Cell and Molecular Aging

Chapter

Abstract

Discussions of aging invariably begin by establishing a satisfactory definition for the term aging and the related word senescence. Although the term aging is commonly used to refer to postmaturational processes that lead to diminished homeostasis and increased organismic vulnerability, the more correct term for this is senescence (derived from the Latin word “senescere,” meaning to grow old or to diminish), which explicitly refers to the process of growing old and sustaining related deterioration. Aging on the other hand can refer to any time-related process. We will use senescence to refer to cellular phenomena and aging to refer to changes, as organisms grow old.

Keywords

Lymphoma Estrogen Osteoporosis Adenoma Dementia 

References

  1. 1.
    Cutler RG (1985) Evolutionary perspective of human longevity. In: Hazzard WR, Andres R, Bierman EL et al (eds) Principles of geriatric medicine and gerontology, 2nd edn. McGraw-Hill, New York, p 16Google Scholar
  2. 2.
    Kung HC, Hoyert DL, Xu JQ, Murphy SL (2008) Deaths: final data for 2005, vol 56. National Center for Health Statistics, Hyattsville, MDGoogle Scholar
  3. 3.
    He W, Sengupta M, Velkoff VA, DeBarros KA (2005) 65+ in the United States: 2005. Current Population Reports, P23-P209. U.S. Government Printing Office, Washington, DCGoogle Scholar
  4. 4.
    Perls TT, Alpert L, Fretts RC (1997) Middle-aged mothers live longer. Nature 389(6647):133PubMedCrossRefGoogle Scholar
  5. 5.
    Snowden DA, Kane RL, Beeson WL (1989) Is early natural menopause a biological marker of health and ageing? Am J Public Health 79:709–714CrossRefGoogle Scholar
  6. 6.
    van der Schouw YT, van der Graaf Y, Steyerberg EW, Eijkemans JC, Banga JD (1996) Menopause as a risk factor for cardiovascular mortality. Lancet 347(9003):714–718PubMedCrossRefGoogle Scholar
  7. 7.
    Helle S, Lummaa V, Jokela J (2005) Are reproductive and somatic senescence coupled in humans? Late, but not early, reproduction correlated with longevity in historical Sami women. Proc R Soc B Biol Sci 272(1558):29–37CrossRefGoogle Scholar
  8. 8.
    Morley JE, Haren MT, Kim MJ, Kevorkian R, Perry HM III (2005) Testosterone, aging and quality of life. J Endocrinol Invest 28(3 Suppl):76–80PubMedGoogle Scholar
  9. 9.
    Yeap BB (2008) Are declining testosterone levels a major risk factor for ill-health in aging men? Int J Impot Res 21(1):24–36PubMedCrossRefGoogle Scholar
  10. 10.
    Roush W (1996) Live long and prosper? [news]. Science 273(5271): 42–46PubMedGoogle Scholar
  11. 11.
    Greville TN, Bayo F, Foster R (1975) United States life tables by causes of death: 1960-71, vol 1, Number 5, Technical Report Google Scholar
  12. 12.
    Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273(5271):59–63PubMedCrossRefGoogle Scholar
  13. 13.
    Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 77:727–754PubMedCrossRefGoogle Scholar
  14. 14.
    Weindruch R, Walford RL (1982) Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 215(4538):1415–1418PubMedCrossRefGoogle Scholar
  15. 15.
    Yu BP, Masoro EJ, McMahan CA (1985) Nutritional influences on aging of Fischer 344 rats: I. Physical, metabolic, and longevity characteristics. J Gerontol 40(6):657–670PubMedCrossRefGoogle Scholar
  16. 16.
    Masoro EJ (1993) Dietary restriction and aging. J Am Geriatr Soc 41(9):994–999PubMedGoogle Scholar
  17. 17.
    Weindruch R, Sohal RS (337) Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med 14:986–994Google Scholar
  18. 18.
    Dulloo AG, Girardier L (1993) 24 hour energy expenditure several months after weight loss in the underfed rat: evidence for a chronic increase in whole-body metabolic efficiency. Int J Obes Relat Metab Disord 17(2):115–123PubMedGoogle Scholar
  19. 19.
    Gonzales-Pacheco DM, Buss WC, Koehler KM, Woodside WF, Alpert SS (1993) Energy restriction reduces metabolic rate in adult male Fisher-344 rats. J Nutr 123(1):90–97PubMedGoogle Scholar
  20. 20.
    McCarter R, Masoro EJ, Yu BP (1985) Does food restriction retard aging by reducing the metabolic rate? Am J Physiol 248(4 Pt 1):E488–E490PubMedGoogle Scholar
  21. 21.
    Lane MA, Baer DJ, Rumpler WV et al (1996) Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc Natl Acad Sci USA 93(9):4159–4164PubMedCrossRefGoogle Scholar
  22. 22.
    Ramsey JJ, Roecker EB, Weindruch R, Kemnitz JW (1997) Energy expenditure of adult male rhesus monkeys during the first 30 mo of dietary restriction. Am J Physiol 272(5 Pt 1):E901–E907PubMedGoogle Scholar
  23. 23.
    Verdery RB, Ingram DK, Roth GS, Lane MA (1997) Caloric restriction increases HDL2 levels in rhesus monkeys (Macaca mulatta). Am J Physiol 273(4 Pt 1):E714–E719PubMedGoogle Scholar
  24. 24.
    Mattison JA, Lane MA, Roth GS, Ingram DK (2003) Calorie restriction in rhesus monkeys. Exp Gerontol 38(1–2):35–46PubMedCrossRefGoogle Scholar
  25. 25.
    Heilbronn LK, de Jonge L, Frisard MI et al (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295(13):1539–1548PubMedCrossRefGoogle Scholar
  26. 26.
    Lefevre M, Redman LM, Heilbronn LK et al (2009) Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis 203(1):206–213PubMedCrossRefGoogle Scholar
  27. 27.
    Gompertz B (1825) On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies. Philos Trans R Soc Lond 115:513CrossRefGoogle Scholar
  28. 28.
    Kung HC, Hoyert DL, Xu JQ, Murphy SL (2008) Deaths: final data for 2005. National Vital Statistics Reports. Vol 56. National Center for Health Statistics, Hyattsville, MDGoogle Scholar
  29. 29.
    Shock NW, Greulich RC, Andres R et al (eds) (1984) Normal human aging: the baltimore longitudinal study of aging. U.S. Department of Health and Human Services, Washington, DCGoogle Scholar
  30. 30.
    Riggs BL, Melton LJ III (1986) Involutional osteoporosis. N Engl J Med 314(26):1676–1686PubMedCrossRefGoogle Scholar
  31. 31.
    Florini JR (ed.) (1981) Composition and function of cells and tissues. In: Handbook of biolochemistry in aging. CRC Press, Boca RatonGoogle Scholar
  32. 32.
    Strehler BL (1977) Time, cells, and aging, 2nd edn. Academic Press, New YorkGoogle Scholar
  33. 33.
    Bjorksten J (1974) Cross linkage and the aging process. In: Rothstein M (ed) Theoretical aspects of aging. Academic Press, New York, p 43Google Scholar
  34. 34.
    Kohn RR (1978) Aging of animals: possible mechanisms. In: Principles of mammalian aging, 2nd edn. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  35. 35.
    Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311(5765):1257PubMedCrossRefGoogle Scholar
  36. 36.
    Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128(1):36–44PubMedCrossRefGoogle Scholar
  37. 37.
    Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC (2004) Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol 6(2):168–170PubMedCrossRefGoogle Scholar
  38. 38.
    Finch CE (1990) Introduction: gefinitions and concepts. In: Longevity, senescence, and the genome. University of Chicago Press, ChicagoGoogle Scholar
  39. 39.
    Schneider EL, Rowe JW (eds) (1996) Handbook of the biology of aging, 4th edn. Academic Press, San DiegoGoogle Scholar
  40. 40.
    Shock NW (1985) Longitudinal studies of aging in humans. In: Finch CE, Schneider EL (eds) Handbook of the biology of aging, 2nd edn. Van Nostrand Reinhold, New York, p 721Google Scholar
  41. 41.
    Lakatta EG (1990) Changes in cardiovascular function with aging. Eur Heart J 11(Suppl C):22–29PubMedCrossRefGoogle Scholar
  42. 42.
    Lindeman RD, Tobin J, Shock NW (1985) Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 33(4):278–285PubMedGoogle Scholar
  43. 43.
    Adelman RC, Britton GW, Rotenberg S (1978) Endocrine regulation of gene activity in aging animals of different genotypes. In: Bergsma D, Harrison DE (eds) Genetic effects on aging. Alan R. Liss, New York, p 355Google Scholar
  44. 44.
    Dorshkind K, Montecino-Rodriguez E, Signer RAJ et al (2009) The ageing immune system: is it ever too old to become young again? Nat Rev Immunol 9(1):57–62PubMedCrossRefGoogle Scholar
  45. 45.
    Brody JA, Brock DB (1985) Epidemiological and statistical characteristics of the United States elderly population. In: Finch CE, Schneider EL (eds) Handbook of the biology of aging, 2nd edn. Van Nostrand Reinhold, New York, p 3Google Scholar
  46. 46.
    Rosenberg HM, Ventura SJ, Maurer JD et al (1996) Births and deaths: United States, 1995. Mon Vital Stat Rep 45(3 Suppl 2):31–33Google Scholar
  47. 47.
    Hitt R, Young-Xu Y, Silver M, Perls T (1999) Centenarians: the older you get, the healthier you have been. Lancet 354(9179):652PubMedCrossRefGoogle Scholar
  48. 48.
    Niedernhofer LJ, Garinis GA, Raams A et al (2006) A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444(7122):1038–1043PubMedCrossRefGoogle Scholar
  49. 49.
    Rose MR, Graves JL Jr (1989) What evolutionary biology can do for gerontology. J Gerontol 44(2):B27–B29PubMedCrossRefGoogle Scholar
  50. 50.
    Kirkwood TB, Rose MR (1991) Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B Biol Sci 332(1262):15–24PubMedCrossRefGoogle Scholar
  51. 51.
    Kirkwood TB (1996) Human senescence. Bioessays 18(12): 1009–1016PubMedCrossRefGoogle Scholar
  52. 52.
    Finch CE, Tanzi RE (1997) Genetics of aging. Science 278:407–411PubMedCrossRefGoogle Scholar
  53. 53.
    Jazwinski SM (1996) Longevity, genes, and aging. Science 273(5271):54–59PubMedCrossRefGoogle Scholar
  54. 54.
    Murakami S, Johnson TE (1996) A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143(3):1207–1218PubMedGoogle Scholar
  55. 55.
    Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans [see comments]. Science 277(5328):942–946PubMedCrossRefGoogle Scholar
  56. 56.
    Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type [see comments]. Nature 366(6454):461–464PubMedCrossRefGoogle Scholar
  57. 57.
    Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function fo double the life-span of Caenorhabditis elegans. Science 278:1319–1322PubMedCrossRefGoogle Scholar
  58. 58.
    Kaeberlein M, McVey M, Guarente L (2001) Using yeast to discover the fountain of youth. Science of aging and knowledge environment. http://sageke.sciencemag.org/cgi/content/full/sageke;2001/1/pe1: http://sageke.sciencemag.org/cgi/content/full/sageke;2001/1/pe1
  59. 59.
    Guarente L (2007) Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 72:483–488PubMedCrossRefGoogle Scholar
  60. 60.
    Schwer B, Verdin E (2008) Conserved metabolic regulatory functions of sirtuins. Cell Metab 7(2):104–112PubMedCrossRefGoogle Scholar
  61. 61.
    Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282(5390):943–946PubMedCrossRefGoogle Scholar
  62. 62.
    Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290(5499):2137–2140PubMedCrossRefGoogle Scholar
  63. 63.
    Dudas SP, Arking R (1995) A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J Gerontol A Biol Sci Med Sci 50(3):B117–B127PubMedCrossRefGoogle Scholar
  64. 64.
    Rose MR, Vu LN, Park SU, Graves JL Jr (1992) Selection on stress resistance increases longevity in Drosophila melanogaster. Exp Gerontol 27(2):241–250PubMedCrossRefGoogle Scholar
  65. 65.
    Migliaccio E, Giorgio M, Mele S et al (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402(6759):309–313PubMedCrossRefGoogle Scholar
  66. 66.
    Flurkey K, Papaconstantinou J, Harrison DE (2002) The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech Ageing Dev 123(2–3):121–130PubMedCrossRefGoogle Scholar
  67. 67.
    De Benedictis G, Rose G, Carrieri G et al (1999) Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J 13(12):1532–1536PubMedGoogle Scholar
  68. 68.
    Salvioli S, Capri M, Santoro A et al (2008) The impact of mitochondrial DNA on human lifespan: a view from studies on centenarians. Biotechnol J 3(6):740–749PubMedCrossRefGoogle Scholar
  69. 69.
    Rose G, Passarino G, Carrieri G et al (2001) Paradoxes in longevity: sequence analysis of mtDNA haplogroup J in centenarians. Eur J Hum Genet 9(9):701–707PubMedCrossRefGoogle Scholar
  70. 70.
    Ross OA, McCormack R, Curran MD et al (2001) Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Exp Gerontol 36(7):1161–1178PubMedCrossRefGoogle Scholar
  71. 71.
    Capri M, Salvioli S, Sevini F et al (2006) The genetics of human longevity. Ann NY Acad Sci 1067:252–263PubMedCrossRefGoogle Scholar
  72. 72.
    Glatt SJ, Chayavichitsilp P, Depp C, Schork NJ, Jeste DV (2007) Successful aging: from phenotype to genotype. Biol Psychiatry 62(4):282–293PubMedCrossRefGoogle Scholar
  73. 73.
    Barzilai N, Atzmon G, Schechter C et al (2003) Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA 290(15):2030–2040PubMedCrossRefGoogle Scholar
  74. 74.
    Willcox BJ, Donlon TA, He Q et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 105(37):13987–13992PubMedCrossRefGoogle Scholar
  75. 75.
    Flachsbart F, Caliebe A, Kleindorp R et al (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci USA 106(8):2700–2705PubMedCrossRefGoogle Scholar
  76. 76.
    Lunetta KL, D’Agostino RB Sr, Karasik D et al (2007) Genetic correlates of longevity and selected age-related phenotypes: a genome-wide association study in the Framingham Study. BMC Med Genet 8(Suppl 1):S13PubMedCrossRefGoogle Scholar
  77. 77.
    Bellizzi D, Rose G, Cavalcante P et al (2005) A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85(2):258–263PubMedCrossRefGoogle Scholar
  78. 78.
    Rose G, Dato S, Altomare K et al (2003) Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 38(10):1065–1070PubMedCrossRefGoogle Scholar
  79. 79.
    Suh Y, Atzmon G, Cho MO et al (2008) Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA 105(9):3438–3442PubMedCrossRefGoogle Scholar
  80. 80.
    Hong MG, Reynolds C, Gatz M et al (2008) Evidence that the gene encoding insulin degrading enzyme influences human lifespan. Hum Mol Genet 17(15):2370–2378PubMedCrossRefGoogle Scholar
  81. 81.
    Hurme M, Lehtimaki T, Jylha M, Karhunen PJ, Hervonen A (2005) Interleukin-6–174G/C polymorphism and longevity: a follow-up study. Mech Ageing Dev 126(3):417–418PubMedCrossRefGoogle Scholar
  82. 82.
    Di Bona D, Vasto S, Capurso C et al (2009) Effect of interleukin-6 polymorphisms on human longevity: a systematic review and meta-analysis. Ageing Res Rev 8(1):36–42PubMedCrossRefGoogle Scholar
  83. 83.
    Scola L, Candore G, Colonna-Romano G et al (2005) Study of the association with -330T/G IL-2 in a population of centenarians from centre and south Italy. Biogerontology 6(6):425–429PubMedCrossRefGoogle Scholar
  84. 84.
    Hurme M, Kivimaki M, Pertovaara M et al (2007) CRP gene is involved in the regulation of human longevity: a follow-up study in Finnish nonagenarians. Mech Ageing Dev 128(10):574–576PubMedCrossRefGoogle Scholar
  85. 85.
    Hindorff LA, Rice KM, Lange LA et al (2008) Common variants in the CRP gene in relation to longevity and cause-specific mortality in older adults: the Cardiovascular Health Study. Atherosclerosis 197(2):922–930PubMedCrossRefGoogle Scholar
  86. 86.
    Cardelli M, Cavallone L, Marchegiani F et al (2008) A genetic-demographic approach reveals male-specific association between survival and tumor necrosis factor (A/G)-308 polymorphism. J Gerontol A Biol Sci Med Sci 63(5):454–460PubMedCrossRefGoogle Scholar
  87. 87.
    Schachter F, Faure-Delanef L, Guenot F et al (1994) Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 6(1):29–32PubMedCrossRefGoogle Scholar
  88. 88.
    Perls T, Levenson R, Regan M, Puca A (2002) What does it take to live to 100? Mech Ageing Dev 123(2–3):231–242PubMedCrossRefGoogle Scholar
  89. 89.
    Adams ER, Nolan VG, Andersen SL, Perls TT, Terry DF (2008) Centenarian offspring: start healthier and stay healthier. J Am Geriatr Soc 56(11):2089–2092PubMedCrossRefGoogle Scholar
  90. 90.
    Lee CK, Klopp RG, Weindruch R, Prolla TA (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285(5432):1390–1393PubMedCrossRefGoogle Scholar
  91. 91.
    Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25(3):294–297PubMedCrossRefGoogle Scholar
  92. 92.
    Kayo T, Allison DB, Weindruch R, Prolla TA (2001) Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc Natl Acad Sci USA 98(9): 5093–5098PubMedCrossRefGoogle Scholar
  93. 93.
    Weindruch R, Kayo T, Lee CK, Prolla TA (2001) Microarray ­profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr 131(3):918S–923SPubMedGoogle Scholar
  94. 94.
    Kirkwood TB, Holliday R (1979) The evolution of ageing and ­longevity. Proc R Soc Lond B Biol Sci 205(1161):531–546PubMedCrossRefGoogle Scholar
  95. 95.
    Westendorp RGJ, Kirkwood TBL (1998) Human longevity at the cost of reproductive success. Nature 396(6713):743–746PubMedCrossRefGoogle Scholar
  96. 96.
    Mobbs CV (1996) Nueroendocrinology of aging. In: Schneider EL, Rowe JW (eds) Handbook of the biology of aging, 4th edn. Academic Press, San Diego, pp 234–282Google Scholar
  97. 97.
    Wise PM, Krajnak KM, Kashon ML (1996) Menopause: the aging of multiple pacemakers. Science 273(5271):67–70PubMedCrossRefGoogle Scholar
  98. 98.
    Denckla WD (1975) A time to die. Life Sci 16(1):31–44PubMedCrossRefGoogle Scholar
  99. 99.
    Gilad GM, Gilad VH (1987) Age-related reductions in brain cholinergic and dopaminergic indices in two rat strains differing in longevity. Brain Res 408(1–2):247–250PubMedCrossRefGoogle Scholar
  100. 100.
    Cotzias GC, Miller ST, Tang LC, Papavasiliou PS (1977) Levodopa, fertility, and longevity. Science 196(4289):549–551PubMedCrossRefGoogle Scholar
  101. 101.
    Knoll J (1992) (-)Deprenyl-medication: a strategy to modulate the age-related decline of the striatal dopaminergic system. J Am Geriatr Soc 40(8):839–847PubMedGoogle Scholar
  102. 102.
    Kitani K, Kanai S, Sato Y, Ohta M, Ivy GO, Carrillo MC (1993) Chronic treatment of (−)deprenyl prolongs the life span of male Fischer 344 rats. Further evidence. Life Sci 52(3):281–288PubMedCrossRefGoogle Scholar
  103. 103.
    Milgram NW, Racine RJ, Nellis P, Mendonca A, Ivy GO (1990) Maintenance on L-deprenyl prolongs life in aged male rats. Life Sci 47(5):415–420PubMedCrossRefGoogle Scholar
  104. 104.
    Kappeler L, De Magalhaes Filho CM, Dupont J et al (2008) Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 6(10):e254PubMedCrossRefGoogle Scholar
  105. 105.
    Walford RL (1974) Immunologic theory of aging: current status. Fed Proc 33(9):2020–2027PubMedGoogle Scholar
  106. 106.
    Miller RA (1996) The aging immune system: primer and prospectus. Science 273(5271):70–74PubMedCrossRefGoogle Scholar
  107. 107.
    Yunis EJ, Salazar M (1993) Genetics of life span in mice. Genetica 91(1–3):211–223PubMedCrossRefGoogle Scholar
  108. 108.
    Caruso C, Candore G, Romano GC et al (2001) Immunogenetics of longevity. Is major histocompatibility complex polymorphism relevant to the control of human longevity? A review of literature data. Mech Ageing Dev 122(5):445–462PubMedCrossRefGoogle Scholar
  109. 109.
    Holehan AM, Merry BJ (1985) Lifetime breeding studies in fully fed and dietary restricted female CFY Sprague–Dawley rats. 1. Effect of age, housing conditions and diet on fecundity. Mech Ageing Dev 33(1):19–28PubMedCrossRefGoogle Scholar
  110. 110.
    Merry BJ, Holehan AM (1979) Onset of puberty and duration of fertility in rats fed a restricted diet. J Reprod Fertil 57(2):253–259PubMedCrossRefGoogle Scholar
  111. 111.
    Partridge L, Gems D, Withers DJ (2005) Sex and death: what is the connection? Cell 120(4):461–472PubMedCrossRefGoogle Scholar
  112. 112.
    Selesniemi K, Lee H-J, Tilly JL (2008) Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell 7(5):622–629PubMedCrossRefGoogle Scholar
  113. 113.
    Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298PubMedCrossRefGoogle Scholar
  114. 114.
    Harman D (1981) The aging process. Proc Natl Acad Sci USA 78(11):7124–7128PubMedCrossRefGoogle Scholar
  115. 115.
    Fridovich I (1989) Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264(14):7761–7764PubMedGoogle Scholar
  116. 116.
    Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription [see comments]. FASEB J 10(7):709–720PubMedGoogle Scholar
  117. 117.
    Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22(1–2):269–285PubMedCrossRefGoogle Scholar
  118. 118.
    Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15(2):247–254PubMedCrossRefGoogle Scholar
  119. 119.
    Valko M, Morris H, Cronin TD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208PubMedCrossRefGoogle Scholar
  120. 120.
    Sun J, Folk D, Bradley TJ, Tower J (2002) Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161(2):661–672PubMedGoogle Scholar
  121. 121.
    Mockett RJ, Orr WC, Rahmandar JJ et al (1999) Overexpression of Mn-containing superoxide dismutase in transgenic Drosophila melanogaster. Arch Biochem Biophys 371(2):260–269PubMedCrossRefGoogle Scholar
  122. 122.
    Paul A, Belton A, Nag S, Martin I, Grotewiel MS, Duttaroy A (2007) Reduced mitochondrial SOD displays mortality characteristics reminiscent of natural aging. Mech Ageing Dev 128(11–12):706–716PubMedCrossRefGoogle Scholar
  123. 123.
    Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL (1998) Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet 19(2):171–174PubMedCrossRefGoogle Scholar
  124. 124.
    Sun J, Tower J (1999) FLP Recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19(1):216–228PubMedGoogle Scholar
  125. 125.
    Parker JD, Parker KM, Sohal BH, Sohal RS, Keller L (2004) Decreased expression of Cu-Zn superoxide dismutase 1 in ants with extreme lifespan. Proc Natl Acad Sci USA 101(10):3486–3489PubMedCrossRefGoogle Scholar
  126. 126.
    Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263(5150):1128–1130PubMedCrossRefGoogle Scholar
  127. 127.
    Orr WC, Mockett RJ, Benes JJ, Sohal RS (2003) Effects of overexpression of copper-zinc and manganese superoxide dismutases, catalase, and thioredoxin reductase genes on longevity in Drosophila melanogaster. J Biol Chem 278(29):26418–26422PubMedCrossRefGoogle Scholar
  128. 128.
    Mockett RJ, Sohal RS, Orr WC (1999) Overexpression of glutathione reductase extends survival in transgenic Drosophila melanogaster under hyperoxia but not normoxia. FASEB J 13(13): 1733–1742PubMedGoogle Scholar
  129. 129.
    Brys K, Vanfleteren JR, Braeckman BP (2007) Testing the rate-of-living/oxidative damage theory of aging in the nematode model Caenorhabditis elegans. Exp Gerontol 42(9):845–851PubMedCrossRefGoogle Scholar
  130. 130.
    Halaschek-Wiener J, Khattra JS, McKay S et al (2005) Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Res 15(5):603–615PubMedCrossRefGoogle Scholar
  131. 131.
    Murphy CT, McCarroll SA, Bargmann CI et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424(6946):277–283PubMedCrossRefGoogle Scholar
  132. 132.
    Keaney M, Matthijssens F, Sharpe M, Vanfleteren J, Gems D (2004) Superoxide dismutase mimetics elevate superoxide dismutase activity in vivo but do not retard aging in the nematode Caenorhabditis elegans. Free Radic Biol Med 37(2):239–250PubMedCrossRefGoogle Scholar
  133. 133.
    Adachi H, Fujiwara Y, Ishii N (1998) Effects of oxygen on protein carbonyl and aging in Caenorhabditis elegans mutants with long (age-1) and short (mev-1) life spans. J Gerontol A Biol Sci Med Sci 53(4):B240–B244PubMedCrossRefGoogle Scholar
  134. 134.
    Sohal RS, Svensson I, Sohal BH, Brunk UT (1989) Superoxide anion radical production in different animal species. Mech Ageing Dev 49(2):129–135PubMedCrossRefGoogle Scholar
  135. 135.
    Schriner SE, Linford NJ, Martin GM et al (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–1911PubMedCrossRefGoogle Scholar
  136. 136.
    Mitsui A, Hamuro J, Nakamura H et al (2002) Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxid Redox Signal 4(4):693–696PubMedCrossRefGoogle Scholar
  137. 137.
    Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA (2005) Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab 289(1):E23–E29PubMedCrossRefGoogle Scholar
  138. 138.
    Harper JM, Salmon AB, Leiser SF, Galecki AT, Miller RA (2007) Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone. Aging Cell 6(1):1–13PubMedCrossRefGoogle Scholar
  139. 139.
    Maynard SP, Miller RA (2006) Fibroblasts from long-lived Snell dwarf mice are resistant to oxygen-induced in vitro growth arrest. Aging Cell 5(1):89–96PubMedCrossRefGoogle Scholar
  140. 140.
    Linnane AW, Zhang C, Baumer A, Nagley P (1992) Mitochondrial DNA mutation and the ageing process: bioenergy and pharmacological intervention. Mutat Res 275(3–6):195–208PubMedGoogle Scholar
  141. 141.
    Fleming JE, Miquel J, Cottrell SF, Yengoyan LS, Economos AC (1982) Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontology 28(1):44–53PubMedCrossRefGoogle Scholar
  142. 142.
    Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256(5057):628–632PubMedCrossRefGoogle Scholar
  143. 143.
    Ozawa T (1997) Genetic and functional changes in mitochondria associated with aging. Physiol Rev 77(2):425–464PubMedGoogle Scholar
  144. 144.
    Katayama M, Tanaka M, Yamamoto H, Ohbayashi T, Nimura Y, Ozawa T (1991) Deleted mitochondrial DNA in the skeletal muscle of aged individuals. Biochem Int 25(1):47–56PubMedGoogle Scholar
  145. 145.
    Lee CM, Chung SS, Kaczkowski JM, Weindruch R, Aiken JM (1993) Multiple mitochondrial DNA deletions associated with age in skeletal muscle of rhesus monkeys. J Gerontol 48(6):B201–B205PubMedCrossRefGoogle Scholar
  146. 146.
    Melov S, Shoffner JM, Kaufman A, Wallace DC (1995) Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle [published erratum appears in Nucleic Acids Res 1995 Dec 11;23(23):4938]. Nucleic Acids Res 23(20):4122–4126PubMedCrossRefGoogle Scholar
  147. 147.
    Torii K, Sugiyama S, Tanaka M et al (1992) Aging-associated deletions of human diaphragmatic mitochondrial DNA. Am J Respir Cell Mol Biol 6(5):543–549PubMedGoogle Scholar
  148. 148.
    Hayakawa M, Torii K, Sugiyama S, Tanaka M, Ozawa T (1991) Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun 179(2):1023–1029PubMedCrossRefGoogle Scholar
  149. 149.
    Sugiyama S, Hattori K, Hayakawa M, Ozawa T (1991) Quantitative analysis of age-associated accumulation of mitochondrial DNA with deletion in human hearts. Biochem Biophys Res Commun 180(2):894–899PubMedCrossRefGoogle Scholar
  150. 150.
    Hayakawa M, Katsumata K, Yoneda M, Tanaka M, Sugiyama S, Ozawa T (1996) Age-related extensive fragmentation of mitochondrial DNA into minicircles [published erratum appears in Biochem Biophys Res Commun 1997 Mar 27;232(3):832]. Biochem Biophys Res Commun 226(2):369–377PubMedCrossRefGoogle Scholar
  151. 151.
    Hayakawa M, Hattori K, Sugiyama S, Ozawa T (1992) Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun 189(2): 979–985PubMedCrossRefGoogle Scholar
  152. 152.
    Hayakawa M, Sugiyama S, Hattori K, Takasawa M, Ozawa T (1993) Age-associated damage in mitochondrial DNA in human hearts. Mol Cell Biochem 119(1–2):95–103PubMedCrossRefGoogle Scholar
  153. 153.
    Ikebe S, Tanaka M, Ohno K et al (1990) Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun 170(3):1044–1048PubMedCrossRefGoogle Scholar
  154. 154.
    Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2(4):324–329PubMedCrossRefGoogle Scholar
  155. 155.
    Trounce I, Byrne E, Marzuki S (1989) Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing [see comments]. Lancet 1(8639):637–639PubMedCrossRefGoogle Scholar
  156. 156.
    Schapira AH, Mann VM, Cooper JM et al (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55(6):2142–2145PubMedCrossRefGoogle Scholar
  157. 157.
    Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3):823–827PubMedCrossRefGoogle Scholar
  158. 158.
    Hoyer S (1986) Senile dementia and Alzheimer’s disease. Brain blood flow and metabolism. Prog Neuropsychopharmacol Biol Psychiatry 10(3–5):447–478PubMedCrossRefGoogle Scholar
  159. 159.
    Sims NR, Finegan JM, Blass JP, Bowen DM, Neary D (1987) Mitochondrial function in brain tissue in primary degenerative dementia. Brain Res 436(1):30–38PubMedCrossRefGoogle Scholar
  160. 160.
    Beal MF (1994) Neurochemistry and toxin models in Huntington’s disease. Curr Opin Neurol 7(6):542–547PubMedCrossRefGoogle Scholar
  161. 161.
    Schulz JB, Beal MF (1996) Mitochondrial dysfunction in movement disorders. Mech Dev 57(1):3–20CrossRefGoogle Scholar
  162. 162.
    Lin FH, Lin R, Wisniewski HM et al (1992) Detection of point mutations in codon 331 of mitochondrial NADH dehydrogenase subunit 2 in Alzheimer’s brains. Biochem Biophys Res Commun 182(1):238–246PubMedCrossRefGoogle Scholar
  163. 163.
    Shoffner JM, Brown MD, Torroni A et al (1993) Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics 17(1):171–184PubMedCrossRefGoogle Scholar
  164. 164.
    Ozawa T, Tanaka M, Ino H et al (1991) Distinct clustering of point mutations in mitochondrial DNA among patients with mitochondrial encephalomyopathies and with Parkinson’s disease. Biochem Biophys Res Commun 176(2):938–946PubMedCrossRefGoogle Scholar
  165. 165.
    Ozawa T, Tanaka M, Ikebe S, Ohno K, Kondo T, Mizuno Y (1990) Quantitative determination of deleted mitochondrial DNA relative to normal DNA in parkinsonian striatum by a kinetic PCR analysis. Biochem Biophys Res Commun 172(2):483–489PubMedCrossRefGoogle Scholar
  166. 166.
    Ikebe S, Tanaka M, Ozawa T (1995) Point mutations of mitochondrial genome in Parkinson’s disease. Brain Res Mol Brain Res 28(2):281–295PubMedCrossRefGoogle Scholar
  167. 167.
    Poulton J, Deadman ME, Ramacharan S, Gardiner RM (1991) Germ-line deletions of mtDNA in mitochondrial myopathy. Am J Hum Genet 48(4):649–653PubMedGoogle Scholar
  168. 168.
    Ionasescu VV, Hart M, DiMauro S, Moraes CT (1994) Clinical and morphologic features of a myopathy associated with a point mutation in the mitochondrial tRNA(Pro) gene. Neurology 44(5):975–977PubMedCrossRefGoogle Scholar
  169. 169.
    Ozawa T, Tanaka M, Sugiyama S et al (1991) Patients with idiopathic cardiomyopathy belong to the same mitochondrial DNA gene family of Parkinson’s disease and mitochondrial encephalomyopathy. Biochem Biophys Res Commun 177(1):518–525PubMedCrossRefGoogle Scholar
  170. 170.
    Katsumata K, Hayakawa M, Tanaka M, Sugiyama S, Ozawa T (1994) Fragmentation of human heart mitochondrial DNA associated with premature aging. Biochem Biophys Res Commun 202(1):102–110PubMedCrossRefGoogle Scholar
  171. 171.
    Ozawa T (1994) Mitochondrial cardiomyopathy. Herz 19(2):105–118, 125PubMedGoogle Scholar
  172. 172.
    Yoneda M, Katsumata K, Hayakawa M, Tanaka M, Ozawa T (1995) Oxygen stress induces an apoptotic cell death associated with fragmentation of mitochondrial genome. Biochem Biophys Res Commun 209(2):723–729PubMedCrossRefGoogle Scholar
  173. 173.
    Trifunovic A, Wredenberg A, Falkenberg M et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990):417–423PubMedCrossRefGoogle Scholar
  174. 174.
    Trifunovic A, Hansson A, Wredenberg A et al (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci USA 102(50):17993–17998PubMedCrossRefGoogle Scholar
  175. 175.
    Maisonneuve E, Ezraty B, Dukan S (2008) Protein aggregates: an aging factor involved in cell death. J Bacteriol 190(18): 6070–6075PubMedCrossRefGoogle Scholar
  176. 176.
    Melov S, Hinerfeld D, Esposito L, Wallace DC (1997) Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age. Nucleic Acids Res 25(5):974–982PubMedCrossRefGoogle Scholar
  177. 177.
    Larsen PL, Clarke CF (2002) Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 295(5552):120–123PubMedCrossRefGoogle Scholar
  178. 178.
    Zainal TA, Oberley TD, Allison DB, Szweda LI, Weindruch R (2000) Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. FASEB J 14(12):1825–1836PubMedCrossRefGoogle Scholar
  179. 179.
    Meydani M (2001) Nutrition interventions in aging and age-associated disease. Ann NY Acad Sci 928:226–235PubMedCrossRefGoogle Scholar
  180. 180.
    Lopez-Lluch G, Irusta PM, Navas P, de Cabo R (2008) Mitochondrial biogenesis and healthy aging. Exp Gerontol 43(9): 813–819PubMedCrossRefGoogle Scholar
  181. 181.
    Civitarese AE, Carling S, Heilbronn LK et al (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4(3):e76PubMedCrossRefGoogle Scholar
  182. 182.
    Lanza IR, Short DK, Short KR et al (2008) Endurance exercise as a countermeasure for aging. Diabetes 57(11):2933–2942PubMedCrossRefGoogle Scholar
  183. 183.
    Melov S, Tarnopolsky MA, Beckman K, Felkey K, Hubbard A (2007) Resistance exercise reverses aging in human skeletal muscle. PLoS ONE 2(5):e465PubMedCrossRefGoogle Scholar
  184. 184.
    Failla G (1958) The aging process and carcinogenesis. Ann NY Acad Sci 71:1124PubMedCrossRefGoogle Scholar
  185. 185.
    Szilard L (1959) On the nature of the aging process. Proc Natl Acad Sci USA 45:30PubMedCrossRefGoogle Scholar
  186. 186.
    Casarett GW (1963) Concept and criteria of radiologic ageing. In: Harris RJ (ed) Cellular basis and aetiology of late somatic effects of ionizing radiation. Academic Press, New York, p 189Google Scholar
  187. 187.
    Walburg HE (1975) Radiation-induced life-shortening and premature aging. Adv Radiat Biol 5:145Google Scholar
  188. 188.
    Sacher CA (1977) Life table modification and life prolongation. In: Finch CE, Hayflick L (eds) Handbook of the biology of aging. Van Nostrand Reinhold, New York, p 582Google Scholar
  189. 189.
    Lindop PJ, Rotblat J (1961) Long-term effect of a single whoe-body exposure of mice to ionizing radiations. Proc R Soc Lond 154:350CrossRefGoogle Scholar
  190. 190.
    Garinis GA, van der Horst GT, Vijg J, Hoeijmakers JH (2008) DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol 10(11):1241–1247PubMedCrossRefGoogle Scholar
  191. 191.
    Hart RW, Setlow RB (1974) Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc Natl Acad Sci USA 71(6):2169–2173PubMedCrossRefGoogle Scholar
  192. 192.
    Cabelof DC, Raffoul JJ, Yanamadala S, Ganir C, Guo Z, Heydari AR (2002) Attenuation of DNA polymerase [beta]-dependent base excision repair and increased DMS-induced mutagenicity in aged mice. Mutat Res 500(1–2):135–145PubMedGoogle Scholar
  193. 193.
    Intano GW, Cho EJ, McMahan CA, Walter CA (2003) Age-related base excision repair activity in mouse brain and liver nuclear extracts. J Gerontol A Biol Sci Med Sci 58(3):B205–B211CrossRefGoogle Scholar
  194. 194.
    Cabelof DC, Yanamadala S, Raffoul JJ, Guo Z, Soofi A, Heydari AR (2003) Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline. DNA Repair 2(3):295–307PubMedCrossRefGoogle Scholar
  195. 195.
    Seluanov A, Mittelman D, Pereira-Smith OM, Wilson JH, Gorbunova V (2004) DNA end joining becomes less efficient and more error-prone during cellular senescence. Proc Natl Acad Sci USA 101(20):7624–7629PubMedCrossRefGoogle Scholar
  196. 196.
    Sedelnikova OA, Horikawa I, Redon C et al (2008) Delayed kinetics of DNA double-strand break processing in normal and pathological aging. Aging Cell 7(1):89–100PubMedCrossRefGoogle Scholar
  197. 197.
    Hanawalt PC, Gee P, Ho L (1990) DNA repair in differentiating cells in relation to aging. In: Finch CE, Johnson TE (eds) Molecular biology of aging. UCLA symposia on molecular and cellular biology, vol 123. Alan R. Liss, New York, p 45Google Scholar
  198. 198.
    Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S (1999) Sequence-specific DNA Cleavage by Fe2+-mediated Fenton reactions has possible biological implications. J Biol Chem 274(2):962–971PubMedCrossRefGoogle Scholar
  199. 199.
    Lu T, Pan Y, Kao S-Y et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429(6994):883–891PubMedCrossRefGoogle Scholar
  200. 200.
    Orgel LE (1963) The maintenance of the accuracy of protein synthesis and its relevance to aging. Proc Natl Acad Sci USA 49:517PubMedCrossRefGoogle Scholar
  201. 201.
    Kristal BS, Yu BP (1992) An emerging hypothesis: synergistic induction of aging by free radicals and Maillard reactions. J Gerontol 47(4):B107–B114PubMedCrossRefGoogle Scholar
  202. 202.
    Levine RL, Stadtman ER (1996) Protein Modifications with Aging. In: Schneider EL, Rowe JW (eds) Handbook of the biology of aging, 4th edn. Academic Press, San Diego, pp 184–197Google Scholar
  203. 203.
    Gracy RW, Yuksel KU, Chapman MD et al (1985) Impaired protein degradation may account for the accumulation of “abnormal” proteins in aging cells. In: Adelman RC, Dekker EE (ed) Modern aging research, modification of proteins during aging. Alan R. Liss, New York, p 1Google Scholar
  204. 204.
    Brown WT (1990) Genetic diseases of premature aging as models of senescence. Annu Rev Gerontol Geriatr 10:23–42PubMedGoogle Scholar
  205. 205.
    Meshorer E, Gruenbaum Y (2008) Gone with the Wnt/Notch: stem cells in laminopathies, progeria, and aging. J Cell Biol 181(1):9–13PubMedCrossRefGoogle Scholar
  206. 206.
    De Sandre-Giovannoli A, Bernard R, Cau P et al (2003) Lamin A truncation in Hutchinson–Gilford progeria. Science 300(5628):2055PubMedCrossRefGoogle Scholar
  207. 207.
    Eriksson M, Brown WT, Gordon LB et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423(6937):293–298PubMedCrossRefGoogle Scholar
  208. 208.
    Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nat Med 11(4):440–445PubMedCrossRefGoogle Scholar
  209. 209.
    Cao K, Capell BC, Erdos MR, Djabali K, Collins FS (2007) A lamin A protein isoform overexpressed in Hutchinson–Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci USA 104(12):4949–4954PubMedCrossRefGoogle Scholar
  210. 210.
    Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T (2006) Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 103(27):10271–10276PubMedCrossRefGoogle Scholar
  211. 211.
    Dechat T, Shimi T, Adam SA et al (2007) Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging. Proc Natl Acad Sci USA 104(12): 4955–4960PubMedCrossRefGoogle Scholar
  212. 212.
    Liu B, Wang J, Chan KM et al (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11(7):780–785PubMedCrossRefGoogle Scholar
  213. 213.
    Muftuoglu M, Oshima J, von Kobbe C, Cheng W-H, Leistritz D, Bohr V (2008) The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. Hum Genet 124(4): 369–377PubMedCrossRefGoogle Scholar
  214. 214.
    Epstein CJ, Martin GM, Schultz AL, Motulsky AG (1966) Werner’s syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore) 45(3):177–221Google Scholar
  215. 215.
    Goto M (1997) Hierarchical deterioration of body systems in Werner’s syndrome: implications for normal ageing. Mech Ageing Dev 98(3):239–254PubMedCrossRefGoogle Scholar
  216. 216.
    Goto M, Rubenstein M, Weber J, Woods K, Drayna D (1992) Genetic linkage of Werner’s syndrome to five markers on chromosome 8. Nature 355(6362):735–738PubMedCrossRefGoogle Scholar
  217. 217.
    Yu CE, Oshima J, Fu YH et al (1996) Positional cloning of the Werner’s syndrome gene [see comments]. Science 272(5259): 258–262PubMedCrossRefGoogle Scholar
  218. 218.
    Brosh RM Jr, Bohr VA (2002) Roles of the Werner syndrome protein in pathways required for maintenance of genome stability. Exp Gerontol 37(4):491–506PubMedCrossRefGoogle Scholar
  219. 219.
    Ogburn CE, Oshima J, Poot M et al (1997) An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. Hum Genet 101(2):121–125PubMedCrossRefGoogle Scholar
  220. 220.
    Poot M, Gollahon KA, Emond MJ, Silber JR, Rabinovitch PS (2002) Werner syndrome diploid fibroblasts are sensitive to 4-nitroquinoline-N-oxide and 8-methoxypsoralen: implications for the disease phenotype. FASEB J 16(7):757–758PubMedGoogle Scholar
  221. 221.
    Poot M, Yom JS, Whang SH, Kato JT, Gollahon KA, Rabinovitch PS (2001) Werner syndrome cells are sensitive to DNA cross-linking drugs. FASEB J 15(7):1224–1226PubMedGoogle Scholar
  222. 222.
    Pichierri P, Franchitto A, Mosesso P, Palitti F (2000) Werner’s syndrome cell lines are hypersensitive to camptothecin-induced chromosomal damage. Mutat Res 456(1–2):45–57PubMedGoogle Scholar
  223. 223.
    Poot M, Gollahon KA, Rabinovitch PS (1999) Werner syndrome lymphoblastoid cells are sensitive to camptothecin-induced apoptosis in S-phase. Hum Genet 104(1):10–14PubMedCrossRefGoogle Scholar
  224. 224.
    Stevnsner T, Muftuoglu M, Aamann MD, Bohr VA (2008) The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mech Ageing Dev 129(7–8):441–448PubMedCrossRefGoogle Scholar
  225. 225.
    Henning KA, Li L, Iyer N et al (1995) The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82(4):555–564PubMedCrossRefGoogle Scholar
  226. 226.
    Groisman R, Polanowska J, Kuraoka I et al (2003) The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113(3):357–367PubMedCrossRefGoogle Scholar
  227. 227.
    Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JH (1992) ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71(6):939–953PubMedCrossRefGoogle Scholar
  228. 228.
    Horibata K, Iwamoto Y, Kuraoka I et al (2004) Complete absence of Cockayne syndrome group B gene product gives rise to UV-sensitive syndrome but not Cockayne syndrome. Proc Natl Acad Sci USA 101(43):15410–15415PubMedCrossRefGoogle Scholar
  229. 229.
    Martin GM, Turker MS (1990) Genetic of human disease, longevity, and aging. In: Hazzard WR, Andres R, Bierman EL et al (eds) Principles of geriatric medicine and gerontology, 2nd edn. McGraw-Hill, New York, p 22Google Scholar
  230. 230.
    Fanconi G (1967) Familial constitutional panmyelocytopathy, Fanconi’s anemia (F.A.). I. Clinical aspects. Semin Hematol 4(3): 233–240PubMedGoogle Scholar
  231. 231.
    Neveling K, Bechtold A, Hoehn H (2007) Genetic instability syndromes with progeroid features. Z Gerontol Geriatr 40(5): 339–348PubMedCrossRefGoogle Scholar
  232. 232.
    Joenje H, Arwert F, Eriksson AW, de Koning H, Oostra AB (1981) Oxygen-dependence of chromosomal aberrations in Fanconi’s anaemia. Nature 290(5802):142–143PubMedCrossRefGoogle Scholar
  233. 233.
    Zhang X, Li J, Sejas DP, Pang Q (2005) Hypoxia-reoxygenation induces premature senescence in FA bone marrow hematopoietic cells. Blood 106(1):75–85PubMedCrossRefGoogle Scholar
  234. 234.
    Park SJ, Ciccone SL, Beck BD et al (2004) Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins. J Biol Chem 279(29):30053–30059PubMedCrossRefGoogle Scholar
  235. 235.
    Drachtman RA, Alter BP (1992) Dyskeratosis congenita: clinical and genetic heterogeneity. Report of a new case and review of the literature. Am J Pediatr Hematol Oncol 14(4):297–304PubMedCrossRefGoogle Scholar
  236. 236.
    Vulliamy T, Dokal I (2006) Dyskeratosis congenita. Semin Hematol 43(3):157–166PubMedCrossRefGoogle Scholar
  237. 237.
    Marrone A, Dokal I (2004) Dyskeratosis congenita: molecular insights into telomerase function, ageing and cancer. Expert Rev Mol Med 6(26):1–23PubMedCrossRefGoogle Scholar
  238. 238.
    Chang S, Multani AS, Cabrera NG et al (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36(8):877–882PubMedCrossRefGoogle Scholar
  239. 239.
    Wong KK, Maser RS, Bachoo RM et al (2003) Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421(6923):643–648PubMedCrossRefGoogle Scholar
  240. 240.
    Elchuri S, Oberley TD, Qi W et al (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24(3):367–380PubMedCrossRefGoogle Scholar
  241. 241.
    Hashizume K, Hirasawa M, Imamura Y et al (2008) Retinal dysfunction and progressive retinal cell death in SOD1-deficient mice. Am J Pathol 172(5):1325–1331PubMedCrossRefGoogle Scholar
  242. 242.
    Van Remmen H, Ikeno Y, Hamilton M et al (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16(1):29–37PubMedCrossRefGoogle Scholar
  243. 243.
    Ho YS, Xiong Y, Ma W, Spector A, Ho DS (2004) Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 279(31):32804–32812PubMedCrossRefGoogle Scholar
  244. 244.
    Ho YS, Magnenat JL, Bronson RT et al (1997) Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem 272(26): 16644–16651PubMedCrossRefGoogle Scholar
  245. 245.
    Van Remmen H, Qi W, Sabia M et al (2004) Multiple deficiencies in antioxidant enzymes in mice result in a compound increase in sensitivity to oxidative stress. Free Radic Biol Med 36(12):1625–1634PubMedCrossRefGoogle Scholar
  246. 246.
    Hayflick L, Moorhead PS (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636PubMedCrossRefGoogle Scholar
  247. 247.
    Wang E (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res 55(11):2284–2292PubMedGoogle Scholar
  248. 248.
    Marcotte R, Lacelle C, Wang E (2004) Senescent fibroblasts resist apoptosis by downregulating caspase-3. Mech Ageing Dev 125(10–11):777–783PubMedCrossRefGoogle Scholar
  249. 249.
    Hampel B, Malisan F, Niederegger H, Testi R, Jansen-Dürr P (2004) Differential regulation of apoptotic cell death in senescent human cells. Exp Gerontol 39(11-12):1713–1721PubMedCrossRefGoogle Scholar
  250. 250.
    Bayreuther K, Rodemann HP, Hommel R, Dittmann K, Albiez M, Francz PI (1988) Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci USA 85(14):5112–5116PubMedCrossRefGoogle Scholar
  251. 251.
    Pignolo RJ, Rotenberg MO, Cristofalo VJ (1994) Alterations in contact and density-dependent arrest state in senescent WI-38 cells. In Vitro Cell Dev Biol Anim 30A(7):471–476PubMedCrossRefGoogle Scholar
  252. 252.
    Matsumura T, Zerrudo Z, Hayflick L (1979) Senescent human ­diploid cells in culture: survival, DNA synthesis and morphology. J Gerontol 34(3):328–334PubMedCrossRefGoogle Scholar
  253. 253.
    Ponten J (1973) Aging properties of glia. In: Bourliere F, Courtois Y, Macieira-Coelho A et al (eds) Molecular and cellular mechanisms of aging. INSERM, Paris, p 53Google Scholar
  254. 254.
    Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6(3):331–343PubMedCrossRefGoogle Scholar
  255. 255.
    Bierman EL (1978) The effect of donor age on the in vitro life span of cultured human arterial smooth-muscle cells. In Vitro 14(11):951–955PubMedCrossRefGoogle Scholar
  256. 256.
    Tassin J, Malaise E, Courtois Y (1979) Human lens cells have an in vitro proliferative capacity inversely proportional to the donor age. Exp Cell Res 123(2):388–392PubMedCrossRefGoogle Scholar
  257. 257.
    Mueller SN, Rosen EM, Levine EM (1980) Cellular senescence in a cloned strain of bovine fetal aortic endothelial cells. Science 207(4433):889–891PubMedCrossRefGoogle Scholar
  258. 258.
    Tice RR, Schneider EL, Kram D, Thorne P (1979) Cytokinetic analysis of the impaired proliferative response of peripheral lymphocytes from aged humans to phytohemagglutinin. J Exp Med 149(5):1029–1041PubMedCrossRefGoogle Scholar
  259. 259.
    Stampfer MR (1985) Isolation and growth of human mammary epithelial cells. J Tissue Culture Methods 9:107–115CrossRefGoogle Scholar
  260. 260.
    Yaswen P, Stampfer MR (2002) Molecular changes accompanying senescence and immortalization of cultured human mammary epithelial cells. Int J Biochem Cell Biol 34(11):1382–1394PubMedCrossRefGoogle Scholar
  261. 261.
    Harrison DE (1985) Cell and tissue transplantation: a means of studying the aging process. In: Finch CE, Schneider EL (eds) Handbook of the biology of Aging, 2nd edn. Van Nostrand Reinhold, New York, p 332Google Scholar
  262. 262.
    Olsson L, Ebbesen P (1977) Ageing decreases the activity of epidermal G1 and G2 inhibitors in mouse skin independent of grafting on old or young recipients. Exp Gerontol 12(1–2):59–62PubMedCrossRefGoogle Scholar
  263. 263.
    Rohme D (1981) Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc Natl Acad Sci USA 78(8): 5009–5013PubMedCrossRefGoogle Scholar
  264. 264.
    Martin GM, Sprague CA, Epstein CJ (1970) Replicative life-span of cultivated human cells. Effects of donor’s age, tissue, and genotype. Lab Invest 23(1):86–92PubMedGoogle Scholar
  265. 265.
    Pignolo RJ, Masoro EJ, Nichols WW, Bradt CI, Cristofalo VJ (1992) Skin fibroblasts from aged Fischer 344 rats undergo similar changes in replicative life span but not immortalization with caloric restriction of donors. Exp Cell Res 201(1):16–22PubMedCrossRefGoogle Scholar
  266. 266.
    Schneider EL, Mitsui Y (1976) The relationship between in vitro cellular aging and in vivo human age. Proc Natl Acad Sci USA 73(10):3584–3588PubMedCrossRefGoogle Scholar
  267. 267.
    Goldstein S, Littlefield JW, Soeldner JS (1969) Diabetes mellitus and aging: diminished planting efficiency of cultured human fibroblasts. Proc Natl Acad Sci USA 64(1):155–160PubMedCrossRefGoogle Scholar
  268. 268.
    Le Guilly Y, Simon M, Lenoir P, Bourel M (1973) Long-term culture of human adult liver cells: morphological changes related to in vitro senescence and effect of donor’s age on growth potential. Gerontologia 19(5):303–313PubMedCrossRefGoogle Scholar
  269. 269.
    Wille JJ Jr, Pittelkow MR, Shipley GD, Scott RE (1984) Integrated control of growth and differentiation of normal human prokeratinocytes cultured in serum-free medium: clonal analyses, growth kinetics, and cell cycle studies. J Cell Physiol 121(1):31–44PubMedCrossRefGoogle Scholar
  270. 270.
    Effros RB, Boucher N, Porter V et al (1994) Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol 29(6):601–609PubMedCrossRefGoogle Scholar
  271. 271.
    Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC (1998) Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci USA 95(18):10614–10619PubMedCrossRefGoogle Scholar
  272. 272.
    Dimri G, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92(20):9363–9367PubMedCrossRefGoogle Scholar
  273. 273.
    Ressler S, Bartkova J, Niederegger H et al (2006) p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5(5):379–389PubMedCrossRefGoogle Scholar
  274. 274.
    Clark AJ, Ferrier P, Aslam S et al (2003) Proliferative lifespan is conserved after nuclear transfer. Nat Cell Biol 5(6):535–538PubMedCrossRefGoogle Scholar
  275. 275.
    Cristofalo VJ, Palaxxo R, Charpentier RL (1980) Limited lifespan of human fibroblasts in vitro: metabolic time or replications? In: Adelman RC, Roberts J, Baker GT et al (eds) Neural regulatory mechanisms during aging. Alan R. Liss, New York, p 203Google Scholar
  276. 276.
    Campisi J, D’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740PubMedCrossRefGoogle Scholar
  277. 277.
    Toussaint O, Medrano EE, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35(8):927–945PubMedCrossRefGoogle Scholar
  278. 278.
    Toussaint O, Remacle J, Dierick JF et al (2002) Stress-induced premature senescence: from biomarkers to likeliness of in vivo occurrence. Biogerontology 3(1–2):13–17PubMedCrossRefGoogle Scholar
  279. 279.
    d’Adda di Fagagna F, Reaper PM, Clay-Farrace L et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198PubMedCrossRefGoogle Scholar
  280. 280.
    Hemann MT, Narita M (2007) Oncogenes and senescence: breaking down in the fast lane. Genes Dev 21(1):1–5PubMedCrossRefGoogle Scholar
  281. 281.
    Takahashi A, Ohtani N, Yamakoshi K et al (2006) Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8(11):1291–1297PubMedCrossRefGoogle Scholar
  282. 282.
    Campisi J (1997) Aging and cancer: the double-edged sword of replicative senescence. J Am Geriatr Soc 45(4):482–488PubMedGoogle Scholar
  283. 283.
    Shay JW, Wright WE, Werbin H (1993) Toward a molecular understanding of human breast cancer: a hypothesis. Breast Cancer Res Treat 25(1):83–94PubMedCrossRefGoogle Scholar
  284. 284.
    Stein GH, Beeson M, Gordon L (1990) Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249(4969):666–669PubMedCrossRefGoogle Scholar
  285. 285.
    Ozer HL, Banga SS, Dasgupta T et al (1996) SV40-mediated immortalization of human fibroblasts. Exp Gerontol 31(1–2):303–310PubMedCrossRefGoogle Scholar
  286. 286.
    Shay JW, Pereira-Smith OM, Wright WE (1991) A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 196(1):33–39PubMedCrossRefGoogle Scholar
  287. 287.
    Hara E, Tsurui H, Shinozaki A, Nakada S, Oda K (1991) Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem Biophys Res Commun 179(1):528–534PubMedCrossRefGoogle Scholar
  288. 288.
    Afshari CA, Nichols MA, Xiong Y, Mudryj M (1996) A role for a p21-E2F interaction during senescence arrest of normal human fibroblasts. Cell Growth Differ 7(8):979–988PubMedGoogle Scholar
  289. 289.
    Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211(1):90–98PubMedCrossRefGoogle Scholar
  290. 290.
    Tahara H, Sato E, Noda A, Ide T (1995) Increase in expression level of p21sdi1/cip1/waf1 with increasing division age in both normal and SV40-transformed human fibroblasts. Oncogene 10(5):835–840PubMedGoogle Scholar
  291. 291.
    Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 93(24):13742–13747PubMedCrossRefGoogle Scholar
  292. 292.
    Palmero I, McConnell B, Parry D et al (1997) Accumulation of p16INK4a in mouse fibroblasts as a function of replicative senescence and not of retinoblastoma gene status. Oncogene 15(5):495–503PubMedCrossRefGoogle Scholar
  293. 293.
    Reznikoff CA, Yeager TR, Belair CD, Savelieva E, Puthenveettil JA, Stadler WM (1996) Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. Cancer Res 56(13):2886–2890PubMedGoogle Scholar
  294. 294.
    Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277(5327):831–834PubMedCrossRefGoogle Scholar
  295. 295.
    Yang L, Didenko VV, Noda A et al (1995) Increased expression of p21Sdi1 in adrenocortical cells when they are placed in culture. Exp Cell Res 221(1):126–131PubMedCrossRefGoogle Scholar
  296. 296.
    Medcalf AS, Klein-Szanto AJ, Cristofalo VJ (1996) Expression of p21 is not required for senescence of human fibroblasts. Cancer Res 56(20):4582–4585PubMedGoogle Scholar
  297. 297.
    Vogt M, Haggblom C, Yeargin J, Christiansen-Weber T, Haas M (1998) Independent induction of senescence by p16INK4a and p21CIP1 in spontaneously immortalized human fibroblasts. Cell Growth Differ 9(2):139–146PubMedGoogle Scholar
  298. 298.
    Afshari CA, Vojta PJ, Annab LA, Futreal PA, Willard TB, Barrett JC (1993) Investigation of the role of G1/S cell cycle mediators in cellular senescence. Exp Cell Res 209(2):231–237PubMedCrossRefGoogle Scholar
  299. 299.
    Tyner SD, Venkatachalam S, Choi J et al (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415(6867):45–53PubMedCrossRefGoogle Scholar
  300. 300.
    Beausejour CM, Krtolica A, Galimi F et al (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22(16):4212–4222PubMedCrossRefGoogle Scholar
  301. 301.
    Itahana K, Zou Y, Itahana Y et al (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 23(1):389–401PubMedCrossRefGoogle Scholar
  302. 302.
    Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14(4):501–513PubMedCrossRefGoogle Scholar
  303. 303.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602PubMedCrossRefGoogle Scholar
  304. 304.
    Benanti JA, Galloway DA (2004) Normal human fibroblasts are resistant to RAS-induced senescence. Mol Cell Biol 24(7):2842–2852PubMedCrossRefGoogle Scholar
  305. 305.
    Rai P, Onder TT, Young JJ et al (2009) Continuous elimination of oxidized nucleotides is necessary to prevent rapid onset of cellular senescence. Proc Natl Acad Sci USA 106(1):169–174PubMedCrossRefGoogle Scholar
  306. 306.
    Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409(6820):633–637PubMedCrossRefGoogle Scholar
  307. 307.
    Rheinwald JG, Hahn WC, Ramsey MR et al (2002) A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol Cell Biol 22(14):5157–5172PubMedCrossRefGoogle Scholar
  308. 308.
    Muller M (2009) Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations. Antioxid Redox Signal 11(1):59–98PubMedCrossRefGoogle Scholar
  309. 309.
    Sohal RS, Brunk UT (1989) Lipofuscin as an indicator of oxidative stress and aging. Adv Exp Med Biol 266:17–26; discussion 27–19PubMedGoogle Scholar
  310. 310.
    Narita M, Nunez S, Heard E et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716PubMedCrossRefGoogle Scholar
  311. 311.
    Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ (2000) Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257(1):162–171PubMedCrossRefGoogle Scholar
  312. 312.
    Litaker JR, Pan J, Cheung Y et al (1998) Expression profile of senescence-associated beta-galactosidase and activation of telomerase in human ovarian surface epithelial cells undergoing immortalization. Int J Oncol 13(5):951–956PubMedGoogle Scholar
  313. 313.
    Untergasser G, Gander R, Rumpold H, Heinrich E, Plas E, Berger P (2003) TGF-beta cytokines increase senescence-associated beta-galactosidase activity in human prostate basal cells by supporting differentiation processes, but not cellular senescence. Exp Gerontol 38(10):1179–1188PubMedCrossRefGoogle Scholar
  314. 314.
    Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113(Pt 20):3613–3622PubMedGoogle Scholar
  315. 315.
    Yang NC, Hu ML (2005) The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol 40(10): 813–819PubMedCrossRefGoogle Scholar
  316. 316.
    Lee BY, Han JA, Im JS et al (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5(2):187–195PubMedCrossRefGoogle Scholar
  317. 317.
    Matthews C, Gorenne I, Scott S et al (2006) Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res 99(2): 156–164PubMedCrossRefGoogle Scholar
  318. 318.
    Krishnamurthy J, Ramsey MR, Ligon KL et al (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443(7110):453–457PubMedCrossRefGoogle Scholar
  319. 319.
    Krishnamurthy J, Torrice C, Ramsey MR et al (2004) Ink4a/ARF expression is a biomarker of aging. J Clin Invest 114(9):1299–1307PubMedGoogle Scholar
  320. 320.
    Collado M, Gil J, Efeyan A et al (2005) Tumour biology: senescence in premalignant tumours. Nature 436(7051):642PubMedCrossRefGoogle Scholar
  321. 321.
    Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256(2–6):271–282PubMedGoogle Scholar
  322. 322.
    Greider CW (1990) Telomeres, telomerase and senescence. Bioessays 12(8):363–369PubMedCrossRefGoogle Scholar
  323. 323.
    Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345(6274):458–460PubMedCrossRefGoogle Scholar
  324. 324.
    Allsopp RC, Vaziri H, Patterson C et al (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89(21):10114–10118PubMedCrossRefGoogle Scholar
  325. 325.
    Chang E, Harley CB (1995) Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA 92(24):11190–11194PubMedCrossRefGoogle Scholar
  326. 326.
    Lindsey J, McGill NI, Lindsey LA, Green DK, Cooke HJ (1991) In vivo loss of telomeric repeats with age in humans. Mutat Res 256(1):45–48PubMedCrossRefGoogle Scholar
  327. 327.
    Vaziri H, Schachter F, Uchida I et al (1993) Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 52(4):661–667PubMedGoogle Scholar
  328. 328.
    Frenck RW Jr, Blackburn EH, Shannon KM (1998) The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci USA 95(10):5607–5610PubMedCrossRefGoogle Scholar
  329. 329.
    Counter CM, Hirte HW, Bacchetti S, Harley CB (1994) Telomerase activity in human ovarian carcinoma [see comments]. Proc Natl Acad Sci USA 91(8):2900–2904PubMedCrossRefGoogle Scholar
  330. 330.
    Sugihara S, Mihara K, Marunouchi T, Inoue H, Namba M (1996) Telomere elongation observed in immortalized human fibroblasts by treatment with 60Co gamma rays or 4-nitroquinoline 1-oxide. Hum Genet 97(1):1–6PubMedCrossRefGoogle Scholar
  331. 331.
    Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR (1995) Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14(17):4240–4248PubMedGoogle Scholar
  332. 332.
    Chiu CP, Dragowska W, Kim NW et al (1996) Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14(2):239–248PubMedCrossRefGoogle Scholar
  333. 333.
    Broccoli D, Young JW, de Lange T (1995) Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci USA 92(20):9082–9086PubMedCrossRefGoogle Scholar
  334. 334.
    Counter CM, Gupta J, Harley CB, Leber B, Bacchetti S (1995) Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 85(9):2315–2320PubMedGoogle Scholar
  335. 335.
    Terry DF, Nolan VG, Andersen SL, Perls TT, Cawthon R (2008) Association of longer telomeres with better health in centenarians. J Gerontol A Biol Sci Med Sci 63(8):809–812PubMedCrossRefGoogle Scholar
  336. 336.
    Ludlow AT, Zimmerman JB, Witkowski S, Hearn JW, Hatfield BD, Roth SM (2008) Relationship between physical activity level, telomere length, and telomerase activity. Med Sci Sports Exerc 40(10):1764–1771PubMedCrossRefGoogle Scholar
  337. 337.
    Woo J, Tang NL, Suen E, Leung JC, Leung PC (2008) Telomeres and frailty. Mech Ageing Dev 129(11):642–648PubMedCrossRefGoogle Scholar
  338. 338.
    Hofer AC, Tran RT, Aziz OZ et al (2005) Shared phenotypes among segmental progeroid syndromes suggest underlying pathways of aging. J Gerontol A Biol Sci Med Sci 60(1):10–20PubMedCrossRefGoogle Scholar
  339. 339.
    Rudolph KL, Chang S, Lee HW et al (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96(5):701–712PubMedCrossRefGoogle Scholar
  340. 340.
    Wright WE, Brasiskyte D, Piatyszek MA, Shay JW (1996) Experimental elongation of telomeres extends the lifespan of immortal × normal cell hybrids. EMBO J 15(7):1734–1741PubMedGoogle Scholar
  341. 341.
    Bodnar AG, Ouellette M, Frolkis M et al (1998) Extension of life-span by introduction of telomerase into normal human cells [see comments]. Science 279(5349):349–352PubMedCrossRefGoogle Scholar
  342. 342.
    Gorbunova V, Seluanov A, Pereira-Smith OM (2002) Expression of human telomerase (hTERT) Does not prevent stress-induced senescence in normal human fibroblasts but protects the cells from stress-induced apoptosis and necrosis. J Biol Chem 277(41): 38540–38549PubMedCrossRefGoogle Scholar
  343. 343.
    Naka K, Tachibana A, Ikeda K, Motoyama N (2004) Stress-induced premature senescence in htert-expressing ataxia telangiectasia fibroblasts. J Biol Chem 279(3):2030–2037PubMedCrossRefGoogle Scholar
  344. 344.
    Forsyth NR, Evans AP, Shay JW, Wright WE (2003) Developmental differences in the immortalization of lung fibroblasts by telomerase. Aging Cell 2(5):235–243PubMedCrossRefGoogle Scholar
  345. 345.
    Petersen S, Saretzki G, Zglinicki Tv (1998) Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp Cell Res 239(1):152–160PubMedCrossRefGoogle Scholar
  346. 346.
    Passos JF, Saretzki G, von Zglinicki T (2007) DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 35(22):7505–7513PubMedCrossRefGoogle Scholar
  347. 347.
    Janzen V, Forkert R, Fleming HE et al (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443(7110):421–426PubMedGoogle Scholar
  348. 348.
    de Haan G, Van Zant G (1999) Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 93(10): 3294–3301PubMedGoogle Scholar
  349. 349.
    Geiger H, Van Zant G (2002) The aging of lympho-hematopoietic stem cells. Nat Immunol 3(4):329–333PubMedCrossRefGoogle Scholar
  350. 350.
    Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443(7110):448–452PubMedCrossRefGoogle Scholar
  351. 351.
    Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400(6743):464–468PubMedCrossRefGoogle Scholar
  352. 352.
    Vaziri H, Benchimol S (1999) Alternative pathways for the extension of cellular life span: inactivation of p53/pRb and expression of telomerase. Oncogene 18(53):7676–7680PubMedCrossRefGoogle Scholar
  353. 353.
    Elenbaas B, Spirio L, Koerner F et al (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15(1):50–65PubMedCrossRefGoogle Scholar
  354. 354.
    Kendall SD, Linardic CM, Adam SJ, Counter CM (2005) A network of genetic events sufficient to convert normal human cells to a tumorigenic state. Cancer Res 65(21):9824–9828PubMedCrossRefGoogle Scholar
  355. 355.
    Lundberg AS, Randell SH, Stewart SA et al (2002) Immortalization and transformation of primary airway epithelial cells by gene transfer. Oncogene 21(29):4577–4586PubMedCrossRefGoogle Scholar
  356. 356.
    Bartkova J, Horejsi Z, Koed K et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434(7035):864–870PubMedCrossRefGoogle Scholar
  357. 357.
    Michaloglou C, Vredeveld LCW, Soengas MS et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724PubMedCrossRefGoogle Scholar
  358. 358.
    Castro P, Giri D, Lamb D, Ittmann M (2003) Cellular senescence in the pathogenesis of benign prostatic hyperplasia. Prostate 55(1):30–38PubMedCrossRefGoogle Scholar
  359. 359.
    Chen Z, Trotman LC, Shaffer D et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436(7051):725–730PubMedCrossRefGoogle Scholar
  360. 360.
    Bartkova J, Rezaei N, Liontos M et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444(7119):633–637PubMedCrossRefGoogle Scholar
  361. 361.
    Di Micco R, Fumagalli M, Cicalese A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119):638–642PubMedCrossRefGoogle Scholar
  362. 362.
    Mallette FA, Gaumont-Leclerc M-F, Ferbeyre G (2007) The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 21(1):43–48PubMedCrossRefGoogle Scholar
  363. 363.
    Feldser DM, Greider CW (2007) Short telomeres limit tumor progression in vivo by inducing senescence. Cell 11(5):461–469Google Scholar
  364. 364.
    Xue W, Zender L, Miething C et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445(7128):656–660PubMedCrossRefGoogle Scholar
  365. 365.
    Wu C-H, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW (2007) Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA 104(32):13028–13033PubMedCrossRefGoogle Scholar
  366. 366.
    Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the ­therapeutic efficacy of p53 restoration in tumors. Cell 127(7): 1323–1334PubMedCrossRefGoogle Scholar
  367. 367.
    Gorgoulis VG, Vassiliou L-VF, Karakaidos P et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434(7035):907–913PubMedCrossRefGoogle Scholar
  368. 368.
    Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26(17):2839–2845PubMedCrossRefGoogle Scholar
  369. 369.
    Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132(3):363–374PubMedCrossRefGoogle Scholar
  370. 370.
    Acosta JC, O’Loghlen A, Banito A et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133(6): 1006–1018PubMedCrossRefGoogle Scholar
  371. 371.
    Kuilman T, Michaloglou C, Vredeveld LCW et al (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133(6):1019–1031PubMedCrossRefGoogle Scholar
  372. 372.
    Coppe J-P, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):e301CrossRefGoogle Scholar
  373. 373.
    Ries LAG, Melbert D, Krapcho M, Stinchcomb DG, Howlader N, Horner MJ, Mariotto A, Miller BA, Feuer EJ, Altekruse SF, Lewis DR, Clegg L, Eisner MP, Reichman M, Edwards BK (eds) (2008) SEER cancer statistics review, 1975-2005, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2005/, based on November 2007 SEER data submission, posted to the SEER web site
  374. 374.
    Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98(21):12072–12077PubMedCrossRefGoogle Scholar
  375. 375.
    Liu D, Hornsby PJ (2007) Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res 67(7):3117–3126PubMedCrossRefGoogle Scholar
  376. 376.
    Maier B, Gluba W, Bernier B et al (2004) Modulation of mammalian life span by the short isoform of p53. Genes Dev 18(3):306–319PubMedCrossRefGoogle Scholar
  377. 377.
    Garcia-Cao I, Garcia-Cao M, Martin-Caballero J et al (2002) ‘Super p53’ mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 21(22):6225–6235PubMedCrossRefGoogle Scholar
  378. 378.
    Matheu A, Pantoja C, Efeyan A et al (2004) Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging. Genes Dev 18(22):2736–2746PubMedCrossRefGoogle Scholar
  379. 379.
    Mendrysa SM, O’Leary KA, McElwee MK et al (2006) Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev 20(1):16–21PubMedCrossRefGoogle Scholar
  380. 380.
    Matheu A, Maraver A, Klatt P et al (2007) Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448(7151): 375–379PubMedCrossRefGoogle Scholar
  381. 381.
    Partridge L, Gems D (2007) Benchmarks for ageing studies. Nature 450(7167):165–167PubMedCrossRefGoogle Scholar
  382. 382.
    Lane MA, Ingram DK, Ball SS, Roth GS (1997) Dehydroepiandrosterone sulfate: a biomarker of primate aging slowed by calorie restriction. J Clin Endocrinol Metab 82(7): 2093–2096PubMedCrossRefGoogle Scholar
  383. 383.
    Larson-Meyer DE, Newcomer BR, Heilbronn LK et al (2008) Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function. Obesity 16(6):1355–1362PubMedCrossRefGoogle Scholar
  384. 384.
    Trichopoulou A, Vasilopoulou E (2000) Mediterranean diet and longevity. Br J Nutr 84(Suppl 2):S205–S209PubMedCrossRefGoogle Scholar
  385. 385.
    Corder R, Mullen W, Khan NQ et al (2006) Oenology: red wine procyanidins and vascular health. Nature 444(7119):566PubMedCrossRefGoogle Scholar
  386. 386.
    Allard JS, Perez E, Zou S, de Cabo R (2009) Dietary activators of Sirt1. Mol Cell Endocrinol 299(1):58–63PubMedCrossRefGoogle Scholar
  387. 387.
    Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342PubMedCrossRefGoogle Scholar
  388. 388.
    Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122PubMedCrossRefGoogle Scholar
  389. 389.
    Pearson KJ, Baur JA, Lewis KN et al (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8(2):157–168PubMedCrossRefGoogle Scholar
  390. 390.
    Barger JL, Kayo T, Vann JM et al (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 3(6):e2264PubMedCrossRefGoogle Scholar
  391. 391.
    Schumacher B, van der Pluijm I, Moorhouse MJ et al (2008) Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet 4(8):e1000161PubMedCrossRefGoogle Scholar
  392. 392.
    Keyes WM, Wu Y, Vogel H, Guo X, Lowe SW, Mills AA (2005) p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 19(17): 1986–1999PubMedCrossRefGoogle Scholar
  393. 393.
    Mostoslavsky R, Chua KF, Lombard DB et al (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329PubMedCrossRefGoogle Scholar
  394. 394.
    Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51PubMedCrossRefGoogle Scholar
  395. 395.
    Takeda T, Hosokawa M, Higuchi K (1997) Senescence-accelerated mouse (SAM): a novel murine model of senescence. Exp Gerontol 32(1–2):105–109PubMedCrossRefGoogle Scholar
  396. 396.
    Lebel M, Leder P (1998) A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci USA 95(22):13097–13102PubMedCrossRefGoogle Scholar
  397. 397.
    van der Horst GT, Meira L, Gorgels TG et al (2002) UVB ­radiation-induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice. DNA Repair (Amst) 1(2): 143–157CrossRefGoogle Scholar
  398. 398.
    Barlow C, Hirotsune S, Paylor R et al (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86(1):159–171PubMedCrossRefGoogle Scholar
  399. 399.
    Ruzankina Y, Pinzon-Guzman C, Asare A et al (2007) Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1(1): 113–126PubMedCrossRefGoogle Scholar
  400. 400.
    Bartke A, Brown-Borg HM, Bode AM, Carlson J, Hunter WS, Bronson RT (1998) Does growth hormone prevent or accelerate aging? Exp Gerontol 33(7–8):675–687PubMedCrossRefGoogle Scholar
  401. 401.
    Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL (2003) A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423(6937):298–301PubMedCrossRefGoogle Scholar
  402. 402.
    Liu X, Jiang N, Hughes B, Bigras E, Shoubridge E, Hekimi S (2005) Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev 19(20):2424–2434PubMedCrossRefGoogle Scholar
  403. 403.
    Holzenberger M, Dupont J, Ducos B et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421(6919):182–187PubMedCrossRefGoogle Scholar
  404. 404.
    Bluher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299(5606): 572–574PubMedCrossRefGoogle Scholar
  405. 405.
    Miskin R, Masos T (1997) Transgenic mice overexpressing urokinase-type plasminogen activator in the brain exhibit reduced food consumption, body weight and size, and increased longevity. J Gerontol A Biol Sci Med Sci 52(2):B118–B124PubMedCrossRefGoogle Scholar
  406. 406.
    Chiu CH, Lin WD, Huang SY, Lee YH (2004) Effect of a C/EBP gene replacement on mitochondrial biogenesis in fat cells. Genes Dev 18(16):1970–1975PubMedCrossRefGoogle Scholar
  407. 407.
    Yan L, Vatner DE, O’Connor JP et al (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130(2):247–258PubMedCrossRefGoogle Scholar
  408. 408.
    Flurkey K, Papaconstantinou J, Miller RA, Harrison DE (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci USA 98(12):6736–6741PubMedCrossRefGoogle Scholar
  409. 409.
    Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384(6604):33PubMedCrossRefGoogle Scholar
  410. 410.
    Coschigano KT, Clemmons D, Bellush LL, Kopchick JJ (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141(7):2608–2613PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Medicine, Division of Gerontology and Geriatric Medicine, Leonard M. Miller School of MedicineUniversity of Miami, Miami VA GRECCMiamiUSA

Personalised recommendations