Advertisement

Neuropeptides in Helminths: Occurrence and Distribution

  • Nikki J. Marks
  • Aaron G. MauleEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (volume 692)

Abstract

Nematode neuropeptide systems comprise an exceptionally complex array of ∼250 peptidic signaling molecules that operate within a structurally simple nervous system of ∼300 neurons. A relatively complete picture of the neuropeptide complement is available for Caenorhabditis elegans, with 30 flp, 38 ins and 43 nlp genes having been documented; accumulating evidence indicates similar complexity in parasitic nematodes from clades I, III, IV and V. In contrast, the picture for parasitic platyhelminths is less clear, with the limited peptide sequence data available providing concrete evidence for only FMRFamide-like peptide (FLP) and neuropeptide F (NPF) signaling systems, each of which only comprises one or two peptides. With the completion of the Schmidtea meditteranea and Schistosoma mansoni genome projects and expressed sequence tag datasets for other flatworm parasites becoming available, the time is ripe for a detailed reanalysis of neuropeptide signaling in flatworms. Although the actual neuropeptides provide limited obvious value as targets for chemotherapeutic-based control strategies, they do highlight the signaling systems present in these helminths and provide tools for the discovery of more amenable targets such as neuropeptide receptors or neuropeptide processing enzymes. Also, they offer opportunities to evaluate the potential of their associated signaling pathways as targets through RNA interference (RNAi)-based, target validation strategies. Currently, within both helminth phyla, the flp signaling systems appear to merit further investigation as they are intrinsically linked with motor function, a proven target for successful anti-parasitics; it is clear that some nematode NLPs also play a role in motor function and could have similar appeal. At this time, it is unclear if flatworm NPF and nematode INS peptides operate in pathways that have utility for parasite control. Clearly, RNAi-based validation could be a starting point for scoring potential target pathways within neuropeptide signaling for parasiticide discovery programs. Also, recent successes in the application of in planta-based RNAi control strategies for plant parasitic nematodes reveal a strategy whereby neuropeptide encoding genes could become targets for parasite control. The possibility of developing these approaches for the control of animal and human parasites is intriguing, but will require significant advances in the delivery of RNAi-triggers.

Keywords

Caenorhabditis Elegans Parasitic Nematode Plant Parasitic Nematode Parasite Control Ventral Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    White JG, Southgate E, Thompson JN et al. The structure of the nervious system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1986; 314(1165):1–340.CrossRefGoogle Scholar
  2. 2.
    Davey KG. Neurosecretion and molting in some parasitic nematodes. Am Zool 1966; 6(2):243–9.PubMedGoogle Scholar
  3. 3.
    Rogers WP. Neurosecretory granules in the infective stage of Haemonchus contortus. Parasitology 1968; 58(3):657–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Leach L, Trudgill DL, Gahan PB. Immunocytochemical localization of neurosecretory amines and peptides in the free-living nematode, Goodeyus ulmi. Histochem J 1987; 19(9):471–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Atkinson HJ, Isaac IE, Harris PD et al. FMRFamide-like immunoreactivity within the nervous-system of the nematodes Panagrellus redivius, Caenorhabditis elegans and Heterodera glycines. J Zool 1988; 216:663–71.CrossRefGoogle Scholar
  6. 6.
    Davenport TR, Lee DL, Isaac RE. Immunocytochemical demonstration of a neuropeptide in Ascaris suum (Nematoda) using an antiserum to FMRFamide. Parasitology 1988; 97(1):81–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Gustafsson MK, Wikgren MC, Karhi TJ et al. Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllobothrium dendriticum. Cell Tissue Res 1985; 240(2):255–60.PubMedCrossRefGoogle Scholar
  8. 8.
    Gustaffson MK, Lehtonen MA, Sundler F. Immunocytochemical evidence for the presence of “mammalian” neurohormonal peptides in neurones of the tapeworm Diphyllobothrium dendriticum. Cell Tissue Res 1986; 243(1):41–9.Google Scholar
  9. 9.
    Gustafsson MK. Immunocytochemical demonstration of neuropeptides and serotonin in the nervous systems of adult Schistosoma mansoni. Parasitol Res 1987; 74(2):168–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Fairweather I, MaCartney GA, Johnston CF et al. Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) and vertebrate neuropeptides in the nervous system of excysted cysticercoid larvae of the rat tapeworm, Hymenolepis diminuta (Cestoda, Cyclophyllidea). Parasitol Res 1988; 74(4):371–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Magee RM, Fairweather I, Johnston CF et al. Immunocytochemical demonstration of neuropeptides in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitology 1989; 98(2):227–38.PubMedCrossRefGoogle Scholar
  12. 12.
    Maule AG, Shaw C, Halton DW et al. Localization, quantification and characterization of pancreatic polypeptide immunoreactivity in the parasitic flatworm Diclidophora merlangi and its fish host (Merlangius merlangus). Gen Comp Endocrinol 1989a; 74(1):50–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Maule AG, Halton DW, Johnston CF et al. Immunocytochemical demonstration of neuropeptides in the fish-gill parasite, Diclidophora merlangi (Monogenoidea). Int J Parasitol 1989b; 19(3):307–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Cowden C, Stretton AO, Davis RE. AF1, a sequenced bioactive neuropeptide isolated from the nematode Ascaris suum. Neuron 1989; 2(5):1465–73.PubMedCrossRefGoogle Scholar
  15. 15.
    Geary TG, Price DA, Bowman JW et al. Two FMRFamide-like peptides from the free-living nematode Panagrellus redivivus. Peptides 1992; 13(2):209–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Cowden C, Stretton AO. AF2, an Ascaris neuropeptide: isolation, sequence and bioactivity. Peptides 1993; 14(3):423–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Cowden C, Stretton AO. Eight novel FMRFamide-like neuropeptides isolated from the nematode Ascaris suum. Peptides 1995; 16(3):491–500.PubMedCrossRefGoogle Scholar
  18. 18.
    Rosoff ML, Doble KE, Price DA et al. The flp-1 propeptide is processed into multiple, highly similar FMRFamide-like peptides in Caenorhabditis elegans. Peptides 1993; 14(2):331–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Maule AG, Shaw C, Bowman JW et al. KSAYMRFamide: a novel FMRFamide-related heptapeptide from the free-living nematode, Panagrellus redivivus, which is myoactive in the parasitic nematode, Ascaris suum. Biochem Biophys Res Commun 1994a; 200(2):973–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Maule AG, Shaw C, Bowman JW et al. The FMRFamide-like neuropeptide AF2 (Ascaris suum) is present in the free-living nematode, Panagrellus redivivus (Nematoda, Rhabditida). Parasitology 1994b; 109(3):351–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Maule AG, Shaw C, Bowman JW et al. Isolation and preliminary biological characterization of KPNFIRFamide, a novel FMRFamide-related peptide from the free-living nematode, Panagrellus redivivus. Peptides 1995; 16(1):87–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Keating CD, Holden-Dye L, Thorndyke MC et al. The FMRFamide-like neuropeptide AF2 is present in the parasitic nematode Haemonchus contortus. Parasitology 1995; 111(4):515–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Marks NJ, Shaw C, Maule AG et al. Isolation of AF2 (KHEYLRFamide) from Caenorhabditis elegans: evidence for the presence of more than one FMRFamide-related peptide-encoding gene. Biochem Biophys Res Commun 1995a; 217(3):845–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Marks NJ, Maule AG, Geary TG et al. APEASPFIRFamide, a novel FMRFamide-related decapeptide from Caenorhabditis elegans: structure and myoactivity. Biochem Biophys Res Commun 1997; 231(3):591–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Marks NJ, Maule AG, Geary TG et al. KSAYMRFamide (PF3/AF8) is present in the free-living nematode, Caenorhabditis elegans. Biochem Biophys Res Commun 1998; 248(2):422–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Marks NJ, Maule AG, Li C et al. Isolation, pharmacology and gene organization of KPSFVRFamide: a neuropeptide from Caenorhabditis elegans. Biochem Biophys Res Commun 1999a; 254(1):222–30.CrossRefGoogle Scholar
  27. 27.
    Marks NJ, Sangster NC, Maule AG et al. Structural characterisation and pharmacology of KHEYLRFamide (AF2) and KSAYMRFamide (PF3/AF8) from Haemonchus contortus. Mol Biochem Parasitol 1999b; 100(2):185–94.PubMedCrossRefGoogle Scholar
  28. 28.
    Marks NJ, Shaw C, Halton DW et al. Isolation and preliminary biological assessment of AADGAPLIRFamide and SVPGVLRFamide from Caenorhabditis elegans. Biochem Biophys Res Commun 2001; 286(5):1170–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Davis RE, Stretton AO. The motornervous system of Ascaris: electrophysiology and anatomy of the neurons and their control by neuromodulators. Parasitology 1996; 113:S97–117.PubMedCrossRefGoogle Scholar
  30. 30.
    Maule AG, Shaw C, Halton DW et al. Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda: Cyclophyllidea). Parasitol 1991; 102:309–16.CrossRefGoogle Scholar
  31. 31.
    Maule AG, Shaw C, Halton D et al. GNFFRFamide: a novel FMRFamide-immunoreactive peptide isolated from the sheep tapeworm, Moniezia expansa. Biochem Biophys Res Commun 1993a; 193(3):1054–60.CrossRefGoogle Scholar
  32. 32.
    Maule AG, Shaw C, Halton DW et al. RYIRFamide: a turbellarian FMRFamide-related peptide (FaRP). Regul Pept 1994c; 50(1):37–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Curry WJ, Shaw C, Johnston CF et al. Neuropeptide F: primary structure from the tubellarian, Artioposthia triangulata. Comp Biochem Physiol C 1992; 101(2):269–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Johnston RN, Shaw C, Halton DW et al. GYIRFamide: a novel FMRFamide-related peptide (FaRP) from the triclad turbellarian, Dugesia tigrina. Biochem Biophys Res Commun 1995; 209(2):689–97.PubMedCrossRefGoogle Scholar
  35. 35.
    Johnston RN, Shaw C, Halton DW et al. Isolation, localization and bioactivity of the FMRFamide-related neuropeptides GYIRFamide and YIRFamide from the marine turbellarian Bdelloura candida. J Neurochem 1996; 67(2):814–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Rosoff ML, Burglin TR, Li C. Alternatively spliced transcripts of the flp-1 gene encode distinct FMRFamide-like peptides in Caenorhabditis elegans. J Neurosci 1992; 12(6):2356–61.PubMedGoogle Scholar
  37. 37.
    Duret L, Guex N, Peitsch MC et al. New insulin-like proteins with atypical disulfide bond pattern characterized in Caenorhabditis elegans by comparative sequence analysis and homology modeling. Genome Res 1998; 8(4):348–53.PubMedGoogle Scholar
  38. 38.
    Gregoire FM, Chomiki N, Kachinskas D et al. Cloning and developmental regulation of a novel member of the insulin-like gene family in Caenorhabditis elegans. Biochem Biophys Res Commun 1998; 249(2):385–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Nelson LS, Kim K, Memmott JE et al. FMRFamide-related gene family in the nematode, Caenorhabditis elegans. Mol Brain Res 1998; 58(1–2):103–11.PubMedCrossRefGoogle Scholar
  40. 40.
    Li C, Kim K, Nelson LS. FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. Brain Res 1999a; 848:26–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Li C, Nelson LS, Kim K et al. Neuropeptide gene families in the nematode Caenorhabditis elegans. Ann N Y Acad Sci 1999b; 897:239–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Nathoo AN, Moeller RA, Westlund BA et al. Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 2001; 98:14000–5.PubMedCrossRefGoogle Scholar
  43. 43.
    McVeigh P, Leech S, Mair GR et al. Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda. Int J Parasitol 2005a; 35(10):1043–60.PubMedCrossRefGoogle Scholar
  44. 44.
    McVeigh P, Geary TG, Marks NJ et al. The FLP-side of nematodes. Trends Parasitol 2006a; 22(8):385–96.PubMedCrossRefGoogle Scholar
  45. 45.
    Maule AG, Mousley A, Marks NJ et al. Neuropeptide signaling systems—potential drug targets for parasite and pest control. Curr Top Med Chem 2002; 2(7):733–58.PubMedCrossRefGoogle Scholar
  46. 46.
    Mousley A, Marks NJ, Maule AG. Neuropeptide signalling: a repository of targets for novel endectocides? Trends Parasitol 2004; 20(10):482–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Gustaffson MK, Halton DW, Kreshchenko ND et al. Neuropeptides in flatworms. Peptides 2002; 23(11):2053–61.CrossRefGoogle Scholar
  48. 48.
    Li C. The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitol 2005; 131:S109–S27.CrossRefGoogle Scholar
  49. 49.
    McVeigh P, Kimber MJ, Novozhilova et al. Neuropeptide signalling systems in flatworms. Parasitology 2005b; 131:S41–S55.PubMedCrossRefGoogle Scholar
  50. 50.
    Husson SJ, Mertens I, Janssen T et al. Neuropeptidergic signaling in the nematode Caenorhabditis elegans. Prog Neurobiol 2007; 82(1):33–55.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim K, Li C. Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 2004; 475:540–50.PubMedCrossRefGoogle Scholar
  52. 52.
    Nelson LS, Rosoff ML, Li C. Disruption of a neuropeptide gene, flp-1, causes multiple behavioral defects in Caenorhabditis elegans. Science 1998; 281:1686–90.PubMedCrossRefGoogle Scholar
  53. 53.
    Husson SJ, Clynen E, Baggerman G et al. Discovering neuropeptides in Caenorhabditis elegans by two dimensional liquid chromatography and mass spectrometry. Biochem Biophys Res Commun 2005; 335(1):76–86.PubMedCrossRefGoogle Scholar
  54. 54.
    Yew JY, Davis R, Dikler S et al. Peptide products of the afp-6 gene of the nematode Ascaris suum have different biological actions. J Comp Neurol 2007; 502:872–82.PubMedCrossRefGoogle Scholar
  55. 55.
    Sithigorngul P, Stretton AO, Cowden C. Neuropeptide diversity in Ascaris: an immunocytochemical study. J Comp Neurol 1990; 294(3):362–76.PubMedCrossRefGoogle Scholar
  56. 56.
    Schinkmann K, Li C. Localization of FMRFamide-like peptides in Caenorhabditis elegans. J Comp Neurol 1992; 316(2):251–60.PubMedCrossRefGoogle Scholar
  57. 57.
    Cowden C, Sithigorngul P, Brackley P et al. Localization and differential expression of FMRFamide-like immunoreactivity in the nematode Ascaris suum. J Comp Neurol 1993; 333(3):455–68.PubMedCrossRefGoogle Scholar
  58. 58.
    Brownlee DJ, Fairweather I, Johnston CF. Immunocytochemical demonstration of neuropeptides in the peripheral nervous system of the roundworm Ascaris suum (Nematoda, Ascaroidea). Parasitol Res 1993; 79(4):302–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Brownlee DJ, Fairweather I, Johnston CF et al. Immunocytochemical demonstration of neuropeptides in the central nervous system of the roundworm, Ascaris suum (Nematoda: Ascaroidea). Parasitology 1993; 106(3):305–16.PubMedCrossRefGoogle Scholar
  60. 60.
    Brownlee DJ, Brennan GP, Halton DW et al. Ultrastructural localization of pancreatic polypeptide-and FMRFamide immunoreactivities within the central nervous system of the nematode, Ascaris suum (Nematoda: Ascaroidea). Parasitology 1994; 108(5):587–93.PubMedCrossRefGoogle Scholar
  61. 61.
    Brownlee DJ, Fairweather I, Johnston CF et al. Immunocytochemical demonstration of peptidergic and serotoninergic components in the enteric nervous system of the roundworm, Ascaris suum (Nematoda, Ascaroidea). Parasitology 1994; 108(1):89–103.PubMedCrossRefGoogle Scholar
  62. 62.
    Rogers C, Reale V, Kim K et al. Inhibition of Caenorhabditis elegans social feeding by FMRFamiderelated peptide activation of NPR-1. Nat Neurosci 2003; 6:1178–85.PubMedCrossRefGoogle Scholar
  63. 63.
    Fox RM, Von Stetina SE, Barlow SJ et al. A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genomics 2005; 6(1):42–65.PubMedCrossRefGoogle Scholar
  64. 64.
    Von Stetina SE, Watson JD, Fox RM et al. Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol 2007; 8(7):R135 [Epub ahead of print].CrossRefGoogle Scholar
  65. 65.
    Kimber MJ, Fleming CC, Prior A et al. Localisation of Globodera pallida FMRFamide-related peptide encoding genes using in situ hybridization. Int J Parasitol 2002; 32:1095–105.PubMedCrossRefGoogle Scholar
  66. 66.
    Yew JY, Dikler S, Stretton AO. De novo sequencing of novel neuropeptides directly from Ascaris suum tissue using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight. Rapid Commun Mass Spectrom 2003; 17(24):2693–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Yew JY, Kimberly KK, Dikler S et al. Mass spectrometric map of neuropeptide expression in Ascaris suum. J Comp Neurol 2005; 488:396–413.PubMedCrossRefGoogle Scholar
  68. 68.
    Eastman C, Horvitz HR, Yin Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J Neurosci 1999; 19(15):6225–34.PubMedGoogle Scholar
  69. 69.
    Hart AC, Sims S, Kaplan JM. Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 1995; 378:82–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Tsalik EL, Niacaris T, Wenick AS et al. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev Biol 2003; 263(1):81–102.PubMedCrossRefGoogle Scholar
  71. 71.
    Wilson R, Ainscough R, Anderson K et al 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 1994; 368:32–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Kawano T, Ito Y, Ishiguro M et al. Molecular cloning and characterization of a new insulin/IGF-like peptide of the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2000; 273:431–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Pierce SB, Costa M, Wisotzkey R et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 2001; 15:672–86.PubMedCrossRefGoogle Scholar
  74. 74.
    Li W, Kennedy SG, Ruvkun R. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev 2003; 17(7):844–58.PubMedCrossRefGoogle Scholar
  75. 75.
    Couillault C, Pujol N, Reboul J et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 2004; 5(5):488–94.PubMedCrossRefGoogle Scholar
  76. 76.
    McVeigh P, Leech S, Marks NJ et al. Gene expression and pharmacology of nematode NLP-12 neuropeptides. Int J Parasitol 2006b; 36(6):633–40.PubMedCrossRefGoogle Scholar
  77. 77.
    Halton DW, Maule AG. Flatworm nerve and muscle: structural and functional analysis. Canadian J Zool 2004; 82:316–33.CrossRefGoogle Scholar
  78. 78.
    Schilt J, Richoux JP, Dubois MP. Demonstration of peptides immunologically related to vertebrate neurohormones in Dugesia lugubris (Turbellaria, Tricladida). Gen Comp Endocrinol 1981; 43(3):331–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Halton DW, Fairweather I, Shaw C et al. Regulatory peptides in parasitic platyhelminths. Parasitol Today 1990; 6(9):284–90.PubMedCrossRefGoogle Scholar
  80. 80.
    Halton DW, Shaw C, Maule AG et al. Regulatory peptides in helminth parasites. Adv Parasitol 1994a; 34:163–227.PubMedCrossRefGoogle Scholar
  81. 81.
    Halton DW, Maule AG, Mair GR et al. Monogenean neuromusculature: some structural and functional correlates. Int J Parasitol 1998; 28(10):1609–23.PubMedCrossRefGoogle Scholar
  82. 82.
    Skuce PJ, Johnston CF, Fairweather I et al. Immunoreactivity to the pancreatic polypeptide family in the nervous system of the adult human blood fluke, Schistosoma mansoni. Cell Tissue Res 1990; 261(3):573–81.PubMedCrossRefGoogle Scholar
  83. 83.
    Skuce PJ, Johnston CF, Fairweather I et al. A confocal scanning laser microscope study of the peptidergic and serotoninergic components of the nervous system in larval Schistosoma mansoni. Parasitology 1990; 101(2):227–34.PubMedCrossRefGoogle Scholar
  84. 84.
    Herzog H, Hort Y, Schneider R et al. Seminalplasmin: recent evolution of another member of the neuropeptide Y gene family. Proc Natl Acad Sci USA 1995; 92(2):594–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Couzens M, Liu M, Tüchler C et al. Peptide YY-2 (PYY2) and pancreatic polypeptide-2 (PPY2): species-specific evolution of novel members of the neuropeptide Y gene family. Genomics 2000; 64(3):318–23.PubMedCrossRefGoogle Scholar
  86. 86.
    Conlon JM, Larhammar D. The evolution of neuroendocrine peptides. Gen Comp Endocrinol 2005; 142(1–2):53–9.CrossRefGoogle Scholar
  87. 87.
    Mair GR, Halton DW, Shaw C et al. The neuropeptide F (NPF) encoding gene from the cestode, Moniezia expansa. Parasitology 2000; 120(1):71–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Dougan PM, Mair GR, Halton DW et al. Gene organization and expression of a neuropeptide Y homolog from the land planarian Arthurdendyus triangulatus. J Comp Neurol 2002; 454(1):58–64.PubMedCrossRefGoogle Scholar
  89. 89.
    Humphries JE, Kimber MJ, Barton YW et al. Structure and bioactivity of neuropeptide F from the human parasites Schistosoma mansoni and Schistosoma japonicum. J Biol Chem 2004; 279(38):39880–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Miskolzie M, Kotovych G. The NMR-derived conformation of neuropeptide F from Moniezia expansa. J Biomol Struct Dynamics 2002; 19:991–8.Google Scholar
  91. 91.
    Maule AG, Shaw C, Halton DW et al. Neuropeptide F (Moniezia expansa): localization and characterization using specific antisera. Parasitology 1992a; 105(3):505–12.PubMedCrossRefGoogle Scholar
  92. 92.
    Maule AG, Brennan GP, Halton DW et al. Neuropeptide F-immunoreactivity in the monogenean parasite Diclidophora merlangi. Parasitol Res 1992b; 78(8):655–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Hrckova G, Halton DW, Maule AG et al. Neuropeptide F-immunoreactivity in the tetrathyridium of Mesocestoides corti (Cestoda: Cyclophyllidea). Parasitol Res 1993; 79(8):690–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Marks NJ, Maule AG, Halton DW et al. Distribution and immunochemical characteristics of neuropeptide F (NPF) (Moniezia expansa)—immunoreactivity in Proteocephalus pollanicola (Cestoda: Proteocephalidea). Comp Biochem Physiol C 1993; 104(3):381–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Marks NJ, Halton DW, Maule AG et al. Comparative analyses of the neuropeptide F (NPF)— and FMRFamide-related peptide (FaRP)-immunoreactivities in Fasciola hepatica and Schistosoma spp. Parasitology 1995b; 110(4):371–81.PubMedCrossRefGoogle Scholar
  96. 96.
    Gustafsson MK, Fagerholm HP, Halton DW et al. Neuropeptides and serotonin in the cestode, Proteocephalus exiguus: an immunocytochemical study. Int J Parasitol 1995; 25(6):673–82.PubMedCrossRefGoogle Scholar
  97. 97.
    Brennan GP, Ramasamy P. Ultrastructure of the surface structures and electron immunogold labeling of peptide immunoreactivity in the nervous system of Pseudothoracocotyla indica (Polyopisthocotylea: Monogenea). Parasitol Res 1996; 82(7):638–46.PubMedCrossRefGoogle Scholar
  98. 98.
    Maule AG, Halton DW, Shaw C et al. The cholinergic, serotoninergic and peptidergic components of the nervous system of Moniezia expansa (Cestoda, Cyclophyllidea). Parasitology 1993b; 106(4):429–40.PubMedCrossRefGoogle Scholar
  99. 99.
    Brennan GP, Halton DW, Maule AG et al. Electron immunogold labeling of regulatory peptide immunoreactivity in the nervous system of Moniezia expansa (Cestoda: Cyclophyllidea). Parasitol Res 1993; 79(5):409–15.PubMedCrossRefGoogle Scholar
  100. 100.
    Halton DW, Maule AG, Brennan GP et al. Grillotia erinaceus (Cestoda, Trypanorhyncha): localization of neuroactive substances in the plerocercoid, using confocal and electron-microscopic immunocytochemistry. Exp Parasitol 1994b; 79(3):410–23.PubMedCrossRefGoogle Scholar
  101. 101.
    Maule AG, Halton DW, Johnston CF et al. The serotoninergic, cholinergic and peptidergic components of the nervous system in the monogenean parasite, Diclidophora merlangi: a cytochemical study. Parasitology 1990; 100(2):255–73.PubMedCrossRefGoogle Scholar
  102. 102.
    Biserova NM, Dudicheva VA, Terenina NB et al. The nervous system of Amphilina foliacea (Platyhelminthes, Amphilinidea) an immunocytochemical, ultrastructural and spectrofluorometrical study. Parasitology 2000; 121(4):441–53.PubMedCrossRefGoogle Scholar
  103. 103.
    Zurawski T, Mousley A, Mair GR et al. Immunomicroscopical observations on the nervous system of adult Eudiplozoon nipponicum (Monogenea: Diplozoidae). Int J Parasitol 2001; 31(8):783–92.PubMedCrossRefGoogle Scholar
  104. 104.
    Kotikova EA, Raikova OI, Reuter M et al. The nervous and muscular systems in the free-living flatworm Castrella truncata (Rhabdocoela): an immunocytochemical and phalloidin fluorescence study. Tissue Cell 2002; 34(5):365–74.PubMedCrossRefGoogle Scholar
  105. 105.
    Stewart MT, Marks NJ, Halton DW. Neuroactive substances and associated major muscle systems in Bucephaloides gracilescens (Trematoda: Digenea) metacercaria and adult. Parasitol Res 2003; 91(1):12–21.PubMedCrossRefGoogle Scholar
  106. 106.
    Stewart MT, Mousley A, Koubkova B et al. Development in vitro of the neuromusculature of two strigeid trematodes, Apatemon cobitidis proterorhini and Cotylurus erraticus. Int J Parasitol 2003; 33(4):413–24.PubMedCrossRefGoogle Scholar
  107. 107.
    Stewart MT, Mousley A, Koubkova B et al. Gross anatomy of the muscle systems and associated innervation of Apatemon cobitidis proterorhini metacercaria (Trematoda: Strigeidea), as visualized by confocal microscopy. Parasitology 2003; 126(3):273–82.PubMedCrossRefGoogle Scholar
  108. 108.
    Shaw C, Maule AG, Halton DW. Platyhelminth FMRFamide-related peptides. Int J Parasitol 1996; 26(4):335–45.PubMedCrossRefGoogle Scholar
  109. 109.
    Armstrong EP, Halton DW, Tinsley RC et al. Immunocytochemical evidence for the involvement of an FMRFamide-related peptide in egg production in the flatworm parasite Polystoma nearcticum. J Comp Neurol 1997; 377(1):41–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Behm CA, Bendig MM, McCarter JP et al. RNAi-based discovery and validation of new drug targets in filarial nematodes. Trends Parasitol 2005; 21(3):97–100.PubMedCrossRefGoogle Scholar
  111. 111.
    Jones AK, Buckingham SD, Sattelle DB. Chemistry-to-gene screens in Caenorhabditis elegans. Nat Rev Drug Discov 2005; 4(4):321–30.PubMedCrossRefGoogle Scholar
  112. 112.
    Lochnit G, Bongaarts R, Geyer R. Searching new targets for anthelminthic strategies: Interference with glycosphingolipid biosynthesis and phosphorylcholine metabolism affects development of Caenorhabditis elegans. Int J Parasitol 2005; 35(8):911–23.PubMedCrossRefGoogle Scholar
  113. 113.
    Zawadzki JL, Presidente PJ, Meeusen EN et al. RNAi in Haemonchus contortus: a potential method for target validation. Trends Parasitol 2006; 22(11):495–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Aboobaker AA, Blaxter M. Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi. Mol Biochem Parasitol 2003; 129(1):41–51.PubMedCrossRefGoogle Scholar
  115. 115.
    Issa Z, Grant WN, Stasiuk S et al. Development of methods for RNA interference in the sheep gastrointestinal parasite, Trichostrongylus colubriformis. Int J Parasitol 2005; 35(9):935–40.PubMedCrossRefGoogle Scholar
  116. 116.
    Krautz-Peterson G, Radwanska M, Ndegwa D et al. Optimizing gene suppression in schistosomes using RNA interference. Mol Biochem Parasitol 2007; 153(2):194–202.PubMedCrossRefGoogle Scholar
  117. 117.
    Simmer F, Tijsterman M, Parrish S et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 2002; 12(15):1317–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Kennedy S, Wang D, Ruvkun G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 2004; 427(6975):645–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Asikainen S, Vartiainen S, Lakso M et al. Selective sensitivity of Caenorhabditis elegans neurons to RNA interference. Neuroreport 2005; 16(18):1995–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Fleming CC, McKinney S, McMaster S et al. Getting to the root of neuronal signalling in plant parasitic nematodes using RNA interference. Nematology 2007; [in press].Google Scholar
  121. 121.
    Geldhof P, Visser A, Clark D et al. RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects. Parasitology 2007; 134(5):609–19.PubMedCrossRefGoogle Scholar
  122. 122.
    Knox DP, Geldhof P, Visser A et al. RNA interference in parasitic nematodes of animals: a reality check? Trends Parasitol 2007; 23(3):105–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Kimber MJ, McKinney S, McMaster S et al. flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB J 2007; 21(4):1233–43.PubMedCrossRefGoogle Scholar
  124. 124.
    Bakhetia M, Charlton WL, Urwin PE et al. RNA interference and plant parasitic nematodes. Trends Plant Sci 2005; 10(8):362–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Huang G, Allen R, Davis EL et al. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 2006; 103(39):14302–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Yadav BC, Veluthambi K, Subramaniam K. Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 2006; 148(2):219–22.PubMedCrossRefGoogle Scholar
  127. 127.
    Steeves RM, Todd TC, Essig JS et al. Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 2006; 33:991–999.CrossRefGoogle Scholar
  128. 128.
    Fairbairn DJ, Cavallaro AS, Bernard M et al. Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 2007; [Epub ahead of print].Google Scholar
  129. 129.
    Husson SJ, Clynen E, Baggerman G et al. Defective processing of neuropeptide precursors in Caenorhabditis elegans lacking proprotein convertase 2 (KPC-2/EGL-3): mutant analysis by mass spectrometry. J Neurochem 2006; 98(6):1999–2012.PubMedCrossRefGoogle Scholar
  130. 130.
    Husson SJ, Janssen T, Baggerman G et al. Impaired processing of FLP and NLP peptides in carboxypeptidase E (EGL-21)-deficient Caenorhabditis elegans as analyzed by mass spectrometry. J Neurochem 2007; 102(1):246–60.PubMedCrossRefGoogle Scholar
  131. 131.
    Mair GR, Niciu MJ, Stewart MT et al. A functionally atypical amidating enzyme from the human parasite Schistosoma mansoni. FASEB J 2004; 18(1):114–21.PubMedCrossRefGoogle Scholar
  132. 132.
    McVeigh P, Mair GR, Atkinson L et al. Discovery of multiple neuropeptide families in the phylum Platyhelminthes. Int J Parasitol 2009; 39(11):1243–52.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Parasitology, School of Biological SciencesQueen’s University Belfast, Medical Biology CentreBelfastUK

Personalised recommendations