Boca Raton: CRC Press, 1995:269–91.

    Google Scholar 

  52. Levine RL. Carbonyl modified proteins in cellular regulation, aging and disease. Free Rad Biol Med 2002; 32:790–6.

    Article  CAS  PubMed  Google Scholar 

  53. Dukan S, Farewell A, Ballesteros M et al. Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci USA 2000; 97:5746–9.

    Article  CAS  PubMed  Google Scholar 

  54. Grune T. Oxidative stress, aging and the proteasomal system. Biogerontology 2000; 1:31–40.

    Article  CAS  PubMed  Google Scholar 

  55. Cloos PA, Christgau S. Post-translational modifications of proteins: implications for aging, antigen recognition and autoimmunity. Biogerontology 2004; 5:139–58.

    Article  CAS  PubMed  Google Scholar 

  56. Perez VI, Buffenstein R, Masamsetti V et al. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci USA 2009.

    Google Scholar 

  57. Verbeke P, Clark BFC, Rattan SIS. Reduced levels of oxidized and glycoxidized proteins in human fibroblasts exposed to repeated mild heat shock during serial passaging in vitro. Free Rad Biol Med 2001; 31:1593–602.

    Article  CAS  PubMed  Google Scholar 

  58. Carney JM, Starke-Reed PE, Oliver CN et al. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci USA 1991; 88:3633–6.

    Article  CAS  PubMed  Google Scholar 

  59. Sohal RS, Agarwal S, Dubey A et al. Protein oxidative damage is associated with life expectancy of houseflies. Proc Natl Acad Sci USA 1993; 90:7255–9.

    Article  CAS  PubMed  Google Scholar 

  60. Sohal RS, Ku H-H, Agarwal S. Biochemical correlates of longevity in two closely related rodent species. Biochem Biophys Res Commun 1993; 196:7–11.

    Article  CAS  PubMed  Google Scholar 

  61. Beal MF. Oxidatively modified proteins in aging and disease. Free Rad Biol Med 2002; 32:797–803.

    Article  CAS  PubMed  Google Scholar 

  62. Goto S, Nakamura A, Radak Z et al. Carbonylated proteins in aging and excercise: immunoblot approaches. Mech Ageing Dev 1999; 107:245–53.

    Article  CAS  PubMed  Google Scholar 

  63. Yasuda K, Adachi H, Fujiwara Y et al. Protein carbonyl accumulation in aging dauer formation-defective (daf ) mutants of Caenorhabditis elegans. J Gerontol Biol Sci 1999; 54A:B47–B51.

    CAS  Google Scholar 

  64. Gordillo E, Ayala A, Bautista J et al. Implication of lysine residues in the loss of enzymatic activity in rat liver 6-phosphogluconate dehydrogenase found in aging. J Biol Chem 1989; 264:17024–8.

    CAS  PubMed  Google Scholar 

  65. Gafni A. Age-related effects in enzyme metabolism and catalysis. Rev Biol Res Aging 1990; 4:315–36.

    CAS  Google Scholar 

  66. Stadtman ER. Protein oxidation and aging. Science 1992; 257:1220–4.

    Article  CAS  PubMed  Google Scholar 

  67. Wells-Knecht MC, Huggins TG, Dyer DG et al. Oxidized amino acids in lens protein with age. Measurement of o-tyrosine and dityrosine in the aging human lens. J Biol Chem 1993; 268:12348–52.

    CAS  PubMed  Google Scholar 

  68. Mary J, Vougier S, Picot CR et al. Enzymatic reactions involved in the repair of oxidized proteins. Exp Gerontol 2004; 39:1117–23.

    Article  CAS  PubMed  Google Scholar 

  69. Petropoulos I, Conconi M, Wang X et al. Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol Biol Sci 2000; 55A:B220–B7.

    CAS  Google Scholar 

  70. Wood JM, Decker H, Hartmann H et al. Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J 2009.

    Google Scholar 

  71. Ruan H, Tang XD, Chen ML et al. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA. 2002; 99:2748–53.

    Article  CAS  PubMed  Google Scholar 

  72. Meli M, Frey J, Perier C. Native protein glycoxidation and aging. J Nutr Health Aging 2003; 7:263–6.

    CAS  PubMed  Google Scholar 

  73. Ramasamy R, Yan SF, Schmidt AM. Methylglyoxal comes of AGE. Cell 2006; 124:258–60.

    Article  CAS  PubMed  Google Scholar 

  74. Kueper T, Grune T, Prahl S et al. Vimentin is the specific target in skin glycation. Structural prerequisites, functional consequences and role in skin aging. J Biol Chem 2007; 282:23427–36.

    Article  CAS  PubMed  Google Scholar 

  75. Oimomi M, Maeda Y, Hata F et al. A study of the age-related acceleration of glycation of tissue proteins in rats. J Gerontol 1988; 43:B98–101.

    CAS  PubMed  Google Scholar 

  76. Miksík I, Deyl Z. Changes in the amount of e-hexosyllysine, UV absorbance and fluorescence of collagen with age in different animal species. J Gerontol 1991; 46:B111–6.

    PubMed  Google Scholar 

  77. Lee AT, Cerami A. Role of glycation in aging. Ann NY Acad Sci 1992; 663:63–70.

    Article  CAS  PubMed  Google Scholar 

  78. Makita Z, Vlassara H, Rayfield E et al. Hemoglobin-AGE: a circulating marker of advanced glycosylation. Science 1992; 258:651–3.

    Article  CAS  PubMed  Google Scholar 

  79. Gracy RW, Yüksel KÜ, Chapman ML et al. Impaired protein degradation may account for the accumulation of “abnormal” proteins in aging cells. In: Adelman RC, Dekker EE, eds. Modifications of Proteins during Aging. New York: Alan R. Liss, 1985:1–18.

    Google Scholar 

  80. Cini JK, Gracy RW. Molecular basis of the isozyme of bovine glucose-6-phosphate isomerase. Arch Biochem Biophys 1986; 249:500–5.

    Article  CAS  PubMed  Google Scholar 

  81. Brunauer LS, Clarke S. Age-dependent accumulation of protein residues which can be hydrolyzed to d-aspartic acid in human erythrocytes. J Biol Chem 1986; 261:12538–43.

    CAS  PubMed  Google Scholar 

  82. Luthra M, Ranganathan D, Ranganathan S et al. Racemization of tyrosine in the insoluble protein fraction of brunescent aging human lenses. J Biol Chem 1994; 269:22678–82.

    CAS  PubMed  Google Scholar 

  83. Beneke S, Alvarez-Gonzalez R, Bürkle A. Comparative characterization of poly(ADP-ribose) polymerase-1 from two mammalian species with different life span. Exp Gerontol 2000; 35:989–1002.

    Article  CAS  PubMed  Google Scholar 

  84. Bürkle A. Physiology and pathophysiology of poly(ADP-ribosyl)ation. BioEssays 2001; 23:795–806.

    Article  PubMed  Google Scholar 

  85. Dell’Orco RT, Anderson LE. Decline of poly(ADP-ribosyl)ation during in vitro senescence in human diploid fibroblasts. J Cell Physiol 1991; 146:216–21.

    Article  PubMed  Google Scholar 

  86. Grube K, Bürkle A. Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span. Proc Natl Acad Sci USA 1992; 89:11759–63.

    Article  CAS  PubMed  Google Scholar 

  87. McBride AE, Silver PA. State of the Arg: protein methylation at arginine comes of age. Cell 2001; 106:5–8.

    Article  CAS  PubMed  Google Scholar 

  88. Rattan SIS, Derventzi A, Clark BFC. Protein synthesis, post-translational modifications and aging. Ann NY Acad Sci 1992; 663:48–62.

    Article  CAS  PubMed  Google Scholar 

  89. Mays-Hoopes LL. Macromolecular methylation during aging. Rev Biol Res Aging 1985; 2:361–93.

    CAS  Google Scholar 

  90. McFadden PN, Clarke S. Protein carboxyl methyltransferase and methyl acceptor proteins in aging and cataractus tissue of the human eye lens. Mech Ageing Develop 1986; 34:91–105.

    Article  CAS  Google Scholar 

  91. Sellinger OZ, Kramer CM, Conger A et al. The carboxylmethylation of cerebral membrane-bound proteins increases with age. Mech Ageing Develop 1988; 43:161–73.

    Article  CAS  Google Scholar 

  92. Kay MMB. Molecular aging of membrane molecules and cellular removal. In: Goldstein AL, ed. Biomedical Advances in Aging. New York: Plenum Press, 1990:147–61.

    Google Scholar 

  93. Porter MB, Pereira-Smith OM, Smith JR. Common senescent cell-specific antibody epitopes on fibronectin in species and cells of varied origin. J Cell Physiol 1992; 150:545–51.

    Article  CAS  PubMed  Google Scholar 

  94. Hébert L, Pandey S, Wang E. Commitment to cell death is signaled by the appearance of a terminin protein of 30 kDa. Exp Cell Res 1994; 210:10–8.

    Article  PubMed  Google Scholar 

  95. Selkoe DJ. Aging brain, aging mind. Sci Amer 1992; 267:135–42.

    Article  Google Scholar 

  96. Esler WP, Wolfe MS. A portrait of Alzheimer secretases—new features and familiar faces. Science 2001; 293:1449–54.

    Article  CAS  PubMed  Google Scholar 

  97. DiPaolo BR, Pignolo RJ, Cristofalo VJ. Overexpression of the two-chain form of cathepsin B in senescent WI-38 cells. Exp Cell Res 1992; 201:500–5.

    Article  CAS  PubMed  Google Scholar 

  98. Sottile J, Mann DM, Diemer V et al. Regulation of collagenase and collagenase mRNA production in early-and late-passage human diploid fibroblasts. J Cell Physiol 1989; 138:281–90.

    Article  CAS  PubMed  Google Scholar 

  99. Whiteheart SW, Shenbagamurthi P, Chen L et al. Murine elongation factor 1a (EF-1a) is post-translationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. J Biol Chem 1989; 264:14334–41.

    CAS  PubMed  Google Scholar 

  100. Park MH, Wolff EC, Folk JE. Is hypusine essential for eukaryotic cell proliferation? TIBS 1993; 18:475–9.

    CAS  PubMed  Google Scholar 

  101. Nagaraj RH, Sell DR, Prabhakaram M et al. High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis. Proc Natl Acad Sci USA 1991; 88:10257–61.

    Article  CAS  PubMed  Google Scholar 

  102. Norsgaard H, Clark BFC, Rattan SIS. Distinction between differentiation and senescence and the absence of increased apoptosis in human keratinocytes undergoing cellular aging in vitro. Exp Gerontol 1996; 31:563–70.

    Article  CAS  PubMed  Google Scholar 

  103. Huttner WB. Protein tyrosine sulfation. TIBS 1987; 12:361–3.

    CAS  Google Scholar 

  104. Marshall CJ. Protein prenylation: a mediator of protein-protein interactions. Science 1993; 259:1865–6.

    Article  CAS  PubMed  Google Scholar 

  105. Thelin A, Runquist M, Ericsson J et al. Age-dependent changes in rat liver prenyltransferases. Mech Ageing Dev 1994; 76:165–76.

    Article  CAS  PubMed  Google Scholar 

  106. Merker K, Grune T. Proteolysis of oxidised proteins and cellular senescence. Exp Gerontol 2000; 35:779–86.

    Article  CAS  PubMed  Google Scholar 

  107. Gaczynska M, Osmulski PA, Ward WF. Caretaker or undertaker? The role of the proteasome in aging. Mech Ageing Dev 2001; 122:235–54.

    Article  CAS  PubMed  Google Scholar 

  108. Shringaarpure R, Davies KJA. Protein turnover by the proteasome in aging and disease. Free Rad Biol Med 2002; 32:1084–9.

    Article  Google Scholar 

  109. Pan J-X, Short SR, Goff SA et al. Ubiquitin pools, ubiquitin mRNA levels and ubiquitin-mediated proteolysis in aging human fibroblasts. Exp Gerontol 1993; 28:39–49.

    Article  CAS  PubMed  Google Scholar 

  110. Bulteau AL, Petropoulos I, Friguet B. Age-related alterations of proteasome structure and function in aging epidermis. Exp Gerontol 2000; 35:767–77.

    Article  CAS  PubMed  Google Scholar 

  111. Brégégére F, Milner Y, Friguet B. The ubiquitin-proteasome system at the crossroads of stress-response and ageing pathways: a handle for skin care? Aging Res Rev 2006; 5:60–90.

    Article  CAS  Google Scholar 

  112. Carrard G, Bulteau AL, Petropoulos I et al. Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol 2002; 34:1461–74.

    Article  CAS  PubMed  Google Scholar 

  113. Terman A, Kurz T, Gustafsson B et al. Lysosomal labilization. IUBMB LIfe 2006; 58:531–9.

    Article  CAS  PubMed  Google Scholar 

  114. Terman A, Gustafsson B, Brunk UT. Autophagy, organelles and ageing. J Pathol 2007; 211:134–43.

    Article  CAS  PubMed  Google Scholar 

  115. Wick M, Bürger C, Brüsselbach S et al. A novel member of human tissue inhibitor of metalloproteinases (TIMP) gene family is regulated during G1 progression, mitogenic stimulation, differentiation and senescence. J Biol Chem 1994; 269:18953–60.

    CAS  PubMed  Google Scholar 

  116. Hearn MG, Edland SD, Ogburn CE et al. Trypsin inhibitor activities of fibroblasts increase with age of donor and are unaltered in familial Alzheimer’s disease. Exp Gerontol 1994; 29:611–23.

    Article  CAS  PubMed  Google Scholar 

  117. Rattan SIS. Theories of biological aging: genes, proteins and free radicals. Free Rad Res 2006; 40:1230–8.

    Article  CAS  Google Scholar 

  118. Rattan SIS. Increased molecular damage and heterogeneity as the basis of aging. Biol Chem 2008; 389:267–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Rattan, S.I.S. (2010). Synthesis, Modification and Turnover of Proteins during Aging. In: Tavernarakis, N. (eds) Protein Metabolism and Homeostasis in Aging. Advances in Experimental Medicine and Biology, vol 694. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7002-2_1

Download citation

Publish with us

Policies and ethics