Neuropeptide Physiology in Helminths

  • Angela Mousley
  • Ekaterina Novozhilova
  • Michael J. Kimber
  • Tim A. Day
  • Aaron G. Maule
Part of the Advances in Experimental Medicine and Biology book series (volume 692)


Parasitic worms come from two distinct, distant phyla, Nematoda (roundworms) and Platyhelminthes (flatworms). The nervous systems of worms from both phyla are replete with neuropeptides and there is ample physiological evidence that these neuropeptides control vital aspects of worm biology. In each phyla, the physiological evidence for critical roles for helminth neuropeptides is derived from both parasitic and free-living members. In the nematodes, the intestinal parasite Ascaris suum and the free-living Caenorhabditis elegans have yielded most of the data; in the platyhelminths, the most physiological data has come from the blood fluke Schistosoma mansoni. FMRFamide-like peptides (FLPs) have many varied effects (excitation, relaxation, or a combination) on somatic musculature, reproductive musculature, the pharynx and motor neurons in nematodes. Insulin-like peptides (INSs) play an essential role in nematode dauer formation and other developmental processes. There is also some evidence for a role in somatic muscle control for the somewhat heterogeneous grouping of peptides known as neuropeptide-like proteins (NLPs). In platyhelminths, as in nematodes, FLPs have a central role in somatic muscle function. Reports of FLP physiological action in platyhelminths are limited to a potent excitation of the somatic musculature. Platyhelminths are also abundantly endowed with neuropeptide Fs (NPFs), which appear absent from nematodes. There is not yet any data linking platyhelminth NPF to any particular physiological outcome, but this neuropeptide does potently and specifically inhibit cAMP accumulation in schistosomes. In nematodes and platyhelminths, there is an abundance of physiological evidence demonstrating that neuropeptides play critical roles in the biology of both free-living and parasitic helminths. While it is certainly true that there remains a great deal to learn about the biology of neuropeptides in both phyla, physiological evidence presently available points to neuropeptidergic signaling as a very promising field from which to harvest future drug targets.


Caenorhabditis Elegans Parasitic Nematode Muscle Strip Body Wall Muscle Pharyngeal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cowden C, Stretton AO. Eight novel FMRFamide-like neuropeptides isolated from the nematode Ascaris suum. Peptides 1995; 16:491–500.PubMedCrossRefGoogle Scholar
  2. 2.
    Bowman JW, Friedman AR, Thompson DP et al. Structure-activity relationships of KNEFIRFamide (AF1), a nematode FMRFamide-related peptide, on Ascaris suum muscle. Peptides 1996; 17:381–387.PubMedCrossRefGoogle Scholar
  3. 3.
    Cowden C, Stretton AO. AF2, an Ascaris neuropeptide: isolation, sequence and bioactivity. Peptides 1993; 14:423–430.PubMedCrossRefGoogle Scholar
  4. 4.
    Cowden C, Stretton AO, Davis RE. AF1, a sequenced bioactive neuropeptide isolated from the nematode Ascaris suum. Neuron 1989; 2:1465–73.PubMedCrossRefGoogle Scholar
  5. 5.
    Maule AG, Geary TG, Bowman JW et al. Inhibitory effects of nematode FMRFamide-related peptides (FaRPs) on muscle strips from Ascaris suum. Invert Neurosci 1995; 1:255–265.PubMedCrossRefGoogle Scholar
  6. 6.
    Pang FY, Mason J, Holden-Dye L et al. The effects of the nematode peptide, KHEYLRFamide (AF2), on the somatic musculature of the parasitic nematode Ascaris suum. Parasitol 1995; 110:353–362.CrossRefGoogle Scholar
  7. 7.
    Thompson DP, Davis JP, Larsen MJ et al. Effects of KHEYLRFamide and KNEFIRFamide on cyclic adenosine monophosphate levels in Ascaris suum somatic muscle. Int J Parasitol 2003; 33:199–208.PubMedCrossRefGoogle Scholar
  8. 8.
    Trailovic SM, Clark CL, Robertson AP et al. Brief application of AF2 produces long lasting potentiation of nAChR responses in Ascaris suum. Mol Biochem Parasitol 2005; 139:51–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Verma S, Robertson AP, Martin RJ. The nematode neuropeptide, AF2 (KHEYLRF-NH2), increases voltage-activated calcium currents in Ascaris suum muscle. Br J Pharmacol 2007; 151:888–899.PubMedCrossRefGoogle Scholar
  10. 10.
    Marks NJ, Sangster NC, Maule AG et al. Structural characterisation and pharmacology of KHEYLRFamide (AF2) and KSAYMRFamide (PF3/AF8) from Haemonchus contortus. Mol Biochem Parasitol 1999; 100:185–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Bowman JW, Winterrowd CA, Friedman AR et al. Nitric oxide mediates the inhibitory effects of SDPNFLRFamide, a nematode FMRFamide-related neuropeptide, in Ascaris suum. J Neurophysiol 1995; 74:1880–1888.PubMedGoogle Scholar
  12. 12.
    Franks CJ, Holden-Dye L, Williams RG et al. A nematode FMRFamide-like peptide, SDPNFLRFamide (PF1), relaxes the dorsal muscle strip preparation of Ascaris suum. Parasitol 1994; 108:229–236.CrossRefGoogle Scholar
  13. 13.
    Holden-Dye L, Franks CJ, Williams RG et al. The effect of the nematode peptides SDPNFLRFamide (PF1) and SADPNFLRFamide (PF2) on synaptic transmission in the parasitic nematode Ascaris suum. Parasitol 1995; 110:449–455.CrossRefGoogle Scholar
  14. 14.
    Davis RE, Stretton AO. The motornervous system of Ascaris: electrophysiology and anatomy of the neurons and their control by neuromodulators. Parasitol 1996; 113:S97–117.CrossRefGoogle Scholar
  15. 15.
    Marks NJ, Maule AG, Geary TG et al. APEASPFIRFamide, a novel FMRFamide-related decapeptide from Caenorhabditis elegans: structure and myoactivity. Biochem Biophys Res Commun 1997; 231:591–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Marks NJ, Shaw C, Halton DW et al. Isolation and preliminary biological assessment of AADGAPLIRFamide and SVPGVLRFamide from Caenorhabditis elegans. Biochem Biophys Res Commun 2001; 286:1170–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Mousley A, Marks NJ, Halton DW et al. Arthropod FMRFamide-related peptides modulate muscle activity in helminths. Int J Parasitol 2004; 34:755–68.PubMedCrossRefGoogle Scholar
  18. 18.
    Yew JY, Davis R, Dikler S et al. Peptide products of the afp-6 gene of the nematode Ascaris suum have different biological actions. The Journal of Comparative Neurology 2007; 502:872–882.PubMedCrossRefGoogle Scholar
  19. 19.
    Holden-Dye L, Brownlee DJ, Walker RJ. The effects of the peptide KPNFIRFamide (PF4) on the somatic muscle cells of the parasitic nematode Ascaris suum. Br J Pharmacol 1997; 120:379–386.PubMedCrossRefGoogle Scholar
  20. 20.
    Maule AG, Shaw C, Bowman JW et al. Isolation and preliminary biological characterization of KPNFIRFamide, a novel FMRFamide-related peptide from the free-living nematode, Panagrellus redivivus. Peptides 1995; 16:87–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Kubiak TM, Maule AG, Marks NJ et al. Importance of the proline residue to the functional activity and metabolic stability of the nematode FMRFamide-related peptide, KPNFIRFamide (PF4). Peptides 1996; 17:1267–1277.PubMedCrossRefGoogle Scholar
  22. 22.
    Geary TG, Bowman JW, Friedman AR et al. The pharmacology of FMRFamide-related neuropeptides in nematodes: new opportunities for rational anthelmintic discovery? Int J Parasitol 1995; 25:1273–1280.PubMedCrossRefGoogle Scholar
  23. 23.
    Purcell J, Robertson AP, Thompson DP et al. The time-course of the response to the FMRFamide-related peptide PF4 in Ascaris suum muscle cells indicates direct gating of a chloride ion-channel. Parasitol 2002; 124:649–656.Google Scholar
  24. 24.
    Purcell J, Robertson AP, Thompson DP et al. PF4, a FMRFamide-related peptide, gates low-conductance Cl-channels in Ascaris suum. Eur J Pharmacol 2002; 456:11–17.PubMedCrossRefGoogle Scholar
  25. 25.
    Trim N, Holden-Dye L, Ruddell R et al. The effects of the peptides AF3 (AVPGVLRFamide) and AF4 (GDVPGVLRFamide) on the somatic muscle of the parasitic nematodes Ascaris suum and Ascaridia galli. Parasitol 1997; 115:213–222.CrossRefGoogle Scholar
  26. 26.
    Trim N, Brooman JE, Holden-Dye L et al. The role of cAMP in the actions of the peptide AF3 in the parasitic nematodes Ascaris suum and Ascaridia galli. Mol Biochem Parasitol 1998; 93:263–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Maule AG, Shaw C, Bowman JW et al. KSAYMRFamide: a novel FMRFamide-related heptapeptide from the free-living nematode, Panagrellus redivivus, which is myoactive in the parasitic nematode, Ascaris suum. Biochem Biophys Res Commun 1994; 200:973–980.PubMedCrossRefGoogle Scholar
  28. 28.
    Olsen LS, Kelley GW, Sen HG. Longevity and egg-production of Ascaris suum. Trans Am Microsc Soc 1958; 77:380–383.CrossRefGoogle Scholar
  29. 29.
    Fellowes RA, Dougan PM, Maule AG et al. Neuromusculature of the ovijector of Ascaris suum (Ascaroidea, Nematoda): an ultrastructural and immunocytochemical study. J Comp Neurol 1999; 415:518–28.PubMedCrossRefGoogle Scholar
  30. 30.
    Fellowes RA, Maule AG, Marks NJ et al. Modulation of the motility of the vagina vera of Ascaris suum in vitro by FMRFamide-related peptides. Parasitol 1998; 116:277–287.CrossRefGoogle Scholar
  31. 31.
    Fellowes RA, Maule AG, Marks NJ et al. Nematode neuropeptide modulation of the vagina vera of Ascaris suum: in vitro effects of PF1, PF2, PF4, AF3 and AF4. Parasitol 2000; 120:79–89.CrossRefGoogle Scholar
  32. 32.
    Marks NJ, Maule AG, Li C et al. Isolation, pharmacology and gene organization of KPSFVRFamide: a neuropeptide from Caenorhabditis elegans. Biochem Biophys Res Commun 1999; 254:222–30.PubMedCrossRefGoogle Scholar
  33. 33.
    Moffett CL, Beckett AM, Mousley A et al. The ovijector of Ascaris suum: multiple response types revealed by Caenorhabditis elegans FMRFamide-related peptides. Int J Parasitol 2003; 33:859–876.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim K, Li C. Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 2004; 475:540–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Trent C, Tsuing N, Horvitz HR. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 1983; 104:619–647.PubMedGoogle Scholar
  36. 36.
    Papaioannou S, Marsden D, Franks CJ et al. Role of a FMRFamide-like family of neuropeptides in the pharyngeal nervous system of Caenorhabditis elegans. J Neurobiol 2005; 65:304–319.PubMedCrossRefGoogle Scholar
  37. 37.
    Rogers CM, Franks CJ, Walker RJ et al. Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine and FMRFamide-like neuropeptides. J Neurobiol 2001; 49:235–244.PubMedCrossRefGoogle Scholar
  38. 38.
    Brownlee DJ, Holden-Dye L, Fairweather I et al. The action of serotonin and the nematode neuropeptide KSAYMRFamide on the pharyngeal muscle of the parasitic nematode, Ascaris suum. Parasitol 1995; 111:379–384.CrossRefGoogle Scholar
  39. 39.
    Brownlee DJ, Walker RJ. Actions of nematode FMRFamide-related peptides on the pharyngeal muscle of the parasitic nematode, Ascaris suum. Ann N Y Acad Sci 1999; 897:228–238.PubMedCrossRefGoogle Scholar
  40. 40.
    Li C. The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitol 2005; 131:S109–27.CrossRefGoogle Scholar
  41. 41.
    Davis RE, Stretton AO. Structure-activity relationships of 18 endogenous neuropeptides on the motor nervous system of the nematode Ascaris suum. Peptides 2001; 22:7–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Angstadt JD, Donmoyer JE, Stretton AO. The number of morphological synapses between neurons does not predict the strength of their physiological synaptic interactions: a study of dendrites in the nematode Ascaris suum. The Journal of Comparative Neurology 2001; 432:512–527.PubMedCrossRefGoogle Scholar
  43. 43.
    Stretton AO, Fishpool RM, Southgate E et al. Structure and physiological activity of the motoneurons of the nematode Ascaris. Proc Natl Acad Sci USA 1978; 75:3493–3497.PubMedCrossRefGoogle Scholar
  44. 44.
    McVeigh P, Geary TG, Marks NJ et al. The FLP-side of nematodes. Trends Parasitol 2006; 22:385–396.PubMedCrossRefGoogle Scholar
  45. 45.
    Geary TG, Marks NJ, Maule AG et al. Pharmacology of FMRFamide-related peptides in helminths. Ann N Y Acad Sci 1999; 897:212–27.PubMedCrossRefGoogle Scholar
  46. 46.
    Rex E, Harmych S, Puckett T et al. Regulation of carbohydrate metabolism in Ascaris suum body wall muscle: a role for the FMRFamide AF2, not serotonin. Mol Biochem Parasitol 2004; 133:311–313.PubMedCrossRefGoogle Scholar
  47. 47.
    Reinitz CA, Herfel HG, Messinger LA et al. Changes in locomotory behavior and cAMP produced in Ascaris suum by neuropeptides from Ascaris suum or Caenorhabditis elegans. Mol Biochem Parasitol 2000; 111:185–97.PubMedCrossRefGoogle Scholar
  48. 48.
    Nelson LS, Rosoff ML, Li C. Disruption of a neuropeptide gene, flp-1, causes multiple behavioral defects in Caenorhabditis elegans. Science 1998; 281:1686–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Li C, Nelson LS, Kim K et al. Neuropeptide gene families in the nematode Caenorhabditis elegans. Ann N Y Acad Sci 1999; 897:239–52.PubMedCrossRefGoogle Scholar
  50. 50.
    Waggoner LE, Hardaker LA, Golik S et al. Effect of a neuropeptide gene on behavioral states in Caenorhabditis elegans egg-laying. Genetics 2000; 154:1181–1192.PubMedGoogle Scholar
  51. 51.
    Rogers C, Reale V, Kim K et al. Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat Neurosci 2003; 6:1178–85.PubMedCrossRefGoogle Scholar
  52. 52.
    Yew JY, Kutz KK, Dikler S et al. Mass spectrometric map of neuropeptide expression in Ascaris suum. J Comp Neurol 2005; 488:396–413.PubMedCrossRefGoogle Scholar
  53. 53.
    Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391:806–11.PubMedCrossRefGoogle Scholar
  54. 54.
    Hussein AS, Kichenin K, Selkirk ME. Suppression of secreted acetylcholinesterase expression in Nippostrongylus brasiliensis by RNA interference. Mol Biochem Parasitol 2002; 122:91–94.PubMedCrossRefGoogle Scholar
  55. 55.
    Geldhof P, Murray L, Couthier A et al. Testing the efficacy of RNA interference in Haemonchus contortus. Int J Parasitol 2006; 36:801–810.PubMedCrossRefGoogle Scholar
  56. 56.
    Geldhof P, Whitton C, Gregory WF et al. Characterisation of the two most abundant genes in the Haemonchus contortus expressed sequence tag dataset. Int J Parasitol 2005; 35:513–522.PubMedCrossRefGoogle Scholar
  57. 57.
    Kotze AC, Bagnall NH. RNA interference in Haemonchus contortus: suppression of beta-tubulin gene expression in L3, L4 and adult worms in vitro. Mol Biochem Parasitol 2006; 145:101–110.PubMedCrossRefGoogle Scholar
  58. 58.
    Zawadzki JL, Presidente PJ, Meeusen EN et al. RNAi in Haemonchus contortus: a potential method for target validation. Trends Parasitol 2006; 22:495–499.PubMedCrossRefGoogle Scholar
  59. 59.
    Aboobaker AA, Blaxter ML. Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi. Mol Biochem Parasitol 2003; 129:41–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Behm CA, Bendig MM, McCarter JP et al. RNAi-based discovery and validation of new drug targets in filarial nematodes. Trends Parasitol 2005; 21:97–100.PubMedCrossRefGoogle Scholar
  61. 61.
    Urwin PE, Lilley CJ, Atkinson HJ. Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol Plant Microbe Interact 2002; 15:747–752.PubMedCrossRefGoogle Scholar
  62. 62.
    Lilley CJ, Goodchild SA, Atkinson HJ et al. Cloning and characterisation of a Heterodera glycines aminopeptidase cDNA. Int J Parasitol 2005; 35:1577–1585.PubMedCrossRefGoogle Scholar
  63. 63.
    Alkharouf NW, Klink VP, Matthews BF. Identification of Heterodera glycines (soybean cyst nematode [SCN]) cDNA sequences with high identity to those of Caenorhabditis elegans having lethal mutant or RNAi phenotypes. Exp Parasitol 2007; 115:247–258.PubMedCrossRefGoogle Scholar
  64. 64.
    Rosso MN, Dubrana MP, Cimbolini N et al. Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Mol Plant Microbe Interact 2005; 18:615–620.PubMedCrossRefGoogle Scholar
  65. 65.
    Bakhetia M, Charlton W, Atkinson HJ et al. RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Mol Plant Microbe Interact 2005; 18:1099–1106.PubMedCrossRefGoogle Scholar
  66. 66.
    Shingles J, Lilley CJ, Atkinson HJ et al. Meloidogyne incognita: molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp Parasitol 2007; 115:114–120.PubMedCrossRefGoogle Scholar
  67. 67.
    Huang G, Allen R, Davis EL et al. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 2006; 103:14302–14306.PubMedCrossRefGoogle Scholar
  68. 68.
    Fanelli E, Di Vito M, Jones JT et al. Analysis of chitin synthase function in a plant parasitic nematode, Meloidogyne artiellia, using RNAi. Gene 2005; 349:87–95.PubMedCrossRefGoogle Scholar
  69. 69.
    Kimber MJ, McKinney S, McMaster S et al. flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB J 2007; 21:1233–1243.PubMedCrossRefGoogle Scholar
  70. 70.
    Knox DP, Geldhof P, Visser A et al. RNA interference in parasitic nematodes of animals: a reality check? Trends Parasitol 2007; 23:105–107.PubMedCrossRefGoogle Scholar
  71. 71.
    Maeda I, Kohara Y, Yamamoto M et al. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 2001; 11:171–176.PubMedCrossRefGoogle Scholar
  72. 72.
    Kamath RS, Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 2003; 30:313–321.PubMedCrossRefGoogle Scholar
  73. 73.
    Sonnichsen B, Koski LB, Walsh A et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 2005; 434:462–469.PubMedCrossRefGoogle Scholar
  74. 74.
    Simmer F, Moorman C, van der Linden AM et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biology 2003; 1:E12.PubMedCrossRefGoogle Scholar
  75. 75.
    Fisk Green R, Lorson M, Walhout AJ et al. Identification of critical domains and putative partners for the Caenorhabditis elegans spindle component LIN-5. Molecular Genetics and Genomics 2004; 271:532–544.PubMedCrossRefGoogle Scholar
  76. 76.
    Fraser AG, Kamath RS, Zipperlen P et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 2000; 408:325–330.PubMedCrossRefGoogle Scholar
  77. 77.
    Asikainen S, Vartiainen S, Lakso M et al. Selective sensitivity of Caenorhabditis elegans neurons to RNA interference. Neuroreport 2005; 16:1995–1999.PubMedCrossRefGoogle Scholar
  78. 78.
    Kennedy S, Wang D, Ruvkun G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 2004; 427:645–649.PubMedCrossRefGoogle Scholar
  79. 79.
    Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 2001; 263:103–112.PubMedCrossRefGoogle Scholar
  80. 80.
    Kamath RS, Martinez-Campos M, Zipperlen P et al. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biology 2000; 2:RESEARCH0002.1-0002.10.Google Scholar
  81. 81.
    Sijen T, Fleenor J, Simmer F et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 2001; 107:465–476.PubMedCrossRefGoogle Scholar
  82. 82.
    Simmer F, Tijsterman M, Parrish S et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 2002; 12:1317–1319.PubMedCrossRefGoogle Scholar
  83. 83.
    Chapin A, Correa P, Maguire M et al. Synaptic neurotransmission protein UNC-13 affects RNA interference in neurons. Biochem Biophys Res Commun 2007; 354:1040–1044.PubMedCrossRefGoogle Scholar
  84. 84.
    Esposito G, Di Schiavi E, Bergamasco C et al. Efficient and cell specific knock-down of gene function in targeted C. elegans neurons. Gene 2007; 395:170–176.PubMedCrossRefGoogle Scholar
  85. 85.
    Kimber MJ, Fleming CC, Prior A et al. Localisation of Globodera pallida FMRFamide-related peptide encoding genes using in situ hybridisation. Int J Parasitol 2002; 32:1095–105.PubMedCrossRefGoogle Scholar
  86. 86.
    McVeigh P, Leech S, Marks NJ et al. Gene expression and pharmacology of nematode NLP-12 neuropeptides. Int J Parasitol 2006; 36:633–640.PubMedCrossRefGoogle Scholar
  87. 87.
    Couillault C, Pujol N, Reboul J et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nature Immunology 2004; 5:488–494.PubMedCrossRefGoogle Scholar
  88. 88.
    Rual JF, Ceron J, Koreth J et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 2004; 14:2162–2168.PubMedCrossRefGoogle Scholar
  89. 89.
    Kimura KD, Tissenbaum HA, Liu Y et al. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997; 277:942–946.PubMedCrossRefGoogle Scholar
  90. 90.
    Riddle DL, Albert PS. Genetic and environmental regulation of dauer larva development. C elegans II 1997:739–768.Google Scholar
  91. 91.
    Malone EA, Thomas JH. A screen for nonconditional dauer-constitutive mutations in Caenorhabditis elegans. Genetics 1994; 136:879–886.PubMedGoogle Scholar
  92. 92.
    Pierce SB, Costa M, Wisotzkey R et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 2001; 15:672–86.PubMedCrossRefGoogle Scholar
  93. 93.
    Kenyon C, Chang J, Gensch E et al. A C. elegans mutant that lives twice as long as wild type. Nature 1993; 366:461–464.PubMedCrossRefGoogle Scholar
  94. 94.
    McCulloch D, Gems D. Body size, insulin/IGF signaling and aging in the nematode Caenorhabditis elegans. Exp Gerontol 2003; 38:129–136.PubMedCrossRefGoogle Scholar
  95. 95.
    Day TA, Maule AG, Shaw C et al. Platyhelminth FMRFamide-related peptides (FaRPs) contract Schistosoma mansoni (Trematoda:Digenea) muscle fibres in vitro. Parasitol 1994; 109:455–9.CrossRefGoogle Scholar
  96. 96.
    Day TA, Maule AG, Shaw C et al. Structure-activity relationships of FMRFamide-related peptides contracting Schistosoma mansoni muscle. Peptides 1997; 18:917–21.PubMedCrossRefGoogle Scholar
  97. 97.
    Graham MK, Fairweather I, McGeown JG. The effects of FaRPs on the motility of isolated muscle strips from the liver fluke, Fasciola hepatica. Parasitol 1997; 114:455–65.CrossRefGoogle Scholar
  98. 98.
    Moneypenny CG, Kreshchenko N, Moffett CL et al. Physiological effects of FMRFamide-related peptides and classical transmitters on dispersed muscle fibres of the turbellarian, Procerodes littoralis. Parasitol 2001; 122:447–55.Google Scholar
  99. 99.
    Moneypenny CG, Maule AG, Shaw C et al. Physiological effects of platyhelminth FMRF amide-related peptides (FaRPs) on the motility of the monogenean Diclidophora merlangi. Parasitol 1997; 115:281–8.CrossRefGoogle Scholar
  100. 100.
    Hrckova G, Velenbny S, Halton DW et al. Mesocestoides corti (syn. M. vogae): modulation of larval motility by neuropeptides, serotonin and acetylcholine. Parasitol 2002; 124:409–21.Google Scholar
  101. 101.
    Maule AG, Shaw C, Halton DW et al. GNFFRFamide: a novel FMRFamide-immunoreactive peptide isolated from the sheep tapeworm, Moniezia expansa. Biochem Biophys Res Commun 1993; 193:1054–60.PubMedCrossRefGoogle Scholar
  102. 102.
    Graham MK, Fairweather I, McGeown JG. Second messengers mediating mechanical responses to the FaRP GYIRFamide in the fluke Fasciola hepatica. Am J Physiol Regul Integr Comp Physiol 2000; 279: R2089–94.PubMedGoogle Scholar
  103. 103.
    Maule AG, Shaw C, Halton DW et al. Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda: Cyclophyllidea). Parasitol 1991; 102:9–316.CrossRefGoogle Scholar
  104. 104.
    Dougan PM, Mair GR, Halton DW et al. Gene organization and expression of a neuropeptide Y homolog from the land planarian Arthurdendyus triangulatus. J Comp Neurol 2002; 454:58–64.PubMedCrossRefGoogle Scholar
  105. 105.
    Humphries JE, Kimber MJ, Barton YW et al. Structure and bioactivity of neuropeptide F from the human parasites Schistosoma mansoni and Schistosoma japonicum. J Biol Chem 2004; 279:39880–39885.PubMedCrossRefGoogle Scholar
  106. 106.
    Mair GR, Halton DW, Shaw C et al. The neuropeptide F (NPF) encoding gene from the cestode, Moniezia expansa. Parasitol 2000; 120:71–7.CrossRefGoogle Scholar
  107. 107.
    Brown MR, Crim JW, Arata RC et al. Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 1999; 20:35–42.CrossRefGoogle Scholar
  108. 108.
    Huang Y, Brown MR, Lee TD et al. RF-amide peptides isolated from the midgut of the corn earworm, Helicoverpa zea, resemble pancreatic polypeptide. Insect Biochem Mol Biol 1998; 28:345–56.PubMedCrossRefGoogle Scholar
  109. 109.
    Leung PS, Shaw C, Maule AG et al. The primary structure of neuropeptide F (NPF) from the garden snail, Helix aspersa. Regul Pept 1992; 41:71–81.PubMedCrossRefGoogle Scholar
  110. 110.
    Stanek DM, Pohl J, Crim JW et al. Neuropeptide F and its expression in the yellow fever mosquito, Aedes aegypti. Peptides 2002; 23:1367–78.PubMedCrossRefGoogle Scholar
  111. 111.
    Vanden Broeck J. Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 2001; 22:241–54.PubMedCrossRefGoogle Scholar
  112. 112.
    Rajpara SM, Garcia PD, Roberts R et al. Identification and molecular cloning of a neuropeptide Y homolog that produces prolonged inhibition in Aplysia neurons. Neuron 1992; 9:505–13.PubMedCrossRefGoogle Scholar
  113. 113.
    Michel MC, Beck-Sickinger A, Cox H et al. XVI International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY and pancreatic polypeptide receptors. Pharmacol Rev 1998; 50:143–50.PubMedGoogle Scholar
  114. 114.
    Michel MC. Receptors for neuropeptide Y: multiple subtypes and multiple second messengers. Trends Pharmacol Sci 1991; 12:389–94.PubMedCrossRefGoogle Scholar
  115. 115.
    McVeigh P, Kimber MJ, Novozhilova E et al. Neuropeptide signalling systems in flatworms. Parasitol 2006; 131:S41–S55.CrossRefGoogle Scholar
  116. 116.
    Marks NJ, Johnson S, Maule AG et al. Physiological effects of platyhelminth RFamide peptides on muscle-strip preparations of Fasciola hepatica (Trematoda: Digenea). Parasitol 1996; 113:393–401.CrossRefGoogle Scholar
  117. 117.
    Hrckova G, Velebny S, Halton DW et al. Pharmacological characterisation of neuropeptide F (NPF)-induced effects on the motility of Mesocestoides corti (syn. Mesocestoides vogae) larvae. Int J Parasitol 2004; 34:83–93.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Angela Mousley
    • 1
  • Ekaterina Novozhilova
    • 1
  • Michael J. Kimber
    • 1
  • Tim A. Day
    • 1
  • Aaron G. Maule
    • 1
  1. 1.Neuroscience Program and Department of Biomedical SciencesIowa State UniversityAmesUSA

Personalised recommendations