Skip to main content

Clinical Pathophysiology and Molecular Biology of the Urothelium and the GAG Layer

  • Chapter
  • First Online:
Bladder Pain Syndrome

Abstract

The urothelium is a special, somehow unique, epithelium. Starting from its basic functions (impermeability and distensibility), it can generate “signaling molecules” which, through the “sensory web,” contribute to the regulation of the urinary function. The knowledge of its molecular basis is getting further details in disclosing its “complex mechanisms”; control of the latter, through a targeted therapy, represents an exciting challenge for basic research. Aim of this chapter is to define, through a molecular pathophysiological analysis, the actual role played by the urothelium in the “natural history” of disorders such as BPS/IC. In particular is described the molecular basis of impermeability and distensibility and selective impermeability of urothelial barriers. Are also discussed the role of dynamin in the regulation of vesicular traffic in the urothelium and centrality of the “uroplakin system.” The urothelium is lined by a soft, flexible coating (cell coat, glycocalix, fuzz), a constituent of the apical membrane of “umbrella cells.” The molecular composition and related functions are analyzed in detail. The relationship between cell populations and the urothelial pacemaker and the potential role of myofibroblasts as a conduction tissue are discussed. A “dysfunction” is the quantitative/qualitative alteration of a function (hyper- or hypofunction). However this generic pathophysiological term pretty well describes a complex of symptoms, from both clinical and molecular standpoint. Are finally evaluated the criteria to define the condition of urothelial dysfunction and the theoretical foundations of coating repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng FM, Ding M, Lavker RM, Sun TT. Urothelial function reconsidered: a role in urinary protein secretion. Proc Natl Acad Sci U S A. 2001;98:154–9.

    Article  PubMed  CAS  Google Scholar 

  2. Khandelwal P, Ruiz WG, Balestreire-Hawryluk E, Weisz OA, Goldenring JR, Apodaca G. Rab11a-dependent exocytosis of discoidal/fusiform vesicles in bladder umbrella cells. Proc Natl Acad Sci U S A. 2008;105:15773–8.

    Article  PubMed  CAS  Google Scholar 

  3. Birder L. Role of the urothelium in bladder function. Scand J Urol Nephrol Suppl. 2004;215:48–53.

    Article  PubMed  Google Scholar 

  4. Birder L. Urinary bladder urothelium: molecular sensors of chemical/thermal/mechanical stimuli. Vascul Pharmacol. 2006;45:221–6.

    Article  PubMed  CAS  Google Scholar 

  5. Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT. Uroplakins in urothelial biology, function, and disease. Kidney Int. 2009;75:1153–65.

    Article  PubMed  CAS  Google Scholar 

  6. de Groat WC. The urothelium in overactive bladder: passive bystander or active participant? Urology. 2004;64(6 Suppl 1):7–11.

    Article  PubMed  Google Scholar 

  7. Jost SP, Gosling JA, Dixon JS. The morphology of normal human bladder urothelium. J Anat. 1989;167:103–15.

    PubMed  CAS  Google Scholar 

  8. Laguna P, Smedts F, Nordling J, Horn T, Bouchelouche K, Hopman A, et al. Keratin expression profiling of transitional epithelium in the painful bladder syndrome/interstitial cystitis. Am J Clin Pathol. 2006;125:105–10.

    PubMed  Google Scholar 

  9. Negrete HO, Lavelle JP, Berg J, Lewis SA, Zeidel ML. Permeability properties of the intact mammalian bladder epithelium. Am J Physiol. 1996;271:F886–94.

    PubMed  CAS  Google Scholar 

  10. Lavelle J, Meyers S, Ramage R, Bastacky S, Doty D, Apodaca G, et al. Bladder permeability barrier: recovery from selective injury of surface epithelial cells. Am J Physiol Renal Physiol. 2002;283:F242–53.

    PubMed  CAS  Google Scholar 

  11. Eldrup J, Thorup J, Nielsen SL, Hald T, Hainau B. Permeability and ultrastructure of human bladder epithelium. Br J Urol. 1983;55:488–92.

    Article  PubMed  CAS  Google Scholar 

  12. Acharya P, Beckel J, Ruiz WG, Wang E, Rojas R, Birder L, et al. Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, -8, and -12 in bladder epithelium. Am J Physiol Renal Physiol. 2004;287:F305–18.

    Article  PubMed  CAS  Google Scholar 

  13. D’Atri F, Nadalutti F, Citi S. Evidence for a functional interaction between cingulin and ZO-1 in cultured cells. J Biol Chem. 2002;277:27757–64.

    Article  PubMed  CAS  Google Scholar 

  14. Varley CL, Southgate J. Effects of PPAR agonists on proliferation and differentiation in human urothelium. Exp Toxicol Pathol. 2008;60:435–41.

    Article  PubMed  CAS  Google Scholar 

  15. Varley CL, Garthwaite MA, Cross W, Hinley J, Trejdosiewicz LK, Southgate J. PPAR gamma-regulated tight junction development during human urothelial cytodifferentiation. J Cell Physiol. 2006;208:407–17.

    Article  PubMed  CAS  Google Scholar 

  16. Mullin JM, Leatherman JM, Valenzano MC, Huerta ER, Verrechio J, Smith DM, et al. Ras mutation impairs epithelial barrier function to a wide range of non electrolytes. Mol Biol Cell. 2005;16:5538–50.

    Article  PubMed  CAS  Google Scholar 

  17. Wang E, Truschel S, Apodaca G. Analysis of hydrostatic pressure-induced changes in umbrella cell surfacearea. Methods. 2003;30:207–17.

    Article  PubMed  CAS  Google Scholar 

  18. Lewis SA, de Moura JL. Apical membrane area of rabbit urinary bladder increases by fusion of intracellular vesicles: an electrophysiological study. J Membr Biol. 1984;82:123–36.

    Article  PubMed  CAS  Google Scholar 

  19. Born M, Pahner I, Ahnert-Hilger G, Jöns T. The maintenance of the permeability barrier of bladder facet cells requires a continuous fusion of discoid vesicles with the apical plasma membrane. Mol Biol Cell. 2002;13:830–46.

    Article  CAS  Google Scholar 

  20. Veranic P, Romih R, Jezernik K. What determines differentiation of urothelial umbrella cells? Eur J Cell Biol. 2004;83:27–34.

    Article  PubMed  Google Scholar 

  21. Truschel ST, Wang E, Ruiz WG, Leung SM, Rojas R, Lavelle J, et al. Stretch-regulated exocytosis/endocytosis in bladder umbrella cells. Mol Biol Cell. 2002;13:830–46.

    Article  PubMed  CAS  Google Scholar 

  22. Kreft ME, Jezernik K, Kreft M, Romih R. Apical plasma membrane traffic in superficial cells of bladder urothelium. Ann N Y Acad Sci. 2009;1152:18–29.

    Article  PubMed  Google Scholar 

  23. Cao H, Chen J, Awoniyi M, Henley JR, McNiven MA. Dynamin 2 mediates fluid-phase micropinocytosis in epithelial cells. J Cell Sci. 2007;120(Pt 23):4167–77.

    Article  PubMed  CAS  Google Scholar 

  24. Terada N, Ohno N, Saitoh S, Saitoh Y, Fujii Y, Kondo T, et al. Involvement of dynamin-2 in formation of discoid vesicles in urinary bladder umbrella cells. Cell Tissue Res. 2009;337:91–102.

    PubMed  CAS  Google Scholar 

  25. Henley JR, Cao H, McNiven MA. Participation of dynamin in the biogenesis of cytoplasmic vesicles. FASEB J. 1999;13 Suppl 2:S243–7.

    PubMed  CAS  Google Scholar 

  26. Lee E, De Camilli P. Dynamin at actin tails. Proc Natl Acad Sci U S A. 2002;99:161–6.

    Article  PubMed  CAS  Google Scholar 

  27. Thompson HM, Cao H, Chen J, Euteneuer U, McNiven MA. Dynamin 2 binds gamma-tubulin and participates in centrosome cohesion. Nat Cell Biol. 2004;6:335–42.

    Article  PubMed  CAS  Google Scholar 

  28. Fish KN, Schmid SL, Damke H. Evidence that dynamin- 2 functions as a signal-transducing GTPase. J Cell Biol. 2000;150:145–54.

    Article  PubMed  CAS  Google Scholar 

  29. Kirchhausen T, Macia E, Pelish HE. Use of dynasore, the small molecule inhibitor of dynamin, in the regulation of endocytosis. Methods Enzymol. 2008;438:77–93.

    Article  PubMed  CAS  Google Scholar 

  30. Hudoklin S, Zupancic D, Romih R. Maturation of the Golgi apparatus in urothelial cells. Cell Tissue Res. 2009;336:453–63.

    Article  PubMed  CAS  Google Scholar 

  31. Riedel I, Liang FX, Deng FM, Tu L, Kreibich G, Wu XR, et al. Urothelial umbrella cells of human ureter are heterogeneous with respect to their uroplakin composition: different degrees of urothelial maturity in ureter and bladder? Eur J Cell Biol. 2005;84:393–405.

    Article  PubMed  CAS  Google Scholar 

  32. Hu CC, Liang FX, Zhou G, Tu L, Tang CH, Zhou J, et al. Assembly of urothelial plaques: tetraspanin function in membrane protein trafficking. Mol Biol Cell. 2005;16:3937–50.

    Article  PubMed  CAS  Google Scholar 

  33. Bongiovanni GA, Eynard AR, Calderón RO. Altered lipid profile and changes in uroplakin properties of rat urothelial plasma membrane with diets of different lipid composition. Mol Cell Biochem. 2005;271:69–75.

    Article  PubMed  CAS  Google Scholar 

  34. Duncan MJ, Li G, Shin JS, Carson JL, Abraham SN. Bacterial penetration of bladder epithelium through lipid rafts. J Biol Chem. 2004;279:18944–51.

    Article  PubMed  CAS  Google Scholar 

  35. Grasso EJ, Calderón RO. Urinary bladder membrane permeability differentially induced by membrane lipid composition. Mol Cell Biochem. 2009;330(1–2):163–9.

    Article  PubMed  CAS  Google Scholar 

  36. Grist M, Chakraborty J. Identification of a mucin layer in the urinary bladder. Urology. 1994;44:26–33.

    Article  PubMed  CAS  Google Scholar 

  37. Alm P, Colleen S. A histochemical and ultrastructural study of human urethral uroepithelium. Acta Pathol Microbiol Immunol Scand A. 1982;90:103–11.

    PubMed  CAS  Google Scholar 

  38. Nickel JC, Cornish J. Ultrastructural study of an antibody- stabilized bladder surface: a new perspective on the elusive glycosaminoglycan layer. World J Urol. 1994;12:11–4.

    Article  PubMed  CAS  Google Scholar 

  39. Koenig F, Knittel J, Schnieder L, George M, Lein M, Schnorr D. Confocal laser scanning microscopy of urinary bladder after intravesical instillation of a fluorescent dye. Urology. 2003;62:158–61.

    Article  PubMed  Google Scholar 

  40. Sonn GA, Jones SN, Tarin TV, Du CB, Mach KE, Jensen KC, et al. Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. J Urol. 2009;182(4):1299–305.

    Article  PubMed  Google Scholar 

  41. Hermes B, Spöler F, Naami A, Bornemann J, Först M, Grosse J, et al. Visualization of the basement membrane zone of the bladder by optical coherence tomography: feasibility of non-invasive evaluation of tumor invasion. Urology. 2008;72:677–81.

    Article  PubMed  Google Scholar 

  42. Hurst RE. Structure, function, and pathology of proteoglycans and glycosaminoglycans in the urinary tract. World J Urol. 1994;12:3–10.

    Article  PubMed  CAS  Google Scholar 

  43. Higashiyama S, Lau K, Besner GE, Abraham JA, Klagsbrun M. Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J Biol Chem. 1992;267:6205–12.

    PubMed  CAS  Google Scholar 

  44. Shin SY, Takenouchi T, Yokoyama T, Ohtaki T, Munekata E. Chemical synthesis and biological activity of the EGF-like domain of heparin-binding epidermal growth factor-like growth factor (HB-EGF). Int J Pept Protein Res. 1994;44:485–90.

    Article  PubMed  CAS  Google Scholar 

  45. Nakagawa T, Higashiyama S, Mitamura T, Mekada E, Taniguchi N. Amino-terminal processing of cell surface heparin-binding epidermal growth factor-like growth factor up-regulates its juxtacrine but not its paracrine growth factor activity. J Biol Chem. 1996;271:30858–63.

    Article  PubMed  CAS  Google Scholar 

  46. Nakamura Y, Handa K, Iwamoto R, Tsukamoto T, Takahasi M, Mekada E. Immunohistochemical distribution of CD9, heparin binding epidermal growth factor- like growth factor, and integrin alpha3beta1 in normal human tissues. J Histochem Cytochem. 2001;49:439–44.

    Article  PubMed  CAS  Google Scholar 

  47. Iwamoto R, Handa K, Mekada E. Contact-dependent growth inhibition and apoptosis of epidermal growth factor (EGF) receptor-expressing cells by the membrane- anchored form of heparin-binding EGF-like growth factor. J Biol Chem. 1999;274:25906–12.

    Article  PubMed  CAS  Google Scholar 

  48. Nishi E, Klagsbrun M. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a mediator of multiple physiological and pathological pathways. Growth Factors. 2004;22:253–60.

    Article  PubMed  CAS  Google Scholar 

  49. Friedrich MV, Göhring W, Mörgelin M, Brancaccio A, David G, Timpl R. Structural basis of glycosaminoglycan modification and of heterotypic interactions of perlecan domain V. J Mol Biol. 1999;294:259–70.

    Article  PubMed  CAS  Google Scholar 

  50. Ujita M, Shinomura T, Ito K, Kitagawa Y, Kimata K. Expression and binding activity of the carboxyl-terminal portion of the core protein of PG-M, a large chondroitin sulfate proteoglycan. J Biol Chem. 1994;269:2760.

    Google Scholar 

  51. Chu CL, Goerges AL, Nugent MA. Identification of common and specific growth factor binding sites in heparin sulfate proteoglycans. Biochemistry. 2005;44:12203–13.

    Article  PubMed  CAS  Google Scholar 

  52. Harding PA, Davis-Fleischer KM, Crissman-Combs MA, Miller MT, Brigstock DR, Besner GE. Induction of anchorage independent growth by heparin-binding EGF-like growth factor (HB-EGF). Growth Factors. 1999;17:49–61.

    Article  PubMed  CAS  Google Scholar 

  53. Takemura T, Hino S, Kuwajima H, Yanagida H, Okada M, Nagata M, et al. Induction of collecting duct morphogenesis in vitro by heparin-binding epidermal growth factor-like growth factor. J Am Soc Nephrol. 2001;12:964–72.

    PubMed  CAS  Google Scholar 

  54. Kumar V, Peña de la Vega L, Farell G, Lieske JC. Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int. 2005;68:1784–92.

    Article  PubMed  Google Scholar 

  55. Chen WC, Lin HS, Chen HY, Shih CH, Li CW. Effects of Tamm-Horsfall protein and albumin on calcium oxalate crystallization and importance of sialic acids. Mol Urol. 2001;5:1–5.

    Article  PubMed  Google Scholar 

  56. Neal Jr DE, Dilworth JP, Kaack MB. Tamm-Horsfall autoantibodies in interstitial cystitis. J Urol. 1991;145:37–9.

    PubMed  Google Scholar 

  57. Akiyama A, Stein PC, Houshiar A, Parsons CL. Urothelial cytoprotective activity of Tamm-Horsfall protein isolated from the urine of healthy subjects and patients with interstitial cystitis. Am J Physiol Renal Physiol. 2004;287:F305–18.

    Article  Google Scholar 

  58. Parsons CL, Rajasekaran M, Arsanjani AH, Chenoweth M, Stein P. Role of sialic acid in urinary cytoprotective activity of Tamm-Horsfall protein. Urology. 2007;69:577–81.

    Article  PubMed  Google Scholar 

  59. Bachmann S, Mutig K, Bates J, Welker P, Geist B, Gross V, et al. Renal effects of Tamm-Horsfall protein (uromodulin) deficiency in mice. Am J Physiol Renal Physiol. 2005;288:F559–67.

    Article  PubMed  CAS  Google Scholar 

  60. Byrne DS, Sedor JF, Estojak J, Fitzpatrick KJ, Chiura AN, Mulholland SG. The urinary glycoprotein GP51 as a clinical marker for interstitial cystitis. J Urol. 1999;161:1786–90.

    Article  PubMed  CAS  Google Scholar 

  61. Shupp Byrne DE, Sedor JF, Soroush M, McCue PA, Mulholland SG. Interaction of bladder glycoprotein GP51 with uropathogenic bacteria. J Urol. 2001;165:1342–6.

    Article  PubMed  CAS  Google Scholar 

  62. Erickson DR, Mast S, Ordille S, Bhavanandan VP. Urinary epitectin (MUC-1 glycoprotein) in the menstrual cycle and interstitial cystitis. J Urol. 1996;156:938–42.

    Article  PubMed  CAS  Google Scholar 

  63. Hurst RE, Rhodes SW, Adamson PB, Parsons CL, Roy JB. Functional and structural characteristics of the glycosaminoglycans of the bladder luminal surface. J Urol. 1987;138:433–7.

    PubMed  CAS  Google Scholar 

  64. Hauser PJ, Dozmorov MG, Bane BL, Slobodov G, Culkin DJ, Hurst RE. Abnormal expression of differentiation related proteins and proteoglycan core proteins in the urothelium of patients with interstitial cystitis. J Urol. 2008;179:764–9.

    Article  PubMed  CAS  Google Scholar 

  65. Hurst RE, Roy JB, Min KW, Veltri RW, Marley G, Patton K, et al. A deficit of chondroitin sulfate proteoglycans on the bladder uroepithelium in interstitial cystitis. Urology. 1996;48:817–21.

    Article  PubMed  CAS  Google Scholar 

  66. Parsons CL, Stauffer C, Schmidt JD. Bladder-surface glycosaminoglycans: an efficient mechanism of environmental adaptation. Science. 1980;208:605–7.

    Article  PubMed  CAS  Google Scholar 

  67. Poggi MM, Johnstone PA, Conner RJ. Glycosaminoglycan content of human bladders: a method of analysis using cold-cup biopsies. Urol Oncol. 2000;5:234–7.

    Article  PubMed  CAS  Google Scholar 

  68. Ewalt DH, Howard PS, Blyth B, Snyder 3rd HM, Duckett JW, Levin RM, et al. Is lamina propria matrix responsible for normal bladder compliance? J Urol. 1992;148(2 Pt 2):544–9.

    PubMed  CAS  Google Scholar 

  69. Koo HP, Macarak EJ, Chang SL, Rosenbloom J, Howard PS. Temporal expression of elastic fiber components in bladder development. Connect Tissue Res. 1998;37:1–11.

    Article  PubMed  CAS  Google Scholar 

  70. Smeulders N, Woolf AS, Wilcox DT. Extracellular matrix protein expression during mouse detrusor development. J Pediatr Surg. 2003;38:1–12.

    PubMed  CAS  Google Scholar 

  71. Miodosky M, Abdul-Hai A, Tsirigotis P, Or R, Bitan M, Resnick IB, et al. Treatment of post-hematopoietic stem cell transplantation hemorrhagic cystitis with intravesicular sodium hyaluronate. Bone Marrow Transplant. 2006;38:507–11.

    Article  PubMed  CAS  Google Scholar 

  72. Cao M, Liu B, Cunha G, Baskin L. Urothelium patterns bladder smooth muscle location. Pediatr Res. 2008;64:352–7.

    Article  PubMed  Google Scholar 

  73. Erdani Kreft M, Sterle M. The effect of lamina propria on the growth and differentiation of urothelial cells in vitro. Pflugers Arch. 2000;440(5 Suppl):R181–2.

    Article  PubMed  CAS  Google Scholar 

  74. Davidson RA, McCloskey KD. Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons. J Urol. 2005;173:1385–90.

    Article  PubMed  Google Scholar 

  75. Sui GP, Rothery S, Dupont E, Fry CH, Severs NJ. Gap junctions and connexin expression in human suburothelial interstitial cells. BJU Int. 2002;90:118–29.

    Article  PubMed  CAS  Google Scholar 

  76. Fang Q, Yang J, Pan JH, Li WB, Shen WH, Li LK, et al. Morphological study on the role of ICC like cells in detrusor neuro-modulation of rat urinary bladder. Zhonghua Wai Ke Za Zhi. 2008;46:1542–5.

    PubMed  Google Scholar 

  77. Grol S, Essers PB, van Koeveringe GA, Martinez-Martinez P, de Vente J, Gillespie JI. M(3) muscarinic receptor expression on suburothelial interstitial cells. BJU Int. 2009;104:398–405.

    Article  PubMed  CAS  Google Scholar 

  78. Gillespie JI, Harvey IJ, Drake MJ. Agonist- and nerve induced phasic activity in the isolated whole bladder of the guinea pig: evidence for two types of bladder activity. Exp Physiol. 2003;88:343–57.

    Article  PubMed  CAS  Google Scholar 

  79. Collins C, Klausner AP, Herrick B, Koo HP, Miner AS, Henderson SC, et al. Potential for control of detrusor smooth muscle spontaneous rhythmic contraction by cyclooxygenase products released by interstitial cells of Cajal. J Cell Mol Med. 2009;13(9):3236–50.

    Article  PubMed  Google Scholar 

  80. Metzger R, Schuster T, Till H, Franke FE, Dietz HG. Cajal-like cells in the upper urinary tract: comparative study in various species. Pediatr Surg Int. 2005;21:169–74.

    Article  PubMed  Google Scholar 

  81. Hashitani H, Yanai Y, Suzuki H. Role of interstitial cells and gap junctions in the transmission of spontaneousCa2+ signals in detrusor smooth muscles of the guinea-pig urinary bladder. J Physiol. 2004;559(Pt 2):567–81.

    Article  PubMed  CAS  Google Scholar 

  82. Lang RJ, Klemm MF. Interstitial cell of Cajal-like cells in the upper urinary tract. J Cell Mol Med. 2005;9:543–56.

    Article  PubMed  CAS  Google Scholar 

  83. Gillespie JI. The autonomous bladder: a view of the origin of bladder overactivity and sensory urge. BJU Int. 2004;93:478–83.

    Article  PubMed  CAS  Google Scholar 

  84. Gillespie JI. Phosphodiesterase-linked inhibition of nonmicturition activity in the isolated bladder. BJU Int. 2004;93:1325–32.

    Article  PubMed  CAS  Google Scholar 

  85. Gillespie JI. Noradrenaline inhibits autonomous activity in the isolated guinea pig bladder. BJU Int. 2004;93:401–9.

    Article  PubMed  CAS  Google Scholar 

  86. Gillespie JI, Drake MJ. The actions of sodium nitroprusside and the phosphodiesterase inhibitor dipyridamole on phasic activity in the isolated guinea-pig bladder. BJU Int. 2004;93:851–8.

    Article  PubMed  CAS  Google Scholar 

  87. Gillespie JI. Modulation of autonomous contractile activity in the isolated whole bladder of the guinea pig. BJU Int. 2004;93:393–400.

    Article  PubMed  CAS  Google Scholar 

  88. Fry CH, Hussain M, McCarthy C, Ikeda Y, Sui GP, Wu C. Recent advances in detrusor muscle function. Scand J Urol Nephrol 2004;(215 Suppl):20–5.

    Google Scholar 

  89. Neuhaus J, Pfeiffer F, Wolburg H, Horn LC, Dorschner W. Alterations in connexin expression in the bladder of patients with urge symptoms. BJU Int. 2005;96:670–6.

    Article  PubMed  CAS  Google Scholar 

  90. Kuijpers KA, Heesakkers JP, Jansen CF, Schalken JA. Cadherin-11 is expressed in detrusor smooth muscle cells and myofibroblasts of normal human bladder. Eur Urol. 2007;52:1213–21.

    Article  PubMed  Google Scholar 

  91. Drake MJ, Hedlund P, Andersson KE, Brading AF, Hussain I, Fowler C, et al. Morphology, phenotype and ultrastructure of fibroblastic cells from normal and neuropathic human detrusor: absence of myofibroblast characteristics. J Urol. 2003;169:1573–6.

    Article  PubMed  Google Scholar 

  92. Drake MJ, Gardner BP, Brading AF. Innervation of the detrusor muscle bundle in neurogenic detrusor overactivity. BJU Int. 2003;91:702–10.

    Article  PubMed  CAS  Google Scholar 

  93. Drake MJ, Hedlund P, Harvey IJ, Pandita RK, Andersson KE, Gillespie JI. Partial outlet obstruction enhances modular autonomous activity in the isolated rat bladder. J Urol. 2003;170:276–9.

    Article  PubMed  Google Scholar 

  94. Peixoto EB, Collares-Buzato CB. Protamine-induced epithelial barrier disruption involves rearrangement of cytoskeleton and decreased tight junction-associated protein expression in cultured MDCK strains. Cell Struct Funct. 2005;29:165–78.

    Article  PubMed  CAS  Google Scholar 

  95. Erickson DR, Schwarze SR, Dixon JK, Clark CJ, Hersh MA. Differentiation associated changes in gene expression profiles of interstitial cystitis and control urothelial cells. J Urol. 2008;180:2681–7.

    Article  PubMed  CAS  Google Scholar 

  96. Bhavanandan VP, Erickson DR. An investigation of the nature of bladder mucosal glycoconjugates and their role in interstitial cystitis. Indian J Biochem Biophys. 1997;34:205–11.

    PubMed  CAS  Google Scholar 

  97. Moskowitz MO, Byrne DS, Callahan HJ, Parsons CL, Valderrama E, Moldwin RM. Decreased expression of a glycoprotein component of bladder surface mucin (GP1) in interstitial cystitis. J Urol. 1994;151:343–5.

    PubMed  CAS  Google Scholar 

  98. Anderström CR, Fall M, Johansson SL. Scanning electron microscopic findings in interstitial cystitis. Br J Urol. 1989;63:270–5.

    Article  PubMed  Google Scholar 

  99. Stein P, Rajasekaran M, Parsons CL. Tamm-Horsfall protein protects urothelial permeability barrier. Urology. 2005;66:903–7.

    Article  PubMed  Google Scholar 

  100. Graham E, Chai TC. Dysfunction of bladder urothelium and bladder urothelial cells in interstitial cystitis. Curr Urol Rep. 2006;7:440–6.

    Article  PubMed  Google Scholar 

  101. Green M, Filippou A, Sant G, Theoharides TC. Expression of intercellular adhesion molecules in the bladder of patients with interstitial cystitis. Urology. 2004;63:688–93.

    Article  PubMed  CAS  Google Scholar 

  102. Wilson CB, Leopard J, Nakamura RM, Cheresh DA, Stein PC, Parsons CL. Selective type IV collagen defects in the urothelial basement membrane in interstitial cystitis. J Urol. 1995;154:1222–6.

    Article  PubMed  CAS  Google Scholar 

  103. Bassuk JA. Positive and negative regulators of human urothelial cell proliferation. Urology. 2001;57(6 Suppl 1):104–5.

    Article  PubMed  CAS  Google Scholar 

  104. Teng J, Wang ZY, Jarrard DF, Bjorling DE. Roles of estrogen receptor alpha and beta in modulating urothelial cell proliferation. Endocr Relat Cancer. 2008;15:351–64.

    Article  PubMed  CAS  Google Scholar 

  105. de Deus JM, Girão MJ, Sartori MG, Baracat EC, Rodrigues de Lima G, Nader HB, et al. Glycosaminoglycan profile in bladder and urethra of castrated rats treated with estrogen, progestogen, and raloxifene. Am J Obstet Gynecol. 2003;189:1654–9.

    Article  PubMed  CAS  Google Scholar 

  106. Kim J, Keay SK, Freeman MR. Heparin-binding epidermal growth factor-like growth factor functionally antagonizes interstitial cystitis antiproliferative factor via mitogen-activated protein kinase pathway activation. BJU Int. 2009;103:541–6.

    Article  PubMed  CAS  Google Scholar 

  107. Erman A, Zupancic D, Jezernik K. Apoptosis and desquamation of urothelial cells in tissue remodeling during rat postnatal development. J Histochem Cytochem. 2009;57:721–30.

    Article  PubMed  CAS  Google Scholar 

  108. Ito T, Stein PC, Parsons CL, Schmidt JD. Elevated stress protein in transitional cells exposed to urine from interstitial cystitis patients. Int J Urol. 1998;5:444–8.

    Article  PubMed  CAS  Google Scholar 

  109. Sen GL, Webster DE, Barragan DI, Chang HY, Khavari PA. Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev. 2008;22:1865–70.

    Article  PubMed  CAS  Google Scholar 

  110. Lan F, Shi Y. Epigenetic regulation: methylation of histone and non-histone proteins. Sci China C Life Sci. 2009;52:311–22.

    Article  PubMed  CAS  Google Scholar 

  111. Shaw T, Martin P. Epigenetic reprogramming during wound healing: loss of polycomb-mediated silencing may enable upregulation of repair genes. EMBO Rep. 2009;10:881–6.

    Article  PubMed  CAS  Google Scholar 

  112. Rajasekaran M, Stein P, Parsons CL. Toxic factors in human urine that injure urothelium. Int J Urol. 2006;13:409–14.

    Article  PubMed  CAS  Google Scholar 

  113. Saitoh T, Hirai M, Katoh M. Molecular cloning and characterization of human Frizzled-8 gene on chromosome 10p11.2. Int J Oncol. 2001;18:991–6.

    PubMed  CAS  Google Scholar 

  114. Erickson DR, Sheykhnazari M, Ordille S, Bhavanandan VP. Increased urinary hyaluronic acid and interstitial cystitis. J Urol. 1998;160:1282–4.

    Article  PubMed  CAS  Google Scholar 

  115. Keay S, Szekely Z, Conrads TP, Veenstra TD, Barchi Jr JJ, Zhang C-O, et al. An antiproliferative factor from interstitial cystitis patients is a frizzled 8 protein-related sialoglycopeptide. Proc Natl Acad Sci U S A. 2004;101:11803–8.

    Article  PubMed  CAS  Google Scholar 

  116. Barchi Jr JJ, Kaczmarek P. Short and sweet: evolution of a small glycopeptide from a bladder disorder to an anticancer lead. Mol Interv. 2009;9:14–7.

    Article  PubMed  CAS  Google Scholar 

  117. Sharifi BG, Johnson TC. Affinity labeling of the sialoglycopeptide antimitogen receptor. J Biol Chem. 1987;262:15752–5.

    PubMed  CAS  Google Scholar 

  118. Kim J, Keay SK, Dimitrakov JD, Freeman MR. p53 mediates interstitial cystitis antiproliferative factor (APF)-induced growth inhibition of human urothelial cells. FEBS Lett. 2007;581:3795–9.

    Article  PubMed  CAS  Google Scholar 

  119. O’Leary MP, Sant GR, Fowler FJ, Whitmore KE, Spolarich-Kroll J. The interstitial cystitis symptom index and problem index. Urology. 1997;49:58–63.

    Article  PubMed  Google Scholar 

  120. Keay S, Takeda M, Tamaki M, Hanno P. Current and future directions in diagnostic markers in interstitial cystitis. Int J Urol. 2003;10:S27–30.

    Article  PubMed  Google Scholar 

  121. Tomaszewski JE, Landis JR, Russack V, Williams TM, Wang LP, Hardy C, et al. Biopsy features are associated with primary symptoms in interstitial cystitis: results from the interstitial cystitis database study. Urology. 2001;57:67–81.

    Article  PubMed  CAS  Google Scholar 

  122. Abdel-Mageed AB, Ghoniem GM. Potential role of rel/nuclear factor-kappaB in the pathogenesis of interstitial cystitis. J Urol. 1998;160(6 Pt 1):2000–3.

    PubMed  CAS  Google Scholar 

  123. Abdel-Mageed AB, Bajwa A, Shenassa BB, Human L, Ghoniem GM. NF-kappaB-dependent gene expression of proinflammatory cytokines in T24 cells: possible role in interstitial cystitis. Urol Res. 2003;31:300–5.

    Article  PubMed  CAS  Google Scholar 

  124. Saban MR, Nguyen NB, Hammond TG, Saban R. Gene expression profiling of mouse bladder inflammatory responses to LPS, substance P, and antigen-stimulation. Am J Pathol. 2002;160:2095–110.

    Article  PubMed  CAS  Google Scholar 

  125. Keay S, Zhang CO, Trifillis AL, Hebel JR, Jacobs SC, Warren JW. Urine autoantibodies in interstitial cystitis. J Urol. 1997;157:1083–7.

    Article  PubMed  CAS  Google Scholar 

  126. Parsons CL, Greene RA, Chung M, Stanford EJ, Singh G. Abnormal urinary potassium metabolism in patients with interstitial cystitis. J Urol. 2005;173:1182–5.

    Article  PubMed  CAS  Google Scholar 

  127. Yu W, Zacharia LC, Jackson EK, Apodaca G. Adenosine receptor expression and function in bladder uroepithelium. Am J Physiol Cell Physiol. 2006;291:C254–65.

    Article  PubMed  CAS  Google Scholar 

  128. Christmas TJ, Rode J, Chapple CR, Milroy EJ, Turner-Warwick RT. Nerve fibre proliferation in interstitial cystitis. Virchows Arch A Pathol Anat Histopathol. 1990;416:447–51.

    Article  PubMed  CAS  Google Scholar 

  129. Lundeberg T, Liedberg H, Nordling L, Theodorsson E, Owzarski A, Ekman P. Interstitial cystitis: correlation with nerve fibres, mast cells and histamine. Br J Urol. 1993;71:427–9.

    Article  PubMed  CAS  Google Scholar 

  130. Mattila J, Pitkänen R, Vaalasti T, Seppänen J. Finestructural evidence for vascular injury in patients with interstitial cystitis. Virchows Arch A Pathol Anat Histopathol. 1983;398:347–55.

    Article  PubMed  CAS  Google Scholar 

  131. Marchand JE, Sant GR, Kream RM. Increased expression of substance P receptor-encoding mRNA in bladder biopsies from patients with interstitial cystitis. Br J Urol. 1998;81:224–8.

    Article  PubMed  CAS  Google Scholar 

  132. Kyker KD, Coffman J, Hurst RE. Exogenous glycosaminoglycans coat damaged bladder surfaces in experimentally damaged mouse bladder. BMC Urol. 2005;5:4.

    Article  PubMed  CAS  Google Scholar 

  133. Nickel JC, Downey J, Morales A, Emerson L, Clark J. Relative efficacy of various exogenous glycosaminoglycans in providing a bladder surface permeability barrier. J Urol. 1998;160:612–4.

    Article  PubMed  CAS  Google Scholar 

  134. Lee DG, Cho JJ, Park HK, Kim DK, Kim JI, Chang SG, et al. Preventive effects of hyaluronic acid on Escherichia coli-induced urinary tract infection in rat. Urology. 2010;75(4):949–54.

    Article  PubMed  Google Scholar 

  135. Parsons CL, Boychuk D, Jones S, Hurst R, Callahan H. Bladder surface glycosaminoglycans: an epithelial permeability barrier. J Urol. 1990;143:139–42.

    PubMed  CAS  Google Scholar 

  136. Daha LK, Lazar D, Simak R, Pflüger H. Is there a relation between urinary interleukin-6 levels and symptoms before and after intra-vesical glycosaminoglycan substitution therapy in patients with bladder pain syndrome/interstitial cystitis? Int Urogynecol J Pelvic Floor Dysfunct. 2007;18:1449–52.

    Article  PubMed  Google Scholar 

  137. Daha LK, Riedl CR, Lazar D, Simak R, Pflüger H. Effect of intravesical glycosaminoglycan substitution therapy on bladder pain syndrome/interstitial cystitis, bladder capacity and potassium sensitivity. Scand J Urol Nephrol. 2008;42:369–72.

    Article  PubMed  CAS  Google Scholar 

  138. Daha LK, Lazar D, Simak R, Pflüger H. The effects of intravesical pentosanpolysulfate treatment on the symptoms of patients with bladder pain syndrome/interstitial cystitis: preliminary results. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19:987–90.

    Article  PubMed  Google Scholar 

  139. Alho AM, Underhill CB. The hyaluronate receptor is preferentially expressed on proliferating epithelial cells. J Cell Biol. 1989;108:1557–65.

    Article  PubMed  CAS  Google Scholar 

  140. Leppilahti M, Hellström P, Tammela TL. Effect of diagnostic hydrodistension and four intravesical hyaluronic acid instillations on bladder ICAM-1 intensity and association of ICAM-1 intensity with clinical response in patients with interstitial cystitis. Urology. 2002;60:46–51.

    Article  PubMed  Google Scholar 

  141. Vasiadi M, Kalogeromitros D, Kempuraj D, Clemons A, Zhang B, Chliva C, et al. Rupatadine inhibits proinflammatory mediator secretion from human mast cells triggered by different stimuli. Int Arch Allergy Immunol. 2009;151:38–45.

    Article  PubMed  CAS  Google Scholar 

  142. Boucher WS, Letourneau R, Huang M, Kempuraj D, Green M, Sant GR, et al. Intravesical sodium hyaluronate inhibits the rat urinary mast cell mediator increase triggered by acute immobilization stress. J Urol. 2002;167:380–4.

    Article  PubMed  CAS  Google Scholar 

  143. Takahashi K, Takeuchi J, Takahashi T, Miyauchi S, Horie K, Uchiyama Y. Effects of sodium hyaluronate on epithelial healing of the vesical mucosa and vesical fibrosis in rabbits with acetic acid induced cystitis. J Urol. 2001;166:710–3.

    Article  PubMed  CAS  Google Scholar 

  144. Sadhukhan PC, Tchetgen MB, Rackley RR, Vasavada SP, Liou L, Bandyopadhyay SK. Sodium pentosan polysulfate reduces urothelial responses to inflammatory stimuli via an indirect mechanism. J Urol. 2002;168:289–92.

    Article  PubMed  CAS  Google Scholar 

  145. Takakura K, Mizogami M, Fukuda S. Protamine sulfate causes endothelium-independent vasorelaxation via inducible nitric oxide synthase pathway. Can J Anaesth. 2006;53:162–7.

    Article  PubMed  Google Scholar 

  146. Lilly JD, Parsons CL. Bladder surface glycosaminoglycans is a human epithelial permeability barrier. Surg Gynecol Obstet. 1990;171:493–6.

    PubMed  CAS  Google Scholar 

  147. Schulz A, Vestweber AM, Dressler D. Anti-inflammatory action of a hyaluronic acid-chondroitin sulfate preparation in an in vitro bladder model. Aktuelle Urol. 2009;40:109–12.

    Article  PubMed  CAS  Google Scholar 

  148. Parsons CL. Epithelial coating techniques in the treatment of interstitial cystitis. Urology. 1997;49(5A Suppl):100–4.

    Article  PubMed  CAS  Google Scholar 

  149. Southgate J, Varley CL, Garthwaite MA, Hinley J, Marsh F, Stahlschmidt J, et al. Differentiation potential of urothelium from patients with benign bladder dysfunction. BJU Int. 2007;99:1506–16.

    Article  PubMed  CAS  Google Scholar 

  150. Zhang H, Sunnarborg SW, McNaughton KK, Johns TG, Lee DC, Faber JE. Heparin-binding epidermal growth factor-like growth factor signaling in flowinduced arterial remodeling. Circ Res. 2008;102:1275–85.

    Article  PubMed  CAS  Google Scholar 

  151. Fukatsu Y, Noguchi T, Hosooka T, Ogura T, Kotani K, Abe T, et al. Muscle-specific overexpression of heparinbinding epidermal growth factor-like growth factor increases peripheral glucose disposal and insulin sensitivity. Endocrinology. 2009;150:2683–91.

    Article  PubMed  CAS  Google Scholar 

  152. Tyagi P, Hsieh VC, Yoshimura N, Kaufman J, Chancellor MB. Instillation of liposomes vs dimethyl sulphoxide or pentosan polysulphate for reducing bladder hyperactivity. BJU Int. 2009;104(11):1689–92.

    Article  PubMed  CAS  Google Scholar 

  153. Hwang TL, Fang CL, Chen CH, Fang JY. Permeation enhancer-containing water-in-oil nanoemulsions as carriers for intravesical cisplatin delivery. Pharm Res. 2009;26:2314–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Cervigni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tajana, G., Cervigni, M. (2013). Clinical Pathophysiology and Molecular Biology of the Urothelium and the GAG Layer. In: Nordling, J., Wyndaele, J., van de Merwe, J., Bouchelouche, P., Cervigni, M., Fall, M. (eds) Bladder Pain Syndrome. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6929-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6929-3_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6928-6

  • Online ISBN: 978-1-4419-6929-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics