Skip to main content

Sperm Chromatin Structure Assay (SCSA®): 30 Years of Experience with the SCSA®

  • Chapter
  • First Online:
Sperm Chromatin

Abstract

The SCSA® is one of the most widely utilized tests of sperm DNA damage. There are now a number of commercial kits available for testing of sperm DNA fragmentation in which great variations of clinical thresholds exist both within the same test and between tests. This presents a real problem for the clinics in providing a correct diagnosis and prognosis to patients. The greatest utility of the SCSA® has been to suggest when the %DFI is >25% to do changes in lifestyle and/or medical intervention to reduce this value. In addition, such couples should avoid spending time in unsuccessful IUI treatment but instead move on to IVF and preferably ICSI for the greatest success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bjorndahl L, Mortimer D, Barratt C, et al. A practical guide to basic laboratory andrology. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  2. Kametsky LA, Melamed MR. Spectrophotometer: spectrophotometer cell sorter. Science. 1967;156:1364–5.

    Article  Google Scholar 

  3. Darzynkiewicz Z, Traganos F, Sharpless T, et al. Thermal denaturation of DNA in situ as studied by acridine orange staining and automated cytofluorometry. Exp Cell Res. 1975;90:411.

    Article  PubMed  CAS  Google Scholar 

  4. Evenson DP, Darzynkiewicz Z, Melamed MR. Relation of mammalian sperm chromatin heterogeneity to fertility. Science. 1980;240:131–1133.

    Article  Google Scholar 

  5. Evenson DP, Higgins PH, Grueneberg D, et al. Flow cytometric analysis of mouse spermatogenic function following exposure to ethylnitrosourea. Cytometry. 1985;6:238–53.

    Article  PubMed  CAS  Google Scholar 

  6. Evenson DP, Tritle D. Platform Presentation Abstract: “Characterization of SCSA Resolved Sperm Populations by Comet Assay and Image Analysis”. IFFS 8th World Congress on Fertility and Sterility, Palais des congres de Montreal, Montreal, Quebec Canada. 2004; May 23/28.

    Google Scholar 

  7. Evenson D, Witkin S, de Harven E, et al. Ultrastructure of partially decondensed human spermatozoal chromatin. Ultrastructure.1978;63:178–87.

    Google Scholar 

  8. Evenson D, Darzynkiewicz Z, Melamed M. Comparison of human and mouse chromatin structure by flow cytometry. Chromosoma. 1980;78:225–38.

    Article  PubMed  CAS  Google Scholar 

  9. Evenson DP, Jost LK, Varner DD. Stallion sperm nuclear protamine -SH status and susceptibility to DNA denaturation are not strongly correlated. J Reprod Fertility Suppl. 2000;56:401–6.

    Google Scholar 

  10. Love CC, Kenny RM. Scrotal Heat stress induces altered sperm chromatin structure associated with a decrease in protamine disulfide bonding in the stallion. Biol Reprod. 1999;60:615–20.

    Article  PubMed  CAS  Google Scholar 

  11. Evenson DP, Jost LK, Corzett M, et al. Characteristics of human sperm chromatin structure following an ­episode of influenza and high fever: a case study. J Androl. 2001;21:739–46.

    Google Scholar 

  12. Jeffay SC, Strader LF, Buus RM, et al. Relationships among semen endpoints used as indicators of sperm nuclear integrity. Am Soc Androl. Abstract. 2006.

    Google Scholar 

  13. Gorczyca W, Gong J, Darzynkiewicz Z. Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translational assays. Cancer Res. 1993;53:1945–51.

    PubMed  CAS  Google Scholar 

  14. Sharma RK, Sabenegh E, Mahfouz R, et al. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010;76:1380–86.

    Article  PubMed  Google Scholar 

  15. Sailer BL, Jost LK, Evenson DP. Mammalian sperm DNA susceptibility to in situ denaturation associated with the presence of DNA strand breaks as measured by the terminal deoxynucleotidyl transferase assay. J Andrology. 1995;16:80–7.

    CAS  Google Scholar 

  16. Evenson DP, Baer RK, Jost LK. Long term effects of triethylenemelamine exposure on mouse testis cells and sperm chromatin structure assayed by flowcytometry. Environ Mol Mutagen. 1989;14:79–89.

    Article  PubMed  CAS  Google Scholar 

  17. Sailer BL, Jost LK, Erickson KR, et al. Effects of X-ray irradiation on mouse testicular cells and sperm chromatin structure. Environ Mol Mutagen. 1995;25:23–30.

    Article  PubMed  CAS  Google Scholar 

  18. Evenson DP, Jost L, Baer R. Effect of methyl methanesulfonate on mouse sperm chromatin structure and testicular cell kinetics. Environ Mol Mutagen. 1993;21:144–53.

    Article  PubMed  CAS  Google Scholar 

  19. Sega GA, Owens JG. Methylation of DNA and protamine by methyl methane sulfonate in the germ cells of male mice. Mutat Res. 1983;111:227–44.

    Article  PubMed  CAS  Google Scholar 

  20. Evenson DP, Jost LK, Gandy JG. Glutathione depletion potentiates ethyl methanesulfonate-induced susceptibility of rat sperm DNA denaturation in situ. Reprod Toxicol. 1993;7:297–304.

    Article  PubMed  CAS  Google Scholar 

  21. Sanchez-Pena LC, Reyes BE, Lopez-Carrillo L, et al. Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers. Toxicol Appl Pharmacol. 2004;196:108–13.

    Article  PubMed  CAS  Google Scholar 

  22. Rubes J, Selevan SG, Evenson DP, et al. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod. 2005;20:2776–83.

    Article  PubMed  CAS  Google Scholar 

  23. Evenson DP, Jost L, Baer R, et al. Individuality of DNA denaturation patterns in human sperm as measured by the sperm chromatin structure assay. Reprod Toxicol. 1991;5:115–25.

    Article  PubMed  CAS  Google Scholar 

  24. Ballachey BE, Hohenboken WD, Evenson DP. Heterogeneity of sperm nuclear chromatin structure and its relationship to fertility of bulls. Biol Reprod. 1987;36:915–25.

    Article  PubMed  CAS  Google Scholar 

  25. Ballachey BE, Saacke RG, Evenson DP. The sperm chromatin structure assay: relationship with alternate tests of sperm quality and heterospermic performance of bulls. J Androl. 1988;9:l09–115.

    Google Scholar 

  26. Didion B, Kasperson K, Wixon R, et al. Boar fertility and sperm chromatin structure status: a retrospective report. J Androl. 2009;30:655–60.

    Article  PubMed  Google Scholar 

  27. Ahmadi A. Ng S-C Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool. 1999;284:696–704.

    Article  PubMed  CAS  Google Scholar 

  28. Boe-Hansen GB, Christensen P, Vibjerg D, et al. Sperm chromatin structure integrity in liquid stored boar semen and its relationships with field fertility. Theriogenology. 2008;69:728–36.

    Article  PubMed  CAS  Google Scholar 

  29. Evenson DP, Jost LK, Zinaman MJ, et al. Utility of the sperm chromatin structure assay (SCSA) as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14(4):1039–49.

    Article  PubMed  CAS  Google Scholar 

  30. Spano M, Bonde J, Hjollund HI, et al. Sperm chromatin damage impairs human fertility. Fertil Steril. 2000;73:43–50.

    Article  PubMed  CAS  Google Scholar 

  31. Giwercman A, Lindstedt L, Larsson M, et al. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study. Int J Androl. 2010;33:221–7.

    Article  Google Scholar 

  32. Larson KL, DeJonge CJ, Barnes AM, et al. Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod. 2000;15(8):1717–22.

    Article  PubMed  CAS  Google Scholar 

  33. Larson-Cook K, Brannian JD, Hansen KA, et al. Relationship between assisted reproductive techniques (ART) outcomes and DNA fragmentation (DFI) as measured by the sperm chromatin structure assay (SCSA). Fertil Steril. 2003;80:895–902.

    Article  PubMed  Google Scholar 

  34. Boe-Hansen GB, Ersboll AK, Greve T, Christensen P. Increasing storage time of extended boar semen reduces sperm DNA integrity. Theriogenology. 2005;26(3):360–8.

    Google Scholar 

  35. Boe-Hansen GB, Fedder J, Ersboll AK, et al. The sperm chromatin structure assay as a diagnostic tool in the human fertility clinic. Hum Reprod. 2006;21(6):1576–82.

    Article  PubMed  Google Scholar 

  36. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA®) related to blastocyst rate, pregnancy rate and spontaneous abortion in IVF and ICSI cycles. Fertil Steril. 2004;81:1289–95.

    Article  PubMed  Google Scholar 

  37. Bungum M, Humaidan P, Axmon A, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22:174–9.

    Article  PubMed  CAS  Google Scholar 

  38. Greco E, Scarselli F, Iacobelli M, et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20:226–30.

    Article  PubMed  Google Scholar 

  39. Werthman P, Boostanfar R, Chang W. Use of testicular sperm/intracytoplasmic sperm injection yields high pregnancy rates in couples who failed multiple in vitro fertilization cycles owing to high levels of sperm DNA Fragmentation. 2010 Pacific Coast Reproductive Society Abstract.

    Google Scholar 

  40. Carrell DT, Liu L, Peterson CM, et al. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch Androl. 2003;49:49–55.

    Article  PubMed  CAS  Google Scholar 

  41. Saleh RA, Agarwal A, Nada EA, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and malefactor infertility. Fertil Steril. 2003;79: 1597–605.

    Article  PubMed  Google Scholar 

  42. Wyrobek AJ, Eskenazi B, Young S, et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci USA. 2006;103:9601–6.

    Article  PubMed  CAS  Google Scholar 

  43. Rubes J, Selevan SG, Sram RJ, et al. GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res. 2007;625:20–8.

    Article  PubMed  CAS  Google Scholar 

  44. Chen SS, Huang WJ, Chang LS, et al. 8-hydroxy-20-deoxyguanosine in leukocyte DNA of spermatic vein as a biomarker of oxidative stress in patients with varicocele. J Urol. 2004;172:1239–40.

    Article  Google Scholar 

  45. Zini A, Blumenfeld A, Libman J. et al; Beneficial effect of microsurgical varicocelectomy on human sperm DNA integrity. Hum Reprod. 2005;20:1018–21.

    Article  PubMed  CAS  Google Scholar 

  46. Yamamoto M, Hibi H, Tsuji Y, et al. The effect of varicocele ligation on oocyte fertilization and pregnancy after failure of fertilization in in vitro fertilization–embryo transfer. 1994;40:683–7.

    Google Scholar 

  47. Werthman P, Wixon R, Kasperson K, et al. Significant decreases in sperm deoxyribonucleic acid fragmentation after varicocelectomy. Fertil Steril. 2008;90: 1880–4.

    Article  Google Scholar 

  48. Evenson DP, Klein FA, Whitmore WF, et al. Flow cytometric evaluation of sperm from patients with testicular carcinoma. J Urol. 1984;132:1220–25.

    PubMed  CAS  Google Scholar 

  49. Fossa SD, De Angelis P, Kraggerud SM. Predication of post treatment spermatogenesis in patients with testicular cancer by flow cytometric sperm chromatin structure assay. Cytometry (Communications in Clinical Cytometry). 1997;30:192–6.

    Article  PubMed  CAS  Google Scholar 

  50. Romerius P, Stahl O, Moell C, et al. Sperm DNA integrity in men treated for childhood cancer. Clin Cancer Res. 2010;16:3843–7.

    Article  PubMed  Google Scholar 

  51. Karabinus DS, Vogler CJ, Saacke RG, et al. Chromatin structural changes in sperm after scrotal insulation of holstein bulls. J Androl. 1997;18:549–55.

    PubMed  CAS  Google Scholar 

  52. Sailer B, Sarkar LJ, Bjordahl JA, et al. Effects of heat stress on mouse testicular cells and sperm chromatin structure. J Androl. 1997;18:294–301.

    PubMed  CAS  Google Scholar 

  53. Evenson DP, Jost LK, Corzett M, Balhorn R. Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J Androl. 2000;21:739–46.

    PubMed  CAS  Google Scholar 

  54. Tanrikut C, Feldman AS, Altemus M, et al. Adverse effect of paroxetine on sperm. Fertil Steril. 2010;94:1021–6.

    Article  PubMed  CAS  Google Scholar 

  55. Agbaje IM, Rogers DA, McVicar CM, McClure N, Atkinson AB, Mallidis C, et al. Insulin dependant diabetes mellitus: implications for male reproductive function. Hum Reprod. 2007;22:1–7.

    Article  Google Scholar 

  56. Pitteloud N, Hardin M, Dwyer AA, et al. Increasing insulin resistance is associated with decrease in Leydig cell testosterone secretion in men. J Clin Endrocrinol Metab. 2005;90:2636–41.

    Article  CAS  Google Scholar 

  57. Koçak I et al. Relationship between seminal plasma interleukin-6 and tumor necrosis factor alpha levels with semen parameters in fertile and infertile men. Urol Res. 2002;30:263–7.

    Article  PubMed  Google Scholar 

  58. Perdichizzi A et al. Effects of tumour necrosis factor-alpha on human sperm motility and apoptosis. J Clin Immunol. 2007;27(2):152–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald P. Evenson PhD, HCLD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Evenson, D.P. (2011). Sperm Chromatin Structure Assay (SCSA®): 30 Years of Experience with the SCSA® . In: Zini, A., Agarwal, A. (eds) Sperm Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6857-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6857-9_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1781-2

  • Online ISBN: 978-1-4419-6857-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics