Skip to main content

Structure-Based Models of Biomolecules: Stretching of Proteins, Dynamics of Knots, Hydrodynamic Effects, and Indentation of Virus Capsids

  • Chapter
  • First Online:
Multiscale Approaches to Protein Modeling

Abstract

Coarse-grained models of biomolecules are developed to provide ways of simulating situations which involve system sizes and time scales that are hard to study by all-atom approaches. These situations usually are associated with occurrence of large conformational transformations. This review discusses a subclass of the coarse-grained descriptions: the structure-based models. These models are defined in a phenomenological way and make use of the knowledge of the native structure that is determined experimentally. We discuss the cases of the DNA molecule and dendrimers but the focus of the review is on proteins. For proteins, the reduction of the number of the degrees of freedom is achieved by representing amino acids by single beads located at the Cα atoms. The beads are tethered together into chains and effective attractive contact interactions are introduced so that the lowest energy state corresponds to the native conformation. There are many variants of such models and each variant comes with its own set of properties. Optimal variants can be selected by making comparisons to experimental data on single-molecule stretching. We discuss the best-performing variants of such models. Among them, there is a model with the Lennard–Jones potential in the native contacts and with the uniform (sequence independent) energy parameter. We apply this model to several problems: theoretical survey of mechanical resistance to stretching of 17,134 proteins comprising not more than 250 amino acids, dynamics of proteins with knots, pulling proteins out of membranes, the role of hydrodynamic interactions, and nanoindentation of virus capsids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Go N (1981) Noninteracting local-structure model of folding and unfolding transition in globular proteins. II. Application to two-dimensional lattice proteins. Biopolymers 20:1013–1031

    Article  PubMed  CAS  Google Scholar 

  • Alam MT, Yamada T, Carlsson U, Ikai A (2002) Importance of being knotted: effects of C-terminal knot structure on enzymatic and mechanical properties of bovine carbonic anhydrase II. FEBS Lett 519:35–42

    Article  PubMed  CAS  Google Scholar 

  • Allemand JF, Bensimon D, Lavery R, Croquette V (2007) Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc Natl Acad Sci USA 95:14152–14157

    Article  Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New York, NY.

    Google Scholar 

  • Andersson FI, Pina DG, Mallam AL, Blaser G, Jackson SE (2009) Untangling the folding mechanism of the 52-knotted protein UCH-L3. FEBS J 276:2625–2635

    Article  PubMed  CAS  Google Scholar 

  • Andreeva A, Howorth D, Chandonia J-M, Brenner SE, Hubbard TJP, Chothia C, Murzin AG (2008) Data growth and its impact on the SCOP database: new developments. Nucl Acid Res 36:D419–D425

    Article  CAS  Google Scholar 

  • Antosiewicz J, Porschke D (1989) Volume correction for bead model simulations of rotational friction coefficients of macromolecules. J Phys Chem 93:5301–5305

    Article  CAS  Google Scholar 

  • Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181

    Article  PubMed  CAS  Google Scholar 

  • Bahar I, Erman B, Jernigan RL, Atilgan AR, Covell DG (1999) Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function. J Mol Biol 285:1023–1037

    Article  PubMed  CAS  Google Scholar 

  • Banavar JR, Cieplak M, Hoang TX, Maritan A (2009) First-principles design of nanomachines. Proc Natl Acad Sci USA 106:6900–6903

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN et al (2000) The Protein Data Bank. Nucl Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Bockelmann U, Essevaz-Roulet B, Heslot F (1997) Molecular stick-slip motion revealed by opening DNA with piconewton forces. Phys Rev Lett 79:4489–4492

    Article  CAS  Google Scholar 

  • Bockelmann U, Thomen Ph, Essevaz-Roulet B, Viasnoff V, Heslot F (2002) Unzipping DNA with optical tweezers: High sequence sensitivity and force flips. Biophys J 82:1537–1553

    Article  PubMed  CAS  Google Scholar 

  • Bolinger D, Sulkowska JI, Hsu H-P, Mirny LA, Kardar M, Onuchic JN, Virnau P (2010) A Stevedore’s protein knot. PLoS Comput Biol 6:e1000731

    Article  PubMed  CAS  Google Scholar 

  • Bornschlogl T, Anstrom DM, Mey E, Dzubiella J, Rief M, Forest KT (2009) Tightening the knot in phytochrome by single-molecule atomic force microscopy. Biophys J 96:1508–1514

    Article  PubMed  CAS  Google Scholar 

  • Bryant Z, Stone MD, Gore J, Smith SB, Cozzarelli NR, Bustamante C (2003) Structural transitions and elasticity from torque measurements on DNA. Nature 424:338–341

    Article  PubMed  CAS  Google Scholar 

  • Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways and the energy landscape of protein folding: a synthesis. Proteins Struct Funct Genet 21:167–195

    Article  PubMed  CAS  Google Scholar 

  • Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule DNA mechanics. Nature 421:423–426

    Article  PubMed  CAS  Google Scholar 

  • Buenemann M, Lenz P (2007) Mechanical limits of viral capsids. Proc Natl Acad Sci USA 104:9925–9930

    Article  PubMed  CAS  Google Scholar 

  • Carrillo-Tripp M, Shepherd C, Borelli IA, Venkataraman S, Lander G, Natarajan P, Johnson JE, Brooks III CL, Reddy V (2009) VIPERdb2: an enhanced and web API enabled relational database for structural virology. Nucl Acids Res 37:D436–D442. http://viperdb.scripps.edu/. Accessed date 2008

    Article  PubMed  CAS  Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel PE et al (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci USA 96:3694–3699

    Article  PubMed  CAS  Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H, Fernandez JM (2000) Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering, Prog Biophys Mol Biol 74:63–91

    Article  PubMed  CAS  Google Scholar 

  • Carrion-Vazquez M, Cieplak M, Oberhauser AF (2009) Protein mechanics at the single-molecule level. In: Meyers RA (eds) Encyclopedia of complexity and systems science. Springer, New York, NY, pp 577–603. ISBN:978-0-387-75888-6

    Google Scholar 

  • Chillemi G, Bruselles A, Fiorani P, Bueno S, Desideri A (2007) The open state of human topoisomerase I as probed by molecular dynamics simulation. Nucl Acids Res 35:3032–3038

    Article  PubMed  CAS  Google Scholar 

  • Cieplak M, Koplik J, Banavar JR (2001) Boundary conditions at a fluid–solid interface. Phys Rev Lett 86:803–806

    Article  PubMed  CAS  Google Scholar 

  • Cieplak M, Hoang TX, Robbins MO (2002) Folding and stretching in a Go-like model of titin Proteins. Struct Funct Bioinform 49:114–124

    Article  CAS  Google Scholar 

  • Cieplak M, Hoang TX (2003) Universality classes in folding times of proteins. Biophys J 84:475–488

    Article  PubMed  CAS  Google Scholar 

  • Cieplak M (2004) Cooperativity and contact order in protein folding. Phys Rev E 69:031907

    Article  CAS  Google Scholar 

  • Cieplak M, Hoang TX, Robbins MO (2004) Thermal effects in stretching of Go-like models of titin and secondary structures. Proteins Struct Funct Bioinform 56:285–297

    Article  CAS  Google Scholar 

  • Cieplak M, Sulkowska JI (2005) Thermal unfolding of proteins. J Chem Phys 123:194908

    Article  PubMed  CAS  Google Scholar 

  • Cieplak M, Filipek S, Janovjak H, Krzysko KA (2006) Pulling single bacteriorhodopsin out of a membrane: comparison of simulation and experiment. BBA – Biomembranes 1758:537–544

    Article  PubMed  CAS  Google Scholar 

  • Cieplak M, Thompson D (2008) Coarse-grained molecular dynamics simulations of nanopatterning with multivalent inks. J Chem Phys 128:234906

    Article  PubMed  CAS  Google Scholar 

  • Cieplak M, Robbins MO (2010) Nanoindentation of virus capsids in a molecular model. J Chem Phys 132:015101

    Article  PubMed  CAS  Google Scholar 

  • Cieplak M, Niewieczerzal S (2009) Hydrodynamic interactions in protein folding. J Chem Phys 130:124905

    Article  CAS  Google Scholar 

  • Cieplak M, Sulkowska JI (2009) Tests of the structure-based models of proteins. Acta Phys Polonica 115:441–445

    CAS  Google Scholar 

  • Clementi C, Nymeyer H, Onuchic JN (2000) Topological and energetic factors: What determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J Mol Biol 298:937–953

    Article  PubMed  CAS  Google Scholar 

  • Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J-L, Chatenay D, Caron F (1996) DNA: an extensible molecule. Science 271:792–794

    Article  PubMed  CAS  Google Scholar 

  • Craik DJ, Daly NL, Bond TJ, Waine C (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336

    Article  PubMed  CAS  Google Scholar 

  • Craik DJ, Dally NL, Waine C (2001) The cysteine knot motif in toxins and implications for drug design. Toxicon 39:43–60

    Article  PubMed  CAS  Google Scholar 

  • Duan Y, Kollman PA (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740–744

    Article  PubMed  CAS  Google Scholar 

  • Dykeman EC, Sankey OF (2008) Low frequency mechanical models of viral capsids: an atomistic approach. Phys Rev Lett 100:028101

    Article  PubMed  CAS  Google Scholar 

  • Ermak DL, McCammon JA (1978.) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69:1352–1360

    Article  CAS  Google Scholar 

  • Faisca PFN, Travasso RDM, Charters T, Nunes A, Cieplak M (2010) The folding of knotted proteins: insights from lattice simulations. Phys Biol 7:016009

    Article  CAS  Google Scholar 

  • Finkelstein AV (1997) Can protein unfolding simulate protein folding. Prot Eng 10:843–845

    Article  CAS  Google Scholar 

  • Fowler SB, Best RB, Toca Herrera JL, Rutherford TJ, Steward A, Paci E, Karplus M, Clarke J (2002) Mechanical Unfolding of a Titin Ig Domain: structure of unfolding Intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J Mol Biol 322:841–849

    Article  PubMed  CAS  Google Scholar 

  • Frembgen-Kesner T, Elcock AH (2009) Striking effects of hydrodynamic interactions on the simulated diffusion and folding of proteins. J Chem Theory Comp 5:242–256

    Article  CAS  Google Scholar 

  • Galera-Prat A, Gomez-Sicilia A, Oberhauser AF, Cieplak M, Carrion-Vazquez M (2010) Understanding biology by stretching proteins: recent progress. Curr Op Struct Biol 20:63–69

    Article  CAS  Google Scholar 

  • Garcia de la Torre J, Bloomfield VA (1981) Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Quarter Rev Biophys 14:81–139

    Article  Google Scholar 

  • Gear WC (1971) Numerical initial value problems in ordinary differential equations. Prentice-Hall, New York, NY

    Google Scholar 

  • Gibbons MM, Klug WS (2008) Influence of nonuniform geometry on nanoindentation of viral capsids. Biophys J 95:3640–3649

    Article  PubMed  CAS  Google Scholar 

  • Goldstein RA, Luthey-Schulten ZA, Wolynes PG (1992) Optimal protein-folding codes from spin-glass theory. Proc Natl Acad Sci USA 89:4918–4922

    Article  PubMed  CAS  Google Scholar 

  • Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub H (1999) How Strong Is a Covalent Bond? Science 283:1727–1730

    Article  PubMed  CAS  Google Scholar 

  • Grest GS, Kremer K (1986) Molecular-dynamics simulation for polymers in the presence of a heat bath. Phys Rev A 33:3628–3631

    Article  PubMed  CAS  Google Scholar 

  • Hinczewski M, Schlagberger X, Rubinstein M, Krichevsky O, Netz RR (2009) End-monomer dynamics in semiflexible polymers. Macromolecules 42:860–875

    Article  PubMed  CAS  Google Scholar 

  • Hoang TX, Cieplak M (2000) Molecular dynamics of folding of secondary structures in Go-type models of proteins. J Chem Phys 112:6851–6862

    Article  CAS  Google Scholar 

  • Huskens J (2006) Multivalent interactions at surfaces. Curr Opin Chem Biol 10:537–543

    Article  PubMed  CAS  Google Scholar 

  • Hyeon C, Thirumalai D (2005) Mechanical unfolding of RNA hairpins. Proc Natl Acad Sci USA 102:6789–6794

    Article  PubMed  CAS  Google Scholar 

  • Janovjak H, Kessler M, Oesterhelt D, Gaub HE, Mueller DJ (2003) Unfolding pathways of native bacteriorhodopsin depend on temperature. EMBO J 22:5220–5229

    Article  PubMed  CAS  Google Scholar 

  • Karanicolas J, Brooks III CL (2002) The origins of asymmetry in the folding transition states of protein L and protein G. Protein Sci 11:2351–2361

    Article  PubMed  CAS  Google Scholar 

  • King NP, Yeates EO, Yeates TO (2007) Identification of rare slipknots in proteins and their implications for stability and folding. J Mol Biol 373:153–166

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi N, Ryder JF, Pooley CM, Yeomans JM (2005) Kinetics of the polymer collapse transition: the role of hydrodynamics. Phys Rev E 71:061804

    Article  CAS  Google Scholar 

  • Kim MK, Jernigan RL, GS Chirikjian GS (2003) An elastic network model of HK97 capsid maturation. J Struct Biol 143:107–117

    Article  PubMed  CAS  Google Scholar 

  • Klimov DK, Thirumalai D (1997) Viscosity dependence of the folding rates of proteins. Phys Rev Lett 79:317–320

    Article  CAS  Google Scholar 

  • Knotts IV TA, Rathore N, Schwartz DC, de Pablo JJ (2007) A coarse grain model for DNA. J Chem Phys 126:84901

    Article  CAS  Google Scholar 

  • Koniaris K, Muthukumar M (1991) Knottedness in ring polymers. Phys Rev Lett 66:2211–2214

    Article  PubMed  CAS  Google Scholar 

  • Koster DA, Croquette V, Shuman S, Dekker NH (2005) Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature 34:671–674

    Article  CAS  Google Scholar 

  • Kwiecinska JI, Cieplak M (2005) Chirality and protein folding. J Phys Cond Matter 17:S1565–S1580

    Article  CAS  Google Scholar 

  • Klug WS, Bruinsma RF, Michel J-P, Knobler CM, Ivanovska IL, Schmidt CF, Wuite GJL (2006) Failure of viral shells. Phys Rev Lett 97:228101

    Article  PubMed  CAS  Google Scholar 

  • Li A, Daggett V (1994) Characterization of the transition state of protein unfolding by use of molecular dynamics: chymotrypsin inhibitor 2. Proc Natl Acad Sci USA 91:10430–10434

    Article  PubMed  CAS  Google Scholar 

  • Livingston C (1993) Knot theory. Mathematical Association of America, Washington, DC.

    Google Scholar 

  • Lu H, Schulten K (1999) Steered molecular dynamics simulation of conformational changes of immunoglobulin domain I27 interprete atomic force microscopy observations. Chem Phys 247:141–153

    Article  CAS  Google Scholar 

  • Mallam AL, Jackson SE (2007) Comparison of the folding of two knotted proteins: YbeA and Yibk. J Mol Biol 366:650–665

    Article  PubMed  CAS  Google Scholar 

  • Mallam AL, Onuoha SC, Grossmann JG, Jackson SE (2008) Knotted fusion proteins reveal unexpected possibilities in protein folding. Mol Cell 30:642–648

    Article  PubMed  CAS  Google Scholar 

  • Malevanets A, Kapral R (1999) Mesoscopic model for solvent dynamics. J Chem Phys 110:8605–8613

    Article  CAS  Google Scholar 

  • Mansfield ML (1994) Are there knots in proteins? Nat Struct Biol 1:213–214

    Article  PubMed  CAS  Google Scholar 

  • Metzler R, Reisner W, Riehn R, Austin R, Tegenfeldt JO, Sokolov IM (2006) Diffusion mechanisms of localised knots along a polymer. Europhys Lett 76:696–702

    Article  CAS  Google Scholar 

  • Micheletti C, Latanzi G, Maritan A (2002) Elastic properties of proteins: insight on the folding process and evolutionary selection of native structures. J Mol Biol 321:909–921

    Article  PubMed  CAS  Google Scholar 

  • Michel JP, Ivanovska IL, Gibbons MM, Klug WS, Knobler CM, Wuite GJL, Schmidt CF (2006) Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc Natl Acad Sci USA 103:6184–6189

    Article  PubMed  CAS  Google Scholar 

  • Miller BT, Zheng W, Venable RM, Pastor RW, Brooks BR (2008) Langevin network model of myosin. J Phys Chem B 112:6274–6281

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa S, Jernigan RL (1996) Residue–residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol 256:623–644

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–40

    PubMed  CAS  Google Scholar 

  • Niewieczerzal S, Cieplak M (2009) Stretching and twisting of the DNA duplexes in coarse-grained dynamical models. J Phys Cond Matter 21:474221

    Article  CAS  Google Scholar 

  • Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB et al (1997) CATH – A hierarchical classification of protein domain structures. Structure 5:1093–108

    Article  PubMed  CAS  Google Scholar 

  • Oroszi L, Gajda P, Kirei H, Bottka S, Ormos P (2006) Direct measurement of torque in an optical trap and its applications to double-strand DNA. Phys Rev Lett 97:058301

    Article  PubMed  CAS  Google Scholar 

  • Paci E, Karplus M (2000) Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc Natl Acad Sci USA 97:6521–6526

    Article  PubMed  CAS  Google Scholar 

  • Pabon G, Amzel LM (2006) Mechanism of titin unfolding by force: Insight from quasi-equilibrium molecular dynamics calculations. Biophys J 91:467–472

    Article  PubMed  CAS  Google Scholar 

  • Pearl F, Todd A, Sillitoe I, Dibley M, Redfern O et al (2005) The CATH domain structure database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucl Acid Res 33:D247–51

    Article  CAS  Google Scholar 

  • Raymer DM, Smith DE (2007) Spontaneous knotting of an agitated string. Proc Natl Acad Sci USA 104:16432–16437

    Article  PubMed  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  PubMed  CAS  Google Scholar 

  • Rotne J, Prager S (1969) Variational treatment of hydrodynamic interaction on polymers. J Chem Phys 50:4831–4837

    Article  CAS  Google Scholar 

  • Ryder JF (2005) Mesoscopic simulations of complex fluids, Ph.D. thesis, the University of Oxford.

    Google Scholar 

  • Schonher H, Beulen MWJ, Bugler J, Huskens J, van Veggel FCJM, Reinhoudt DN, Vancso GJ (2000) Individual supramolecular host–guest interactions studied by dynamic single molecule spectroscopy. J Am Chem Soc 122:4963–4967

    Article  CAS  Google Scholar 

  • Settanni G, Hoang TX, Micheletti C and Maritan A (2002) Folding pathways of prion and doppel. Biophys J 83:3533–3541

    Article  PubMed  CAS  Google Scholar 

  • Sikora M, Sulkowska JI, Cieplak M (2009) Mechanical strength of 17 134 model proteins and cysteine knots. PLoS Comput Biol 5:e1000547

    Article  PubMed  CAS  Google Scholar 

  • Smith ED, Robbins MO, Cieplak M (1996) Friction on adsorbed monolayers. Phys. Rev B 54:8252–8260

    Article  CAS  Google Scholar 

  • Snow CD, Nguyen H, Pande V, Gruebele M (2002) Absolute comparison of simulated and experimental protein folding dynamics. Nature 420:102–106

    Article  PubMed  CAS  Google Scholar 

  • Sobolev V, Sorokine A, Prilusky J, Abola EE, Edelman M (1999) Automated analysis of interatomic contacts in proteins. Bioinformatics 15:327–332

    Article  PubMed  CAS  Google Scholar 

  • Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:63–78

    Article  PubMed  CAS  Google Scholar 

  • Sulkowska JI, Cieplak M (2007) Mechanical stretching of proteins – a theoretical survey of the Protein Data Bank. J Phys Cond Matter 19:283201

    Article  CAS  Google Scholar 

  • Sulkowska JI, Cieplak M (2008) Selection of optimal variants of Go-like models of proteins through studies of stretching. Biophys J 95:3174–3191

    Article  PubMed  CAS  Google Scholar 

  • Sulkowska JI, Kloczkowski A, Sen TZ, Cieplak M, Jernigan RL (2008a) Predicting the order in which contacts are broken during single molecule protein stretching experiments. Proteins Struct Funct Bioinform 71:45–60

    Article  CAS  Google Scholar 

  • Sulkowska JI, Sulkowski P, Szymczak, P, Cieplak M (2008b) Tightening of knots in proteins. Phys Rev Lett 100:058106

    Article  PubMed  CAS  Google Scholar 

  • Sulkowska JI, Sulkowski P, Szymczak P, Cieplak M (2008c) Stabilizing effect of knots on proteins. Proc Natl Acad Sci USA 105:19714–19719

    Article  PubMed  CAS  Google Scholar 

  • Sulkowska JI, Sulkowski P, Onuchic JN (2009a) Dodging the crisis of folding proteins with knots. Proc Natl Acad Sci USA 106:3119–3124

    Article  PubMed  CAS  Google Scholar 

  • Sulkowska JI, Sulkowski P, Onuchic JN ( 2009b) Jamming proteins with slipknots and their free energy landscape. Phys Rev Lett 103:268103

    Article  PubMed  CAS  Google Scholar 

  • Szklarczyk O, Staron K, Cieplak M (2009) Native state dynamics and mechanical properties of human topoisomerase I within a structure-based coarse-grained model. Proteins Struct Funct Bioinform 77:420–431

    Article  CAS  Google Scholar 

  • Szymczak P, Cieplak M (2006) Stretching of proteins in a uniform flow. J Chem Phys 125:164903

    Article  PubMed  CAS  Google Scholar 

  • Szymczak P, Cieplak M (2007a) The slip-length effects in molecular dynamics of bead-like models of proteins. In: Hansmann UHE, Meinke J, Mohanty S, Zimmerman O (eds) Forschungszentrum Juelich Proceedings, NIC workshop 2007 from computational biophysics to systems biology 2007, vol 36, NIC Series, pp 1–7. http://www.fz-juelich.de/nic-series/volume36/nic-series-volume36.pdf

  • Szymczak P, Cieplak M (2007b) Influence of hydrodynamic interactions on mechanical unfolding of proteins. J Phys: Condens Matter 19:285224

    Article  CAS  Google Scholar 

  • Szymczak P, Cieplak M (2007c) Proteins in a shear flow. J Chem Phys 127:155106

    Article  PubMed  CAS  Google Scholar 

  • Takada S (1999) Go-ing for the prediction of protein folding mechanism. Proc Natl Acad Sci USA 96:11698–11700

    Article  PubMed  CAS  Google Scholar 

  • Tama F, Brooks III CL (2002) The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. J Mol Biol 318:733–747

    Article  PubMed  CAS  Google Scholar 

  • Tama F, Brooks III CL (2004) Diversity and identity of mechanical properties of icosahedral viral capsids studied with elastic network normal mode analysis. J Mol Biol 345: 299–314

    Article  CAS  Google Scholar 

  • Taylor WR (2000) A deeply knotted protein structure and how it might fold. Nature 406:916–919

    Article  PubMed  CAS  Google Scholar 

  • Taylor WR, Lin K (2003) Protein knots – a tangled problem. Nature 421:25–25

    Article  PubMed  CAS  Google Scholar 

  • Taylor WR (2007) Protein knots and fold complexity: some new twists. Comp Biol and Chem 31:151–162

    Article  CAS  Google Scholar 

  • Thompson D (2007) Free energy balance predicates dendrimer binding multivalency at molecular printboards. Langmuir 23:8441–8451

    Article  PubMed  CAS  Google Scholar 

  • Tozzini V, Trylska J, Chang C, McCammon JA (2007) Flap opening dynamics in HIV-1 protease explored with a coarse-grained model. J Struct Biol 157:606–615

    Article  PubMed  CAS  Google Scholar 

  • Tsai J, Taylor R, Chothia, C Gerstein M (1999) The packing density in proteins: standard radii and volumes. J Mol Biol 290:253–266

    Article  PubMed  CAS  Google Scholar 

  • Valbuena A, Oroz J, Hervas R, Vera AM, Rodriguez D. Mendez M, Sulkowska JI, Cieplak M, Carrion-Vazquez M (2009) On the remarkable mechanostability of scaffoldings and the mechanical clamp motif. Proc Natl Acad Sci USA 106:13791–13796

    Article  PubMed  CAS  Google Scholar 

  • Veitshans T, Klimov D, Thirumalai D (1997) Protein folding kinetics: time scales, pathways and energy landscapes in terms of sequence-dependent properties. Fold Des 2:1–22

    Article  PubMed  CAS  Google Scholar 

  • Virnau P, Kantor Y, Kardar M (2005) Knots in globule and Coll phases of a model polyethylene. J Am Chem Soc 127:15102

    Article  PubMed  CAS  Google Scholar 

  • Virnau P, Mirny LA, Kardar M (2006) Intricate knots in proteins: function and evolution. PLoS Comp Biol 2:1074–1079

    Article  CAS  Google Scholar 

  • Vliegenthart GA, Gompper G (2006) Mechanical deformation of spherical viruses with icosahedral symmetry. Biophys J 91:834–839

    Article  PubMed  CAS  Google Scholar 

  • Wagner JR, Brunzelle JS, Forest KT, Vierstra RD (2005) A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438:325–331

    Article  PubMed  CAS  Google Scholar 

  • Wallin S, Zeldovich KB, Shakhnovich EI (2007) The folding mechanics of a knotted protein. J Mol Biol 368:884–893

    Article  PubMed  CAS  Google Scholar 

  • Wereszczynski J, Andricioaei I (2006) On structural transitions, thermodynamic equilibrium, and the phase diagram of DNA and RNA duplexes under torque and tension, Proc Natl Acad Sci USA 103:16200–16205

    Article  PubMed  CAS  Google Scholar 

  • Wojciechowski M, Cieplak M (2007) Coarse-grained modelling of pressure related effects in staphylococcal nuclease and ubiquitin. J Phys Cond Matter 19:285218

    Article  CAS  Google Scholar 

  • Yamakawa H (1970) Transport properties of polymer chains in dilute solutions. Hydrodynamic interaction. J Chem Phys 53:436–443

    Article  CAS  Google Scholar 

  • Yang G, Cecconi C, Baase, WA, Vetter IR, Breyer WA, Haack JA, Matthews BW, Dahlquist FW, Bustamante C (2000) Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proc Natl Acad Sci USA 97:139–144

    Article  PubMed  CAS  Google Scholar 

  • Zamyatin AA (1972) Protein volume in solution. Prog Biophys Mol Biol 24:107–123

    Article  Google Scholar 

  • Zink M, Grubmueller H (2009) Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. Biophys J 96:1350–1363

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work summarizes a decade of research performed with a group of collaborators.

In particular with J.R. Banavar, M. Carrion-Vazquez, S. Filipek, T.X. Hoang, H. Janovjak, A. Maritan, P. Marszałek, S. Niewieczerzał, A. Pastore, M.O. Robbins, M. Sikora, K. Staroń, P. Sułkowski, O. Szklarczyk, P. Szymczak, D. Thompson, and M. Wojciechowski. We appreciate S. Niewieczerzał’s help in preparation of the first three figures displayed here. This work has been supported by the grant N N202 0852 33 from the Ministry of Science and Higher Education in Poland, by the EC FUNMOL project under FP7-NMP-2007-SMALL-1, and by the European Union within European Regional Development Fund, through grant Innovative Economy (POIG.01.01.02-00-008/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Cieplak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cieplak, M., Sułkowska, J.I. (2011). Structure-Based Models of Biomolecules: Stretching of Proteins, Dynamics of Knots, Hydrodynamic Effects, and Indentation of Virus Capsids. In: Kolinski, A. (eds) Multiscale Approaches to Protein Modeling. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6889-0_8

Download citation

Publish with us

Policies and ethics