Skip to main content

Single Event Effects: Mechanisms and Classification

  • Chapter
  • First Online:
Book cover Soft Errors in Modern Electronic Systems

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 41))

Abstract

Single Event Effects (SEEs) induced by heavy ions, protons, and neutrons become an increasing limitation of the reliability of electronic components, circuits, and systems, and have stimulated abundant past and undergoing work for improving our understanding and developing mitigation techniques. Therefore, compiling the knowledge cumulated in an abundant literature, and reporting the open issues and ongoing efforts, is a challenging task. Such a tentative should start by discussing the fundamental aspects of SEEs before reviewing the different steps that are necessary for creating comprehensive prediction models and developing efficient mitigation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The state where the quantity of a radioactive isotope remains constant because its production rate (due, e.g., to decay of a parent isotope) is equal to its decay rate.

References

  1. JESD89A: Measurement and reporting of alpha particle and terrestrial cosmic ray-induced soft errors in semiconductor devices Oct 2006, http://www.jedec.org.

  2. P. Goldhagen, M. Reginato, T. Kniss, J.W. Wilson, R.C. Singleteny, I.W. Jones, and W. Van Seveninck, “Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high altitude airplane”, Nucl. Instrum. Methods Phys. Res. A, vol. 476, pp. 42–51, 2002.

    Article  Google Scholar 

  3. P. Goldhagen, “Cosmic-ray neutrons on the ground and in the atmosphere”, MRS Bulletin, pp. 131–135, Feb. 2003.

    Google Scholar 

  4. F. Lei, A. Hands, S. Clucas, C. Dyer, and P. Truscott, “Improvement to and validations of the QinetiQ atmospheric radiation model (QARM)”, IEEE Trans. Nucl. Sci., vol. 53, no. 4, p1851, Aug. 2006, http://qarm.space.qinetiq.com/description/qarm_model.html.

    Google Scholar 

  5. M.B. Chadwick, and E. Normand, “Use of new ENDF/B-VI proton and neutron cross sections for single event upset calculations”, IEEE Trans. Nucl. Sci., vol. 46, no. 6, p1386, 1999.

    Article  Google Scholar 

  6. M.B. Chadwick, P.G. Young, R.E. MacFarlane, P. Moller, G.M. Hale, R.C. Little, A.J. Koning, and S. Chiba, “LA150 documentation of cross sections, heating, and damage,” Los Alamos National Laboratory report LA-UR-99-1222 (1999).

    Google Scholar 

  7. F. Wrobel, “Nucleon induced recoil ions in microelectronics” LPES-CRESA, University of Nice, Sophia-Antipolis, France International Conference on Nuclear Data for Science and Technology 2007.

    Google Scholar 

  8. Y. Tukamoto, Y. Watanabe, and H. Nakashima, “Analysis of cosmic ray neutron-induced single-event phenomena” Proceedings of the 2002 Symp. on Nuclear Data, Nov. 21–22, 2002, JAERI, Tokai, Japan, JAERI-Conf. 2003–2006, p. 265, (2003).

    Google Scholar 

  9. K. Niita et al, JQMD code, JAERI-Data/Code 99-042 (1999).

    Google Scholar 

  10. S. Furihata, Nucl. Instrum. Methods Phys. Res. B, vol. 171, p251, 2000.

    Article  Google Scholar 

  11. E. Normand, “Extensions of the burst generation ate method for wider application to proton/neutron-induced single event effects”, IEEE Trans. Nucl. Sci., vol. 45, no. 6, p2904, Dec. 1998.

    Article  Google Scholar 

  12. J.F. Ziegler, SRIM 2008, www.srim.org.

  13. H. Paul, Stopping power for light ions, MSTAR, www.exphys.uni-linz.ac.at/stopping/ http://www-nds.ipen.br/stoppinggraphs/ www.exphys.uni-linz.ac.at/stopping.

  14. M. Murat, A. Akkerman, and J. Barak, “Electron and ion tracks in silicon: Spatial and temporal evolution”, IEEE Trans. Nucl. Sci., vol. 55, no. 6, p3046, Dec. 2008.

    Article  Google Scholar 

  15. A.S. Kobayashi, A.L. Sternberg, L.W. Massengill, Ronald D. Schrimpf, and R.A. Weller, “Spatial and temporal characteristics of energy deposition by protons and alpha particles in silicon”, IEEE Trans. Nucl. Sci., vol. 51, no. 6, p3312, Dec. 2004.

    Article  Google Scholar 

  16. X.W. Zhu, “Charge deposition modelling of thermal neutron products in fast submicron MOS devices”, IEEE Trans. Nucl. Sci., vol. 46, 1996.

    Google Scholar 

  17. F.W. Sexton, “Destructive single-event effects in semiconductor devices and ICs”, IEEE Trans. Nucl. Sci. vol. 50, no. 3, Part 3, pp. 603–621, June 2003.

    Article  Google Scholar 

  18. G. Hubert, J.-M. Palau, K. Castellani-Coulie, M.-C. Calvet, S. Fourtine, “Detailed analysis of secondary ions’ effect for the calculation of neutron-induced SER in SRAMs”, IEEE Trans. Nucl. Sci., vol. 48, no 6, pp. 1953–1959, Dec. 2001.

    Article  Google Scholar 

  19. P.E. Dodd, and F.W. Sexton, “Critical charge concepts for CMOS SRAMs”, IEEE Trans. Nucl. Sci., vol. 42, no. 6, p1764, Dec. 1995.

    Article  Google Scholar 

  20. K. Yamagushi et al, “3-D device modeling for SRAM soft-error immunity and tolerance analysis”, IEEE Trans. Electron Devices. vol. 51, no.3, p378, Mar. 2004.

    Article  Google Scholar 

  21. P. Jain, and V. Zhu “Judicious choice of waveform parameters and accurate estimation of critical charge for logic SER”.

    Google Scholar 

  22. D. Munteanu, and J.-L. Autran, “Modeling and simulation of single-event effects in digital devices and ICs”, IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 1854–1878, Aug. 2008.

    Article  Google Scholar 

  23. M.A. Bajura et al, “Models and algorithmic limits for an ECC-based approach to hardening sub-100-nm SRAMs”, IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp. 935, Aug. 2007.

    Article  Google Scholar 

  24. P.E. Dodd, “Device simulation of charge collection and single-event upset”, IEEE Trans. Nucl. Sci., vol. 43, pp. 561–575, 1996.

    Article  Google Scholar 

  25. P.E. Dodd et al, “Production and propagation of single-event transients in high-speed digital logic ICs”, IEEE Trans. Nucl. Sci., vol. 51, no. 6, pp. 3278–3284, Dec. 2004.

    Article  Google Scholar 

  26. M. Hane, H. Nakamura, K. Tanaka, K. Watanabe, Y. Tosaka, “Soft error rate simulation considering neutron-induced single event transient from transistor to LSI-chip level”, 2008 Intern. Conf. on Sim. of Semiconductor Processes and Devices (SISPAD 2008).

    Google Scholar 

  27. S. Buchner et al, “Comparison of error rates in combinational and sequential logic”, IEEE Trans. Nucl. Sci., vol. 44, no. 6, pp. 2209–2216, Dec. 1997.

    Article  Google Scholar 

  28. R.C. Baumann, “Radiation-induced soft errors in advanced semiconductor technologies”, IEEE Trans. Device Mater. Reliab., vol. 5, no. 3, pp. 305–316, Sep. 2005.

    Article  MathSciNet  Google Scholar 

  29. C. Shuming, L. Bin, L. Biwei, and L. Zheng, “Temperature dependence of digital SET pulse width in bulk and SOI technologies”, IEEE Trans. Nucl. Sci., vol. 55, no. 6, pp. 2914, Dec. 2008.

    Article  Google Scholar 

  30. P. Bai et al, “A 65 nm logic technology featuring 35 nm Gate lengths, enhanced channel strain, 8 Cu Interconnect layers, low k ILD and 0.57 μm2 SRAM Cell” IEDM 2004.

    Google Scholar 

  31. P.E. Dodd, “Physics-based simulation of single-event effects”, IEEE Trans. Device Mater. Reliab., vol. 5, no. 3, pp. 343–357, Sep. 2005.

    Article  Google Scholar 

  32. Leif Z. Scheick, Steven M. Guertin, and Gary M. Swift, “Analysis of radiation effects on individual DRAM cells”, IEEE Trans. Nucl. Sci., vol. 47, no. 6, p2534, Dec. 2000.

    Article  Google Scholar 

  33. T. O’Gorman, “The effect of cosmic rays on the soft error rate of a DRAM at ground level”, IEEE Trans. Electron Devices, vol. 41, no. 4, p553, Apr. 1994.

    Article  Google Scholar 

  34. Lloyd W. Massengill, “Cosmic and terrestrial single-event radiation effects in dynamic random access memories”, IEEE Trans. Nucl. Sci., vol. 43, no. 2, p516, Apr. 1996.

    Article  Google Scholar 

  35. E. Takeda, D. Hisamoto, T. Toyabe, “A new soft-error phenomenon in VLSIs: The alpha-particle-induced source/drain penetration (ALPEN) effect.” International Reliability Physics Symposium 1988. 26th Annual Proceedings, 12–14 April 1988 Page(s):109–112.

    Google Scholar 

  36. R. Koga, S.H. Penzin, K.B. Crawford, W.R., Crain, “Single event functional interrupt (SEFI) sensitivity in microcircuits” Radiation and Its Effects on Components and Systems, 1997. RADECS 97. Fourth European Conference on 15–19 Sept. 1997 Page(s):311–318.

    Google Scholar 

  37. P.E. Dodd, and L.W. Massengill, “Basic mechanisms and modeling of single-event upset in digital microelectronics,” IEEE Trans. Nucl. Sci., vol. 50, no. 3, pp. 583–602, Jun. 2003.

    Article  Google Scholar 

  38. M. Bagatin et al, “Key contributions to the cross section of NAND flash memories irradiated with heavy ions”, IEEE Trans. Nucl. Sci., vol. 55, no. 6, p3302, Dec. 2008.

    Article  Google Scholar 

  39. J. George, R. Koga, G. Swift, G. Allen, C. Carmichael, and C.W. Tseng, Single Event Upsets in Xilinx Virtex-4 FPGA Devices Radiation Effects Data Workshop, 2006 IEEE, July 2006 pp. 109–114.

    Google Scholar 

  40. H. Puchner, R. Kapre, S. Sharifzadeh, J. Majjiga, R. Chao, D. Radaelli, and S. Wong, “Elimination of single event latchup in 90 nm sram technologies” 4th Annual IEEE IRPS Proceedings, 2006, March 2006 Page(s):721–722.

    Google Scholar 

  41. R.G. Useinov, “Analytical model of radiation induced or single event latchup in CMOS integrated circuits”, IEEE Trans. Nucl. Sci., vol. 53, no. 4, p1834, Aug. 2006.

    Article  Google Scholar 

  42. F. Bruguier, and J.-M. Palau, “Single particle-induced latchup”, IEEE Trans. Nucl. Sci., vol. 43, no. 2, pp. 522–532.

    Google Scholar 

  43. P.E. Dodd, M.R. Shaneyfelt, J.R. Schwank, and G.L. Hash, “Neutron-induced soft errors, latchup, and comparison of SER test methods for SRAM technologies”, IEDM Tech. Dig., pp. 333–336, 2002.

    Google Scholar 

  44. J. Tausch, D. Sleeter, D. Radaelli, and H. Puchner, “Neutron Induced Micro SEL Events in COTS SRAM Devices” 2007 IEEE Radiation Effects Data Workshop, pp. 185–188.

    Google Scholar 

  45. K.P. Rodbell, D.F. Heidel, H.H.K. Tang, M.S. Gordon, P. Oldiges, and C.E. Murray, “Low-energy proton-induced single-event-upsets in 65 nm node, silicon-on-insulator, latches and memory cells”, IEEE Trans. Nucl. Sci. vol. 54, no. 6, p2474, Dec. 2007.

    Article  Google Scholar 

  46. David F. Heidel et al, “Low energy proton single-event-upset test results on 65 nm SOI SRAM”, IEEE Trans. Nucl. Sci. vol. 55, no. 6, p3394, Dec. 2008.

    Article  Google Scholar 

  47. S. Furihata, and T. Nakamura, J. Nucl. Sci. Technol., Suppl. 2, 758, 2002.

    Google Scholar 

  48. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ion in Solids, Pergamon Press, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Gaillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gaillard, R. (2011). Single Event Effects: Mechanisms and Classification. In: Nicolaidis, M. (eds) Soft Errors in Modern Electronic Systems. Frontiers in Electronic Testing, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6993-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6993-4_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6992-7

  • Online ISBN: 978-1-4419-6993-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics