Advertisement

Neuropeptide Receptors as Possible Targets for Development of Insect Pest Control Agents

  • Matthias B. Van Hiel
  • Tom Van Loy
  • Jeroen Poels
  • Hans Peter Vandersmissen
  • Heleen Verlinden
  • Liesbeth Badisco
  • Jozef Vanden BroeckEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (volume 692)

Abstract

Various insect species have a severe impact on human welfare and environment and thus force us to continuously develop novel agents for pest control. Neuropeptides constitute a very versatile class of bioactive messenger molecules that initiate and/or regulate a wide array of vital biological processes in insects by acting on their respective receptors in the plasmamembrane of target cells. These receptors belong to two distinct categories of signal transducing proteins, i.e., heptahelical or G protein-coupled receptors (7TM, GPCR) and single transmembrane containing receptors. An increasing amount of evidence indicates that insect neuropeptide-receptor couples play crucial roles in processes as diverse as development, metabolism, ecdysis and reproduction. As such, they gain growing interest as promising candidate targets for the development of a new generation of species- and receptor-specific insect control agents that may generate fewer side effects. In this chapter, we will present some examples of insect neuropeptide receptors and aim to demonstrate their fundamental importance in insect biology.

Keywords

Corpus Allata Tachykinin Receptor Eclosion Hormone Insect Control Agent Crustacean Cardioactive Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoffmann KH, Lorenz MW. Recent Advances in Hormones in Insect Pest Control. Phytoparasitica 1998; 26:323–330.CrossRefGoogle Scholar
  2. 2.
    Masler EP, Kelly TJ, Menn JJ. Insect neuropeptides: discovery and application in insect management. Arch Insect Biochem Physiol 1993; 22:87–111.PubMedCrossRefGoogle Scholar
  3. 3.
    Vanden Broeck J. Insect G protein-coupled receptors and signal transduction. Archives of Insect Biochemistry and Physiology 2001; 48:1–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Hewes RS, Taghert PH. Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res 2001; 11:1126–1142.PubMedCrossRefGoogle Scholar
  5. 5.
    Claeys I, Poels J, Simonet G et al. Insect neuropeptide and peptide hormone receptors: current knowledge and future directions. Vitam Horm 2005; 73:217–282.PubMedCrossRefGoogle Scholar
  6. 6.
    Scharrer B. Section of the nervi corpori cardiaci in Leucophaea maderae (Orthoptera). anatomical record 1946; 96:577.Google Scholar
  7. 7.
    Girardie A. Contribution a l’étude du controle de l’activité des corpora allata par la pars intercerebralis chez Locusta migratoria (L). Comptes rendus de l’Académie des sciences 1965; 261:4876–4878.Google Scholar
  8. 8.
    Girardie A. Controle neurohormonal de la metamorphose et de la pigmentation chez Locusta migratoria cinerascens. Bull Biol 1967; 101:79–114.Google Scholar
  9. 9.
    Kataoka H, Toschi A, Li JP et al. Identification of an Allatotropin from Adult Manduca Sexta. Science 1989; 243:1481–1483.PubMedCrossRefGoogle Scholar
  10. 10.
    Woodhead AP, Stay B, Seidel SL et al. Primary structure of four allatostatins: neuropeptide inhibitors of juvenile hormone synthesis. Proc Natl Acad Sci USA 1989; 86:5997–6001.PubMedCrossRefGoogle Scholar
  11. 11.
    Lorenz MW, Kellner R, Hoffmann KH. A family of neuropeptides that inhibit juvenile hormone biosynthesis in the cricket, Gryllus bimaculatus. J Biol Chem 1995; 270:21103–21108.PubMedCrossRefGoogle Scholar
  12. 12.
    Schoofs L, Holman GM, Hayes TK et al. Isolation, identification and synthesis of locustamyoinhibiting peptide (LOM-MIP), a novel biologically active neuropeptide from Locusta migratoria. Regul Pept 1991; 36:111–119.PubMedCrossRefGoogle Scholar
  13. 13.
    Kramer SJ, Toschi A, Miller CA et al. Identification of an allatostatin from the tobacco hornworm Manduca sexta. Proc Natl Acad Sci USA 1991; 88:9458–9462.PubMedCrossRefGoogle Scholar
  14. 14.
    Stay B, Tobe SS. The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu Rev Entomol 2007; 52:277–299.PubMedCrossRefGoogle Scholar
  15. 15.
    Gade G. Allatoregulatory peptides—molecules with multiple functions. Invertebrate Reproduction & Development 2002; 41:127–135.Google Scholar
  16. 16.
    Hua YJ, Tanaka Y, Nakamura K et al. Identification of a prothoracicostatic peptide in the larval brain of the silkworm, Bombyx mori. J Biol Chem 1999; 274:31169–31173.PubMedCrossRefGoogle Scholar
  17. 17.
    Birgul N, Weise C, Kreienkamp HJ et al. Reverse physiology in drosophila: identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/ galanin/opioid receptor family. EMBO J 1999; 18:5892–5900.PubMedCrossRefGoogle Scholar
  18. 18.
    Larsen MJ, Burton KJ Zantello MR et al. Type A allatostatins from Drosophila melanogaster and Diplotera puncata activate two Drosophila allatostatin receptors, DAR-1 and DAR-2, expressed in CHO cells. Biochem Biophys Res Commun 2001; 286:895–901.PubMedCrossRefGoogle Scholar
  19. 19.
    Lenz C, Williamson M, Hansen GN et al. Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2. Biochem Biophys Res Commun 2001; 286:1117–1122.PubMedCrossRefGoogle Scholar
  20. 20.
    Auerswald L, Birgul N, Gade G et al. Structural, functional and evolutionary characterization of novel members of the allatostatin receptor family from insects. Biochem Biophys Res Commun 2001; 282:904–909.PubMedCrossRefGoogle Scholar
  21. 21.
    Secher T, Lenz C, Cazzamali G et al. Molecular cloning of a functional allatostatin gut/brain receptor and an allatostatin preprohormone from the silkworm Bombyx mori. J Biol Chem 2001; 276:47052–47060.PubMedCrossRefGoogle Scholar
  22. 22.
    Johnson EC, Bohn LM, Barak LS et al. Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin2 interactions. J Biol Chem 2003; 278:52172–52178.PubMedCrossRefGoogle Scholar
  23. 23.
    Kreienkamp HJ, Larusson HJ, Witte I et al. Functional annotation of two orphan G-protein-coupled receptors, Drostar1 and-2, from Drosophila melanogaster and their ligands by reverse pharmacology. J Biol Chem 2002; 277:39937–39943.PubMedCrossRefGoogle Scholar
  24. 24.
    Van Loy T, Vandersmissen HP, Van Hiel MB et al. Comparative genomics of leucine-rich repeats containing G protein-coupled receptors and their ligands. Gen Comp Endocrinol 2008; 155:14–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Hauser F, Nothacker HP, Grimmelikhuijzen CJ. Molecular cloning, genomic organization and developmental regulation of a novel receptor from Drosophila melanogaster structurally related to members of the thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone/choriogonadotropin receptor family from mammals. J Biol Chem 1997; 272:1002–1010.PubMedCrossRefGoogle Scholar
  26. 26.
    Nishi S, Hsu SY, Zell K et al. Characterization of two fly LGR (leucine-rich repeat-containing, G protein-coupled receptor) proteins homologous to vertebrate glycoprotein hormone receptors: constitutive activation of wild-type fly LGR1 but not LGR2 in transfected mammalian cells. Endocrinology 2000; 141:4081–4090.PubMedCrossRefGoogle Scholar
  27. 27.
    Sudo S, Kuwabara Y, Park JI et al. Heterodimeric fly glycoprotein hormone-alpha2 (GPA2) and glycoprotein hormone-beta5 (GPB5) activate fly leucine-rich repeat-containing G protein-coupled receptor-1 (DLGR1) and stimulation of human thyrotropin receptors by chimeric fly GPA2 and human GPB5. Endocrinology 2005; 146:3596–3604.PubMedCrossRefGoogle Scholar
  28. 28.
    Hill CA, Fox AN, Pitts RJ et al. G protein-coupled receptors in Anopheles gambiae. Science 2002; 298:176–178.PubMedCrossRefGoogle Scholar
  29. 29.
    Kudo M, Chen T, Nakabayashi K et al. The nematode leucine-rich repeat-containing, G protein-coupled receptor (LGR) protein homologous to vertebrate gonadotropin and thyrotropin receptors is constitutively active in mammalian cells. Mol Endocrinol 2000; 14:272–284.PubMedCrossRefGoogle Scholar
  30. 30.
    Park JI, Semyonov J, Chang CL et al. Conservation of the heterodimeric glycoprotein hormone subunit family proteins and the LGR signaling system from nematodes to humans. Endocrine 2005; 26:267–276.PubMedCrossRefGoogle Scholar
  31. 31.
    Eriksen KK, Hauser F, Schiott M et al. Molecular cloning, genomic organization, developmental regulation and a knock-out mutant of a novel leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster. Genome Res 2000; 10:924–938.PubMedCrossRefGoogle Scholar
  32. 32.
    Mendive FM, Van Loy T, Claeysen S et al. Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Lett 2005; 579:2171–2176.PubMedCrossRefGoogle Scholar
  33. 33.
    Hauser F, Cazzamali G, Williamson M et al. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 2006; 80:1–19.PubMedCrossRefGoogle Scholar
  34. 34.
    Dewey EM, Mcnabb SL, Ewer J et al. Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotization and wing spreading. Curr Biol 2004; 14:1208–1213.PubMedCrossRefGoogle Scholar
  35. 35.
    Kimura KI, Kodama A, Hayasaka Y et al. Activation of the cAMP/PKA signaling pathway is required for post-ecdysial cell death in wing epidermal cells of Drosophila melanogaster. Development 2004; 131:1597–1606.PubMedCrossRefGoogle Scholar
  36. 36.
    Kumagai J, Hsu SY, Matsumi H et al. INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem 2002; 277:31283–31286.PubMedCrossRefGoogle Scholar
  37. 37.
    Zimmermann S, Steding G, Emmen JM et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol 1999; 13:681–691.PubMedCrossRefGoogle Scholar
  38. 38.
    Ruan Y, Chen C, Cao Y et al. The Drosophila insulin receptor contains a novel carboxyl-terminal extension likely to play an important role in signal transduction. J Biol Chem 1995; 270:4236–4243.PubMedCrossRefGoogle Scholar
  39. 39.
    Graf R, Neuenschwander S, Brown MR et al. Insulin-mediated secretion of ecdysteroids from mosquito ovaries and molecular cloning of the insulin receptor homologue from ovaries of bloodfed Aedes aegypti. Insect Mol Biol 1997; 6:151–163.PubMedCrossRefGoogle Scholar
  40. 40.
    Yenush L, Fernandez R, Myers MG et al. The Drosophila insulin receptor activates multiple signaling pathways but requires insulin receptor substrate proteins for DNA synthesis. Mol Cell Biol 1996; 16:2509–2517.PubMedGoogle Scholar
  41. 41.
    White MF. The IRS-signalling system: A network of docking proteins that mediate insulin action. Mol Cell Biochem 1998; 182:3–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Blenis J. Signal transduction via the map kinases—Proceed at your own Rsk. Proc Natl Acad Sci USA 1993; 90:5889–5892.PubMedCrossRefGoogle Scholar
  43. 43.
    Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch in insulin signalling. The Biochemical Journal 1998; 333:471–490.PubMedGoogle Scholar
  44. 44.
    Claeys I, Simonet G, Poels J et al. Insulin-related peptides and their conserved signal transduction pathway. Peptides 2002; 23:807–816.PubMedCrossRefGoogle Scholar
  45. 45.
    Edgar BA. How flies get their size: genetics meets physiology. Nat Rev Genet 2006; 7:907–916.PubMedCrossRefGoogle Scholar
  46. 46.
    Goberdhan DCI, Wilson C. The functions of insulin signaling: size isn’t everything, even in Drosophila. Differentiation 2003; 71:375–397.PubMedCrossRefGoogle Scholar
  47. 47.
    Mirth CK, Riddiford LM. Size assessment and growth control: how adult size is determined in insects. BioEssays 2007; 29:344–355.PubMedCrossRefGoogle Scholar
  48. 48.
    Satake S, Masumura M, Ishizaki H et al. Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silkworm Bombyx mori. Comp Biochem Physiol BBiochem Mol Biol 1997; 118:349–357.CrossRefGoogle Scholar
  49. 49.
    Masumura M, Satake SI, Saegusa H et al. Glucose stimulates the release of bombyxin, an insulin-related peptide of the silkworm Bombyx mori. Gen Comp Endocrinol 2000; 118:393–399.PubMedCrossRefGoogle Scholar
  50. 50.
    Ikeya T, Galic M, Belawat P et al. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 2002; 12:1293–1300.PubMedCrossRefGoogle Scholar
  51. 51.
    Britton JS, Lockwood WK, Li L et al. Drosophila’s insulin/P13-kinase pathway coordinates cellular metabolism with nutritional conditions. Developmental Cell 2002; 2:239–249.PubMedCrossRefGoogle Scholar
  52. 52.
    Britton JS, Edgar BA. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 1998; 125:2149–2158.PubMedGoogle Scholar
  53. 53.
    Edgar BA. From small flies come big discoveries about size control. Nat Cell Biol 1999; 1:E191–E193.PubMedCrossRefGoogle Scholar
  54. 54.
    Fullbright G, Lacy ER, Bullesbach EE. The prothoracicotropic hormone bombyxin has specific receptors on insect ovarian cells. Eur J Biochem 1997; 245:774–780.PubMedCrossRefGoogle Scholar
  55. 55.
    Riehle MA, Brown MR. Insulin stimulates ecdysteroid production through a conserved signaling cascade in the mosquito Aedes aegypti. Insect Biochem 1999; 29:855–860.CrossRefGoogle Scholar
  56. 56.
    Fallon AM, Hagedorn HH. Synthesis of vitellogenin by fat body in Aedes aegypti: effect of injected ecdysone. American Zoology 1972; 12:697–697.Google Scholar
  57. 57.
    Huybrechts R, De Loof A. Induction of vitellogenin synthesis in male Sarcophaga bullata by ecdysterone. J Insect Physiol 1977; 23:1359–1362.CrossRefGoogle Scholar
  58. 58.
    Riehle MA, Brown MR. Insulin receptor expression during development and a reproductive cycle in the ovary of the mosquito Aedes aegypti. Cell Tissue Res 2002; 308:409–420.PubMedCrossRefGoogle Scholar
  59. 59.
    Drummond-Barbosa D, Spradling AC. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 2001; 231:265–278.PubMedCrossRefGoogle Scholar
  60. 60.
    Reagan JD. Expression cloning of an insect diuretic hormone receptor. A member of the calcitonin/ secretin receptor family. J Biol Chem 1994; 269:9–12.PubMedGoogle Scholar
  61. 61.
    Reagan JD. Molecular cloning and function expression of a diuretic hormone receptor from the house cricket, Acheta domesticus. Insect Biochem Mol Biol 1996; 26:1–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Ha SD, Kataoka H, Suzuki A et al. Cloning and sequence analysis of cDNA for diuretic hormone receptor from the Bombyx mori. Mol Cells 2000; 10:13–17.PubMedCrossRefGoogle Scholar
  63. 63.
    Johnson EC, Bohn LM, Taghert PH. Drosophila CG8422 encodes a functional diuretic hormone receptor. J Exp Biol 2004; 207:743–748.PubMedCrossRefGoogle Scholar
  64. 64.
    Johnson EC, Shafer OT, Trigg JS et al. A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J Exp Biol 2005; 208:1239–1246.PubMedCrossRefGoogle Scholar
  65. 65.
    Lin YJ, Seroude L, Benzer S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 1998; 282:943–946.PubMedCrossRefGoogle Scholar
  66. 66.
    Cvejic S, Zhu Z, Felice SJ et al. The endogenous ligand Stunted of the GPCR Methuselah extends lifespan in Drosophila. Nat Cell Biol 2004; 6:540–546.PubMedCrossRefGoogle Scholar
  67. 67.
    Ja WW, West AP Jr, Delker SL et al. Extension of Drosophila melanogaster life span with a GPCR peptide inhibitor. Nat Chem Biol 2007; 3:415–419.PubMedCrossRefGoogle Scholar
  68. 68.
    Gade G. Regulation of intermediary metabolism and water balance of insects by neuropeptides. Annu Rev Entomol 2004; 49:93–113.PubMedCrossRefGoogle Scholar
  69. 69.
    Kaufmann C, Brown MR. Adipokinetic hormones in the African malaria mosquito, Anopheles gambiae: identification and expression of genes for two peptides and a putative receptor. Insect Biochem Mol Biol 2006; 36:466–481.PubMedCrossRefGoogle Scholar
  70. 70.
    Ziegler R, Jasensky RD, Morimoto H. Characterization of the adipokinetic hormone receptor form the fat body of Manduca sexta. Regul Pept 1995; 57:329–338.PubMedCrossRefGoogle Scholar
  71. 71.
    Park Y, Kim YJ, Adams ME. Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin and AKH supports a theory of ligand-receptor coevolution. Proc Natl Acad Sci USA 2002; 99:11423–11428.PubMedCrossRefGoogle Scholar
  72. 72.
    Staubli F, Jorgensen TJ, Cazzamali G et al. Molecular identification of the insect adipokinetic hormone receptors. Proc Natl Acad Sci USA 2002; 99:3446–3451.PubMedCrossRefGoogle Scholar
  73. 73.
    Wicher D, Agricola HJ, Sohler S et al. Differential receptor activation by cockroach adipokinetic hormones produces differential effects on ion currents, neuronal activity and locomotion. J Neurophysiol 2006; 95:2314–2325.PubMedCrossRefGoogle Scholar
  74. 74.
    Hansen KK, Hauser F, Cazzamali G et al. Cloning and characterization of the adipokinetic hormone receptor from the cockroach Periplaneta americana. Biochem Biophys Res Commun 2006; 343:638–643.PubMedCrossRefGoogle Scholar
  75. 75.
    Belmont M, Cazzamali G, Williamson M et al. Identification of four evolutionarily related G proteincoupled receptors from the malaria mosquito Anopheles gambiae. Biochem Biophys Res Commun 2006; 344:160–165.PubMedCrossRefGoogle Scholar
  76. 76.
    Pennefather JN, Lecci A, Candenas ML et al. Tachykinins and tachykinin receptors: a growing family. Life Sci 2004; 74:1445–1463.PubMedCrossRefGoogle Scholar
  77. 77.
    Palma C. Tachykinins and their receptors in human malignancies. Current Drug Targets 2006; 7:1043–1052.PubMedCrossRefGoogle Scholar
  78. 78.
    Nässel DR. Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 2002; 68:1–84.PubMedCrossRefGoogle Scholar
  79. 79.
    Li XJ, Wolfgang W, Wu YN et al. Cloning, heterologous expression and developmental regulation of a Drosophila receptor for tachykinin-like peptides. EMBO J 1991; 10:3221–3229.PubMedGoogle Scholar
  80. 80.
    Monnier D, Colas JF, Rosay P et al. NKD, a developmentally regulated tachykinin receptor in Drosophila. J Biol Chem 1992; 267:1298–1302.PubMedGoogle Scholar
  81. 81.
    Guerrero FD. Cloning of a cDNA from stable fly which encodes a protein with homology to a Drosophila receptor for tachykinin-like peptides. Ann NY Acad Sci 1997; 814:310–311.PubMedCrossRefGoogle Scholar
  82. 82.
    Kawada T, Furukawa Y, Shimizu Y et al. A novel tachykinin-related peptide receptor. Sequence, genomic organization and functional analysis. Eur J Biochem 2002; 269:4238–4246.PubMedCrossRefGoogle Scholar
  83. 83.
    Birse RT Johnson EC, Taghert PH et al. Widely distributed Drosophila G-protein-coupled receptor (CG7887) is activated by endogenous tachykinin-related peptides. J Neurobiol 2006; 66:33–46.PubMedCrossRefGoogle Scholar
  84. 84.
    Poels J, Verlinden H, Fichna J et al. Functional comparison of two evolutionary conserved insect neurokinin-like receptors. Peptides 2007; 28:103–108.PubMedCrossRefGoogle Scholar
  85. 85.
    Kanda A, Takuwa-Kuroda K, Aoyama M et al. A novel tachykinin-related peptide receptor of Octopus vulgaris—evolutionary aspects of invertebrate tachykinin and tachykinin-related peptide. FEBS J 2007; 274:2229–2239.PubMedCrossRefGoogle Scholar
  86. 86.
    Siviter RJ, Coast GM, Winther AM et al. Expression and functional characterization of a Drosophila neuropeptide precursor with homology to mammalian preprotachykinin A. J Biol Chem 2000; 275:23273–23280.PubMedCrossRefGoogle Scholar
  87. 87.
    Winther AM, Siviter RJ, Isaac RE et al. Neuronal expression of tachykinin-related peptides and gene transcript during postembryonic development of Drosophila. J Comp Neurol 2003; 464:180–196.PubMedCrossRefGoogle Scholar
  88. 88.
    Birse RT, Johnson EC, Taghert PH et al. Widely distributed Drosophila G-protein-coupled receptor (CG7887) is activated by endogenous tachykinin-related peptides. J Neurobiol 2006; 66:33–46.PubMedCrossRefGoogle Scholar
  89. 89.
    Poels J, Van Loy T, Franssens V et al. Substitution of conserved glycine residue by alanine in natural and synthetic neuropeptide ligands causes partial agonism at the stomoxytachykinin receptor. J Neurochem 2004; 90:472–478.PubMedCrossRefGoogle Scholar
  90. 90.
    Nässel DR. Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 2002; 68:1–84.PubMedCrossRefGoogle Scholar
  91. 91.
    Winther AM, Acebes A, Ferrus A. Tachykinin-related peptides modulate odor perception and locomotor activity in Drosophila. Mol Cell Neurosci 2006; 31:399–406.PubMedCrossRefGoogle Scholar
  92. 92.
    Takeuchi H, Yasuda A, Yasuda-Kamatani Y et al. Identification of a tachykinin-related neuropeptide from the honeybee brain using direct MALDI-TOF MS and its gene expression in worker, queen and drone heads. Insect Mol Biol 2003; 12:291–298.PubMedCrossRefGoogle Scholar
  93. 93.
    Takeuchi H, Yasuda A, Yasuda-Kamatani Y et al. Prepro-tachykinin gene expression in the brain of the honeybee Apis mellifera. Cell Tissue Res 2004; 316:281–293.PubMedCrossRefGoogle Scholar
  94. 94.
    Nachman RJ, Moyna G, Williams HJ et al. Comparison of active conformations of the insectatachykinin/ tachykinin and insect kinin/Tyr-W-MIF-1 neuropeptide family pairs. Ann NY Acad Sci 1999; 897:388–400.PubMedCrossRefGoogle Scholar
  95. 95.
    Torfs H, Shariatmadari R, Guerrero F et al. Characterization of a receptor for insect tachykinin-like peptide agonists by functional expression in a stable Drosophila Schneider 2 cell line. J Neurochem 2000; 74:2182–2189.PubMedCrossRefGoogle Scholar
  96. 96.
    Lundquist CT, Nässel DR. Peptidergic activation of locust dorsal unpaired median neurons: Depolarization induced by locustatachykinins may be mediated by cyclic AMP. J Neurobiol 1997; 33:297–315.PubMedCrossRefGoogle Scholar
  97. 97.
    Jong-Brink M, ter Maat A, Tensen CP. NPY in invertebrates: molecular answers to altered functions during evolution. Peptides 2001; 22:309–315.PubMedCrossRefGoogle Scholar
  98. 98.
    Brown MR, Crim JW, Arata RC et al. Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 1999; 20:1035–1042.PubMedCrossRefGoogle Scholar
  99. 99.
    Stanek DM, Pohl J, Crim JW et al. Neuropeptide F and its expression in the yellow fever mosquito, Aedes aegypti. Peptides 2002; 23:1367–1378.PubMedCrossRefGoogle Scholar
  100. 100.
    Riehle MA, Garczynski SF, Crim JW et al. Neuropeptides and peptide hormones in Anopheles gambiae. Science 2002; 298:172–175.PubMedCrossRefGoogle Scholar
  101. 101.
    Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med (Maywood) 2003; 228:217–244.Google Scholar
  102. 102.
    Garczynski SF, Brown MR, Shen P et al. Characterization of a functional neuropeptide F receptor from Drosophila melanogaster. Peptides 2002; 23:773–780.PubMedCrossRefGoogle Scholar
  103. 103.
    Garczynski SF, Crim JW, Brown MR. Characterization of neuropeptide F and its receptor from the African malaria mosquito, Anopheles gambiae. Peptides 2005; 26:99–107.PubMedCrossRefGoogle Scholar
  104. 104.
    Shen P, Cai HN. Drosophila neuropeptide F mediates integration of chemosensory stimulation and conditioning of the nervous system by food. Journal of Neurobiology 2001; 47:16–25.PubMedCrossRefGoogle Scholar
  105. 105.
    Wu Q, Wen TQ, Lee G et al. Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 2003; 39:147–161.PubMedCrossRefGoogle Scholar
  106. 106.
    Lingo PR, Zhao Z, Shen P. Coregulation of cold-resistant food acquisition by insulin-and neuropeptide Y-like systems in Drosophila melanogaster. Neuroscience 2007; 148:371–374.PubMedCrossRefGoogle Scholar
  107. 107.
    Spittaels K, Verhaert P, Shaw C et al. Insect neuropeptide F (NPF)-related peptides: isolation from Colorado potato beetle (Leptinotarsa decemlineata) brain. Insect Biochem Mol Biol 1996; 26:375–382.PubMedCrossRefGoogle Scholar
  108. 108.
    Mertens I, Meeusen T, Huybrechts R et al. Characterization of the short neuropeptide F receptor from Drosophila melanogaster. Biochem Biophys Res Commun 2002; 297:1140–1148.PubMedCrossRefGoogle Scholar
  109. 109.
    Feng G, Reale V, Chatwin H et al. Functional characterization of a neuropeptide F-like receptor from Drosophila melanogaster. Eur J Neurosci 2003; 18:227–238.PubMedCrossRefGoogle Scholar
  110. 110.
    Reale V, Chatwin HM, Evans PD. The activation of G-protein gated inwardly rectifying K+ channels by a cloned Drosophila melanogaster neuropeptide F-like receptor. Eur J Neurosci 2004; 19:570–576.PubMedCrossRefGoogle Scholar
  111. 111.
    Chen ME, Pietrantonio PV. The short neuropeptide F-like receptor from the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Arch Insect Biochem Physiol 2006; 61:195–208.PubMedCrossRefGoogle Scholar
  112. 112.
    Garczynski SF, Brown MR, Crim JW. Structural studies of Drosophila short neuropeptide F: Occurrence and receptor binding activity. Peptides 2006; 27:575–582.PubMedCrossRefGoogle Scholar
  113. 113.
    Cerstiaens A, Benfekih L, Zouiten H et al. Led-NPF-1 stimulates ovarian development in locusts. Peptides 1999; 20:39–44.PubMedCrossRefGoogle Scholar
  114. 114.
    Zitnan D, Kingan TG, Hermesman JL et al. Identification of ecdysis-triggering hormone from an epitracheal endocrine system. Science 1996; 271:88–91.PubMedCrossRefGoogle Scholar
  115. 115.
    Zitnan D, Ross LS, Zitnanova I et al. Steroid induction of a peptide hormone gene leads to orchestration of a defined behavioral sequence. Neuron 1999; 23:523–535.PubMedCrossRefGoogle Scholar
  116. 116.
    Ewer J, Gammie SC, Truman JW. Control of insect ecdysis by a positive-feedback endocrine system: roles of eclosion hormone and ecdysis triggering hormone. J Exp Biol 1997; 200:869–881.PubMedGoogle Scholar
  117. 117.
    Truman JW, Fallon AM, Wyatt GR. Hormonal release of programmed behavior in silk moths: probable mediation by cyclic AMP. Science 1976; 194:1432–1434.PubMedCrossRefGoogle Scholar
  118. 118.
    Kim YJ, Spalovska-Valachova I, Cho KH et al. Corazonin receptor signaling in ecdysis initiation. Proc Natl Acad Sci USA 2004; 101:6704–6709.PubMedCrossRefGoogle Scholar
  119. 119.
    Ewer J, Truman JW. Increases in cyclic 3′, 5′-guanosine monophosphate (cGMP) occur at ecdysis in an evolutionarily conserved crustacean cardioactive peptide-immunoreactive insect neuronal network. J Comp Neurol 1996; 370:330–341.PubMedCrossRefGoogle Scholar
  120. 120.
    Zitnan D, Kingan TG, Hermesman JL et al. Identification of ecdysis-triggering hormone from an epitracheal endocrine system. Science 1996; 271:88–91.PubMedCrossRefGoogle Scholar
  121. 121.
    Stangier J, Hilbich C, Beyreuther K et al. Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab Carcinus maenas. Proc Natl Acad Sci USA 1987; 84:575–579.PubMedCrossRefGoogle Scholar
  122. 122.
    Ewer J, Truman JW. Increases in cyclic 3′, 5′-guanosine monophosphate (cGMP) occur at ecdysis in an evolutionarily conserved crustacean cardioactive peptide-immunoreactive insect neuronal network. J Comp Neurol 1996; 370:330–341.PubMedCrossRefGoogle Scholar
  123. 123.
    Gammie SC, Truman JW. Neuropeptide hierarchies and the activation of sequential motor behaviors in the hawkmoth, Manduca sexta. J Neurosci 1997; 17:4389–4397.PubMedGoogle Scholar
  124. 124.
    Park Y, Kim YJ, Dupriez V et al. Two subtypes of ecdysis-triggering hormone receptor in Drosophila melanogaster. J Biol Chem 2003; 278:17710–17715.PubMedCrossRefGoogle Scholar
  125. 125.
    Iversen A, Cazzamali G, Williamson M et al. Molecular identification of the first insect ecdysis triggering hormone receptors. Biochem Biophys Res Commun 2002; 299:924–931.PubMedCrossRefGoogle Scholar
  126. 126.
    Cazzamali G, Hauser F, Kobberup S et al. Molecular identification of a Drosophila G protein-coupled receptor specific for crustacean cardioactive peptide. Biochem Biophys Res Commun 2003; 303:146–152.PubMedCrossRefGoogle Scholar
  127. 127.
    Sakai T, Satake H, Takeda M. Nutrient-induced alpha-amylase and protease activity is regulated by crustacean cardioactive peptide (CCAP) in the cockroach midgut. Peptides 2006; 27:2157–2164.PubMedCrossRefGoogle Scholar
  128. 128.
    Veelaert D, Passier P, Devreese B et al. Isolation and characterization of an adipokinetic hormone release-inducing factor in locusts: the crustacean cardioactive peptide. Endocrinology 1997; 138:138–142.PubMedCrossRefGoogle Scholar
  129. 129.
    Kim YJ, Spalovska-Valachova I, Cho KH et al. Corazonin receptor signaling in ecdysis initiation. Proc Natl Acad Sci USA 2004; 101:6704–6709.PubMedCrossRefGoogle Scholar
  130. 130.
    Cazzamali G, Saxild N, Grimmelikhuijzen C. Molecular cloning and functional expression of a Drosophila corazonin receptor. Biochem Biophys Res Commun 2002; 298:31–36.PubMedCrossRefGoogle Scholar
  131. 131.
    Badisco L, Claeys I, Van Loy T et al. Neuroparsins, a family of conserved arthropod neuropeptides. Gen Comp Endocrinol 2007; 153:64–71.PubMedCrossRefGoogle Scholar
  132. 132.
    Altstein, M. Role of neuropeptides in sex pheromone production in moths. Peptides 2004; 25:1491–1501.PubMedCrossRefGoogle Scholar
  133. 133.
    Rosenkilde C, Cazzamali G, Williamson M et al. Molecular cloning, functional expression and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2. Biochem Biophys Res Commun 2003; 309:485–494.PubMedCrossRefGoogle Scholar
  134. 134.
    Cazzamali G, Torp M, Hauser F et al. The Drosophila gene CG9918 codes for a pyrokinin-1 receptor. Biochem Biophys Res Commun 2005; 335:14–19.PubMedCrossRefGoogle Scholar
  135. 135.
    Hull JJ, Ohnishi A, Moto K et al. Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor from the silkmoth, Bombyx mori. Significance of the carboxyl terminus in receptor internalization. J Biol Chem 2004; 279:51500–51507.PubMedCrossRefGoogle Scholar
  136. 136.
    Choi MY, Fuerst EJ, Rafaeli A et al. Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc Natl Acad Sci USA 2003; 100:9721–9726.PubMedCrossRefGoogle Scholar
  137. 137.
    Zheng L, Lytle C, Njauw CN et al. Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor gene in Spodoptera littoralis larvae. Gene 2007; 393:20–30.PubMedCrossRefGoogle Scholar
  138. 138.
    Monnier D, Colas JF, Rosay P et al. NKD, a developmentally regulated tachykinin receptor in Drosophila. J Biol Chem 1992; 267:1298–1302.PubMedGoogle Scholar
  139. 139.
    Li XJ, Wolfgang W, Wu YN et al. Cloning, heterologous expression and developmental regulation of a Drosophila receptor for tachykinin-like peptides. EMBO J 1991; 10:3221–3229.PubMedGoogle Scholar
  140. 140.
    Torfs H, Shariatmadari R, Guerrero F et al. Characterization of a receptor for insect tachykinin-like peptide agonists by functional expression in a stable Drosophila Schneider 2 cell line. J Neurochem 2000; 74:2182–2189.PubMedCrossRefGoogle Scholar
  141. 141.
    Poels J, Van Loy T, Franssens V et al. Substitution of conserved glycine residue by alanine in natural and synthetic neuropeptide ligands causes partial agonism at the stomoxytachykinin receptor. J Neurochem 2004; 90:472–478.PubMedCrossRefGoogle Scholar
  142. 142.
    Luo CW, Dewey EM, Sudo S et al. Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. Proc Natl Acad Sci USA 2005; 102:2820–2825.PubMedCrossRefGoogle Scholar
  143. 143.
    Cazzamali G, Hauser F, Kobberup S et al. Molecular identification of a Drosophila G protein-coupled receptor specific for crustacean cardioactive peptide. Biochem Biophys Res Commun 2003; 303:146–152.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Matthias B. Van Hiel
    • 1
  • Tom Van Loy
    • 1
  • Jeroen Poels
    • 1
  • Hans Peter Vandersmissen
    • 1
  • Heleen Verlinden
    • 1
  • Liesbeth Badisco
    • 1
  • Jozef Vanden Broeck
    • 1
    Email author
  1. 1.Research Unit Functional Genomics and ProteomicsZoological Institute, Katholieke Universitet LeuvenLeuvenBelgium

Personalised recommendations