BetaSys pp 489-503 | Cite as

Whole-Body and Cellular Models of Glucose-Stimulated Insulin Secretion

  • Gianna Maria Toffolo
  • Morten Gram Pedersen
  • Claudio Cobelli
Part of the Systems Biology book series (SYSTBIOL, volume 2)


Models of glucose-stimulated insulin secretion are commonly used to measure β-cell function and to gain insight into the biological mechanisms of insulin release. Depending on the scope, the complexity of the model must be chosen appropriately. We present two models of minimal complexity, able to assess β-cell function in an individual during intravenous and oral glucose perturbations, and a comprehensive model of insulin secretion, describing intracellular events. We show how comparison of cellular and minimal models provides insight into the mechanisms underlying the different aspects of the minimal models and yields biological meaning to their indices.


β-cell Insulin secretion Glucose control Mathematical models 


  1. 1.
    Basu A, Dalla Man C, Basu R, Toffolo G, Cobelli C, Rizza RA (2009) Effects of type 2 diabetes on insulin secretion, insulin action, glucose metabolism. Diabetes Care 32: 866–872PubMedCrossRefGoogle Scholar
  2. 2.
    Basu R, Dalla Man C, Campioni M, Basu A, Klee G, Jenkins G, Toffolo G, Cobelli C, Rizza RA (2006) Mechanisms of postprandial hyperglycemia in elderly men and women: gender specific differences in insulin secretion and action. Diabetes 55:2001–2014PubMedCrossRefGoogle Scholar
  3. 3.
    Bergman RN, Ider YZ, Bowden CR, Cobelli C (1979) Quantitative estimation of insulin sensitivity. Am J Physiol 236:E667–E677PubMedGoogle Scholar
  4. 4.
    Bergman RN, Phillips NLS, Cobelli C (1981) Physiologic evaluation of factors controlling glucose tolerance in man. Measurement of insulin sensitivity and beta-cell sensitivity from the response to intravenous glucose. J Clin Invest 68:1456–1467PubMedCrossRefGoogle Scholar
  5. 5.
    Bertram R, Sherman A, Satin LS (2007) Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion. Am J Physiol Endocrinol Metab 293:E890–E900PubMedCrossRefGoogle Scholar
  6. 6.
    Bertuzzi A, Salinari S, Mingrone G (2007) Insulin granule trafficking in beta-cells: mathematical model of glucose-induced insulin secretion. Am J Physiol Endocrinol Metab 293: E396–E409PubMedCrossRefGoogle Scholar
  7. 7.
    Bock G, Chittilapilly E, Basu R, Toffolo G, Cobelli C, Chandramouli V, Landau BR, Rizza RA (2007) Contribution of hepatic and extrahepatic insulin resistance to the pathogenesis of impaired fasting glucose: role of increased rates of gluconeogenesis. Diabetes 56:1703–1711PubMedCrossRefGoogle Scholar
  8. 8.
    Bock G, Dalla Man C, Campioni M, Chittilapilly E, Basu R, Toffolo G, Cobelli C, Rizza RA (2006) Pathogenesis of pre-diabetes: mechanisms of fasting and postprandial hyperglycemia in people with impaired fasting glucose and/or impaired glucose tolerance. Diabetes 55: 3536–3549PubMedCrossRefGoogle Scholar
  9. 9.
    Breda E, Cavaghan MK, Toffolo G, Polonsky KS, Cobelli C (2001) Oral glucose tolerance test minimal model indexes of beta-cell function and insulin sensitivity. Diabetes 50: 150–158PubMedCrossRefGoogle Scholar
  10. 10.
    Breda E, Toffolo G, Polonsky KS, Cobelli C (2002) Insulin release in impaired glucose tolerance: oral minimal model predicts normal sensitivity to glucose but defective response times. Diabetes 51(Suppl 1):S227–S233PubMedCrossRefGoogle Scholar
  11. 11.
    Cali AM, Dalla Man C, Cobelli C, Dziura J, Seyal A, Shaw M, Allen K, Chen S, Caprio S (2009) Primary defects in beta-cell function further exacerbated by worsening of insulin resistance mark the development of impaired glucose tolerance in obese adolescents. Diabetes Care 32:456–461PubMedCrossRefGoogle Scholar
  12. 12.
    Campioni M, Toffolo GM, Basu R, Rizza RA, Cobelli C (2009) Minimal model assessment of hepatic insulin extraction during an oral test from standard insulin kinetic parameters Am J Physiol Endocrinol Metab vol. 297:E941–E948Google Scholar
  13. 13.
    Cerasi E, Fick G, Rudemo M (1974) A mathematical model for the glucose induced insulin release in man. Eur J Clin Invest 4:267–278PubMedCrossRefGoogle Scholar
  14. 14.
    Chen YD, Wang S, Sherman A (2008) Identifying the targets of the amplifying pathway for insulin secretion in pancreatic beta-cells by kinetic modeling of granule exocytosis. Biophys J 95:2226–2241PubMedCrossRefGoogle Scholar
  15. 15.
    Cobelli C, Toffolo GM, Dalla Man C, Campioni M, Denti P, Caumo A, Butler PC, Rizza RA (2007) Assessment of beta cell function in humans, simultaneously with insulin sensitività and hepatic extraction, from intravenous and oral glucose test. Am J Physiol Endocrinol Metab 293:E1–E15PubMedCrossRefGoogle Scholar
  16. 16.
    Cretti A, Lehtovirta M, Bonora E, Brunato B, Zenti MG, Tosi F, Caputo M, Caruso B, Groop LC, Muggeo M, Bonadonna RC (2001) Assessment of beta-cell function during the oral glucose tolerance test by a minimal model of insulin secretion. Eur J Clin Invest 31:405–416PubMedCrossRefGoogle Scholar
  17. 17.
    Dalla Man C, Bock G, Giesler PD, Serra DB, Saylan Ligueros M, Foley JE, Camilleri M, Toffolo G, Cobelli C, Rizza RA, Vella A (2008) Dipeptidyl peptidase-4 inhibition by vidagliptin and the effect of insulin secretion and action in response to meal ingestion in type 2 diabetes. Diabetes Care 32:14–18PubMedCrossRefGoogle Scholar
  18. 18.
    Dalla Man C, Caumo A, Cobelli C (2002) The oral glucose minimal model: estimation of insulin sensitivity from a meal test. IEEE Trans Biomed Eng 49:419–429PubMedCrossRefGoogle Scholar
  19. 19.
    Dalla Man C, Micheletto F, Sathananthan A, Rizza RA, Vella A, Cobelli C. A model of GLP-1 action on insulin secretion in nondiabetic subjects. Am J Physiol Endocrinol Metab. 2010 Jun; 298(6):E1115–21Google Scholar
  20. 20.
    Daniel S, Noda M, Straub SG, Sharp GW (1999) Identification of the docked granule pool responsible for the first phase of glucose-stimulated insulin secretion. Diabetes 48:1686–1690PubMedCrossRefGoogle Scholar
  21. 21.
    Eaton RP, Allen RC, Schade DS, Erickson KM, Standefer J (1980) Prehepatic insulin production in man: kinetic analysis using peripheral connecting peptide behavior. J Clin Endocrinol Metab 51:520–528PubMedCrossRefGoogle Scholar
  22. 22.
    Grodsky GM (1972) A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling. J Clin Invest 51:2047–2059PubMedCrossRefGoogle Scholar
  23. 23.
    Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760PubMedCrossRefGoogle Scholar
  24. 24.
    Hovorka R, Chassin L, Luzio SD, Playle R, Owens DR (1998) Pancreatic beta-cell responsiveness during meal tolerance test: model assessment in normal subjects and subjects with newly diagnosed noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 83:744–750PubMedCrossRefGoogle Scholar
  25. 25.
    Jonkers FC, Henquin JC (2001) Measurements of cytoplasmic Ca2+ in islet cell clusters show that glucose rapidly recruits beta-cells and gradually increases the individual cell response. Diabetes 50:540–550PubMedCrossRefGoogle Scholar
  26. 26.
    Mari A, Schmitz O, Gastaldelli A, Oestergaard T, Nyholm B, Ferrannini E (2002) Meal and oral glucose tests for assessment of beta-cell function: modeling analysis in normal subjects. Am J Physiol Endocrinol Metab 283: E1159–E1166PubMedGoogle Scholar
  27. 27.
    Nair KS, Rizza RA, O’Brein P, Short KR, Nehra A, Vittone JL, Klee GG, Basu A, Basu R, Cobelli C, Toffolo G, Dalla Man C, Tindall DJ, Melton LJ, Smith GE, Khosla S, Jensen MD (2006) Effect of two years dehydropiandosterone in elderly men and women and testosterone in elderly men on physiological performance, body composition and bone density. N Engl J Med 355:1647–1659PubMedCrossRefGoogle Scholar
  28. 28.
    Nesher R, Cerasi E (2002) Modeling phasic insulin release: immediate and time-dependent effects of glucose. Diabetes 51(Suppl 1):S52–S59Google Scholar
  29. 29.
    Ohara-Imaizumi M, Fujiwara T, Nakamichi Y, Okamura T, Akimoto Y, Kawai J, Matsushima S, Kawakami H, Watanabe T, Akagawa K, Nagamatsu S (2007) Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J Cell Biol 177:695–705PubMedCrossRefGoogle Scholar
  30. 30.
    Olofsson CS, Göpel SO, Barg S, Galvanovskis J, Ma X, Salehi A, Rorsman P, Eliasson L (2002) Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Arch 444:43–51PubMedCrossRefGoogle Scholar
  31. 31.
    Pedersen MG (2009) Contributions of mathematical modeling of beta cells to the understanding of beta-cell oscillations and insulin secretion. J Diabetes Sci Technol 3:12–20PubMedGoogle Scholar
  32. 32.
    Pedersen MG, Corradin A, Toffolo GM, Cobelli C (2008) A subcellular model of glucose-stimulated pancreatic insulin secretion. Philos Transact Roy Soc A 366:3525–3543CrossRefGoogle Scholar
  33. 33.
    Pedersen MG, Sherman A (2009) Newcomer insulin secretory granules as a highly calcium-sensitive pool. Proc Natl Acad Sci USA 106:7432–7436PubMedCrossRefGoogle Scholar
  34. 34.
    Pedersen MG, Toffolo GM, Cobelli C Cellular modeling: insight into oral minimal models of insulin secretion. Am J Physiol 298:E597–E601 (2010). doi:10.1152/ajpendo.00670.2009Google Scholar
  35. 35.
    Petersen KF, Dufour S, FengJ, Befroy D, Dzuira J, Dalla Man C, Cobelli C, Shulman G (2006) Increased prevalence of insulin resistance and non-alcoholic fatty liver disease in Asian Indian men. Proc Natl Acad Sci USA 103:18273–18277PubMedCrossRefGoogle Scholar
  36. 36.
    Polonsky KS, Rubenstein AH (1984) C-peptide as a measure of the secretion and hepatic extraction of insulin. Pitfalls and limitation. Diabetes 33:486–494Google Scholar
  37. 37.
    Steil GM, Hwu C, Janowski R, Hariri F, Jinagouda S, Darwin C, Tadros S, Rebrin K, Saad MF (2004) Evaluation of insulin sensitivity and beta-cell function indexes obtained from minimal model analysis of a meal tolerance test. Diabetes 53:1201–1207PubMedCrossRefGoogle Scholar
  38. 38.
    Sunehag AL, Dalla Man C, Toffolo G, Haymond MW, Bier DM, Cobelli C (2009) Beta-cell function and insulin sensitivity in adolescents from an OGTT. Obesity 17:233–239PubMedGoogle Scholar
  39. 39.
    Toffolo G, Breda E, Cavaghan MK, Ehrmann DA, Polonsky KS, Cobelli C (2001) Quantitative indexes of beta-cell function during graded up&down glucose infusion from C-peptide minimal models. Am J Physiol Endocrinol Metab 280: E2–E10PubMedGoogle Scholar
  40. 40.
    Toffolo G, Campioni M, Basu R, Rizza RA, Cobelli C (2006) A minimal model of insulin secretion and kinetics to assess hepatic insulin extraction. Am J Physiol Endocrinol Metab 290:E169–E176PubMedCrossRefGoogle Scholar
  41. 41.
    Toffolo G, De Grandi F, Cobelli C (1995) Estimation of beta cell sensitivity from IVGTT C-peptide data. Knowledge of the kinetics avoids errors in modeling the secretion. Diabetes 44:845–854Google Scholar
  42. 42.
    Van Cauter E, Mestrez F, Sturie J, and Polonsky KS (1992) Estimation of insulin secretion rates from C-peptide levels. Comparison of individual and standard kinetic parameters for C-peptide clearance. Diabetes 41:368–77PubMedCrossRefGoogle Scholar
  43. 43.
    Wan QF, Dong Y, Yang H, Lou X, Ding J, Xu T (2004) Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. J Gen Physiol 124:653–662PubMedCrossRefGoogle Scholar
  44. 44.
    Yang Y, Gillis KD (2004) A highly Ca2+-sensitive pool of granules is regulated by glucose and protein kinases in insulin-secreting INS-1 cells. J Gen Physiol 124:641–651PubMedCrossRefGoogle Scholar
  45. 45.
    Zawalich WS, Zawalich KC (2002) Effects of glucose, exogenous insulin, and carbachol on C-peptide and insulin secretion from isolated perifused rat islets. J Biol Chem 277:26233–26237PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gianna Maria Toffolo
    • 1
  • Morten Gram Pedersen
    • 2
  • Claudio Cobelli
    • 1
  1. 1.Department of Information EngineeringUniversity of PadovaPadovaItaly
  2. 2.Lund University Diabetes CentreMalmöSweden

Personalised recommendations