Waldenstrom’s Macroglobulinemia

Chapter

Abstract

Waldenstrom’s macroglobulinemia is an indolent B-cell malignancy defined by a lymphoplasmacytic infiltration in the bone marrow or in other organs including lymph nodes, liver, and spleen, as well as a monoclonal immunoglobulin M protein (IgM) in the serum. The infiltration of the bone marrow and extramedullary sites by malignant B lymphocytes, as well as elevated IgM levels, typically leads to symptoms associated with this disease. While Waldenstrom’s macroglobulinemia typically follows an indolent course, the disease remains incurable with current therapy. Due to the heterogeneous clinical presentation, the presence of multiple comorbidities and competing causes of death, the decision to treat patients as well as the choice of treatment can be complex as many patients do not require treatment initially. When patients do require therapy, it is important to select therapies that do not limit future treatment options. To provide a simple risk-adapted approach to managing patients with Waldenstrom’s macroglobulinemia, a rational approach to this disease is presented.

Keywords

Waldenstrom’s macroglobulinemia Lymphoplasmacytic lymphoma Igm MYD88 MGUS 

References

  1. 1.
    Owen RG, Treon SP, Al-Katib A, et al. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the second international workshop on Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30:110–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Dimopoulos MA, Kyle RA, Anagnostopoulos A, Treon SP. Diagnosis and management of Waldenstrom’s macroglobulinemia. J Clin Oncol. 2005;23:1564–77.CrossRefPubMedGoogle Scholar
  3. 3.
    Dimopoulos MA, Panayiotidis P, Moulopoulos LA, Sfikakis P, Dalakas M. Waldenstrom’s macroglobulinemia: clinical features, complications, and management. J Clin Oncol. 2000;18:214–26.PubMedGoogle Scholar
  4. 4.
    Vijay A, Gertz MA. Waldenstrom macroglobulinemia. Blood. 2007;109:5096–103.CrossRefPubMedGoogle Scholar
  5. 5.
    Kastritis E, Kyrtsonis MC, Hatjiharissi E, et al. No significant improvement in the outcome of patients with Waldenström’s macroglobulinemia treated over the last 25 years. Am J Hematol. 2011;86(6):479–83.CrossRefPubMedGoogle Scholar
  6. 6.
    Gertz MA, Anagnostopoulos A, Anderson K, et al. Treatment recommendations in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the second international workshop on Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30:121–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Treon SP, Gertz MA, Dimopoulos M, et al. Update on treatment recommendations from the third international workshop on Waldenstrom’s macroglobulinemia. Blood. 2006;107:3442–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Dimopoulos MA, Gertz MA, Kastritis E, et al. Update on treatment recommendations from the fourth international workshop on Waldenstrom’s macroglobulinemia. J Clin Oncol. 2009;27:120–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Herrinton LJ, Weiss NS. Incidence of Waldenstrom’s macroglobulinemia. Blood. 1993;82:3148–50.PubMedGoogle Scholar
  10. 10.
    Groves FD, Travis LB, Devesa SS, Ries LA, Fraumeni JF Jr. Waldenstrom’s macroglobulinemia: incidence patterns in the United States, 1988–1994. Cancer. 1998;82:1078–81.CrossRefPubMedGoogle Scholar
  11. 11.
    Benjamin M, Reddy S, Brawley OW. Myeloma and race: a review of the literature. Cancer Metastasis Rev. 2003;22:87–93.CrossRefPubMedGoogle Scholar
  12. 12.
    Kyle RA, Therneau TM, Rajkumar SV, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346(8):564–9.CrossRefPubMedGoogle Scholar
  13. 13.
    McMaster ML, Goldin LR, Bai Y, et al. Genome wide linkage screen for Waldenstrom macroglobulinemia susceptibility loci in high-risk families. Am J Hum Genet. 2006;79(4):695–701.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kyle RA, Therneau TM, Rajkumar SV, et al. Long-term follow-up of IgM monoclonal gammopathy of undetermined significance. Blood. 2003;102(10):3759–64.CrossRefPubMedGoogle Scholar
  15. 15.
    Kyle RA, Therneau TM, Rajkumar SV, et al. Long-term follow-up of IgM monoclonal gammopathy of undetermined significance. Semin Oncol. 2003;30(2):169–71.CrossRefPubMedGoogle Scholar
  16. 16.
    Treon SP, Hunter ZR, Aggarwal A, et al. Characterization of familial Waldenstrom’s macroglobulinemia. Ann Oncol. 2006;17(3):488–94.CrossRefPubMedGoogle Scholar
  17. 17.
    McMaster ML. Familial Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30(2):146–52.CrossRefPubMedGoogle Scholar
  18. 18.
    Royer RH, Koshiol J, Giambarresi TR, et al. Differential characteristics of Waldenstrom macroglobulinemia according to patterns of familial aggregation. Blood. 2010;115(22):4464–71.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Aoki H, Takishita M, Kosaka M, Saito S. Frequent somatic mutations in D and/or JH segments of Ig gene in Waldenstrom’s macroglobulinemia and chronic lymphocytic leukemia (CLL) with Richter’s syndrome but not in common CLL. Blood. 1995;85(7):1913–9.PubMedGoogle Scholar
  20. 20.
    Wagner SD, Martinelli V, Luzzatto L. Similar patterns of V kappa gene usage but different degrees of somatic mutation in hairy cell leukemia, prolymphocytic leukemia, Waldenstrom’s macroglobulinemia, and myeloma. Blood. 1994;83(12):3647–53.PubMedGoogle Scholar
  21. 21.
    Martin-Jimenez P, Garcia-Sanz R, Balanzategui A, et al. Molecular characterization of heavy chain immunoglobulin gene rearrangements in Waldenstrom’s macroglobulinemia and IgM monoclonal gammopathy of undetermined significance. Haematologica. 2007;92(5):635–42.CrossRefPubMedGoogle Scholar
  22. 22.
    Grass S, Preuss KD, Wikowicz A, et al. Hyperphosphorylated paratarg-7: a new molecularly defined risk factor for monoclonal gammopathy of undetermined significance of the IgM type and Waldenstrom macroglobulinemia. Blood. 2011;117(10):2918–23.CrossRefPubMedGoogle Scholar
  23. 23.
    Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Vol 2. 4th ed. Geneva, Switzerland: International Agency for Research on Cancer (IARC); 2008. p. 441.Google Scholar
  24. 24.
    Kyle RA, Rajkumar SV. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia. 2009;23:3–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Morice WG, Chen D, Kurtin PJ, Hanson CA, McPhail ED. Novel immunophenotypic features of marrow lymphoplasmacytic lymphoma and correlation with Waldenstrom’s macroglobulinemia. Mod Pathol. 2009;22:807–16.PubMedGoogle Scholar
  26. 26.
    Mansoor A, Medeiros LJ, Weber DM, et al. Cytogenetic findings in lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. Chromosomal abnormalities are associated with the polymorphous subtype and an aggressive clinical course. Am J Clin Pathol. 2001;116(4):543–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Schop RF, Kuehl WM, Van Wier SA, et al. Waldenstrom macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood. 2002;100(8):2996–3001.CrossRefPubMedGoogle Scholar
  28. 28.
    Schop RF, Van Wier SA, Xu R, et al. 6q deletion discriminates Waldenstrom macroglobulinemia from IgM monoclonal gammopathy of undetermined significance. Cancer Genet Cytogenet. 2006;169(2):150–3.CrossRefPubMedGoogle Scholar
  29. 29.
    Braggio E, Dogan A, Keats JJ, et al. Genomic analysis of marginal zone and lymphoplasmacytic lymphomas identified common and disease-specific abnormalities. Mod Pathol. 2012;25(5):651–60.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ferreira BI, Garcia JF, Suela J, et al. Comparative genome profiling across subtypes of lowgrade B-cell lymphoma identifies type-specific and common aberrations that target genes with a role in B-cell neoplasia. Haematologica. 2008;93(5):670–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Rinaldi A, Mian M, Chigrinova E, et al. Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome. Blood. 2011;117(5):1595–604.CrossRefPubMedGoogle Scholar
  32. 32.
    Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33.CrossRefPubMedGoogle Scholar
  34. 34.
    Chng WJ, Schop RF, Price-Troska T, et al. Gene expression profiling of Waldenstrom macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma. Blood. 2006;108(8):2755–63.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gutierrez NC, Ocio EM, de Las Rivas J, et al. Gene expression profiling of B lymphocytes and plasma cells from Waldenstrom’s macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals. Leukemia. 2007;21(3):541–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005;41(16):2502–12.CrossRefPubMedGoogle Scholar
  37. 37.
    Hodge LS, Ansell SM. Jak/Stat pathway in Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2011;11(1):112–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Elsawa SF, Novak AJ, Ziesmer SC, et al. Comprehensive analysis of tumor microenvironment cytokines in Waldenstrom macroglobulinemia identifies CCL5 as a novel modulator of IL-6 activity. Blood. 2011;118(20):5540–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Garcia-Sanz R, Montoto S, Torrequebrada A, et al. Waldenstrom macroglobulinemia: presenting features and outcome in a series with 217 cases. Br J Haematol. 2001;115:575–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Dimopoulos MA, Panayiotidis P, Moulopoulos LA, Sfikakis P, Dalakas M. Waldenstrom’s macroglobulinemia: clinical features, complications, and management. J Clin Oncol. 2000;18(1):214–26.PubMedGoogle Scholar
  41. 41.
    Stone MJPV. Pathophysiology of Waldenstrom’s macroglobulinemia. Haematologica. 2010;95:359–64.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Morel P, Duhamel A, Gobbi P, et al. International prognostic scoring system for Waldenstrom macroglobulinemia. Blood. 2009;113:4163–70.CrossRefPubMedGoogle Scholar
  43. 43.
    Kyle RA, Treon SP, Alexanian R, et al. Prognostic markers and criteria to initiate therapy in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol. 2003;30:116–20.CrossRefPubMedGoogle Scholar
  44. 44.
    Ansell SM, Kyle RA, Reeder CB, et al. Diagnosis and management of Waldenstrom macroglobulinemia: mayo stratification of macroglobulinemia and risk-adapted therapy (mSMART) guidelines. Mayo Clin Proc. 2010;85:824–33.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Treon SP, Gertz MA, Dimopoulos M, et al. Update on treatment recommendations from the Third International Workshop on Waldenstrom’s macroglobulinemia. Blood. 2006;107:3442–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Tedeschi A, Benevolo G, Varettoni M, et al. Fludarabine plus cyclophosphamide and rituximab in Waldenstrom macroglobulinemia: an effective but myelosuppressive regimen to be offered to patients with advanced disease. Cancer. 2012;118:434–43.CrossRefPubMedGoogle Scholar
  47. 47.
    Treon SP, Branagan AR, Ioakimidis L, et al. Long-term outcomes to fludarabine and rituximab in Waldenstrom macroglobulinemia. Blood. 2009;113:3673–8.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Leleu X, Soumerai J, Roccaro A, et al. Increased incidence of transformation and myelodysplasia/acute leukemia in patients with Waldenstrom macroglobulinemia treated with nucleoside analogs. J Clin Oncol. 2009;27:250–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Annibali O, Petrucci MT, Martini V, et al. Treatment of 72 newly diagnosed Waldenstrom macroglobulinemia cases with oral melphalan, cyclophosphamide, and prednisone: results and cost analysis. Cancer. 2005;103:582–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Petrucci MT, Avvisati G, Tribalto M, Giovangrossi P, Mandelli F. Waldenstrom’s macroglobulinaemia: results of a combined oral treatment in 34 newly diagnosed patients. J Intern Med. 1989;226:443–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Leblond V, Levy V, Maloisel F, et al. Multicenter, randomized comparative trial of fludarabine and the combination of cyclophosphamide-doxorubicin-prednisone in 92 patients with Waldenstrom macroglobulinemia in first relapse or with primary refractory disease. Blood. 2001;98:2640–4.CrossRefPubMedGoogle Scholar
  52. 52.
    Tamburini J, Levy V, Chaleteix C, Fermand JP, Delmer A, Stalniewicz L, et al. Fludarabine plus cyclophosphamide in Waldenstrom’s macroglobulinemia: results in 49 patients. Leukemia. 2005;19:1831–4.CrossRefPubMedGoogle Scholar
  53. 53.
    Buske C, Hoster E, Dreyling M, et al. The addition of rituximab to front-line therapy with CHOP (R-CHOP) results in a higher response rate and longer time to treatment failure in patients with lymphoplasmacytic lymphoma: results of a randomized trial of the German Low-Grade Lymphoma Study Group (GLSG). Leukemia. 2009;23:153–61.CrossRefPubMedGoogle Scholar
  54. 54.
    Dimopoulos MA, Anagnostopoulos A, Kyrtsonis MC, et al. Primary treatment of Waldenstrom macroglobulinemia with dexamethasone, rituximab, and cyclophosphamide. J Clin Oncol. 2007;25:3344–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Treon SP, Hanzis C, Tripsas C, et al. Bendamustine therapy in patients with relapsed or refractory Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2011;11:133–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Rummel MJ, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381(9873):1203–10.CrossRefPubMedGoogle Scholar
  57. 57.
    Treon SP, Ioakimidis L, Soumerai JD, et al. Primary therapy of Waldenstrom macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J Clin Oncol. 2009;27:3830–5.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ghobrial IM, Xie W, Padmanabhan S, et al. Phase II trial of weekly bortezomib in combination with rituximab in untreated patients with Waldenstrom Macroglobulinemia. Am J Hematol. 2010;85:670–4.CrossRefPubMedGoogle Scholar
  59. 59.
    Gertz MA, Rue M, Blood E, Kaminer LS, Vesole DH, Greipp PR. Multicenter phase 2 trial of rituximab for Waldenstrom macroglobulinemia (WM): an Eastern Cooperative Oncology Group Study (E3A98). Leuk Lymphoma. 2004;45:2047–55.CrossRefPubMedGoogle Scholar
  60. 60.
    Ghobrial IM, Fonseca R, Greipp PR, et al. Initial immunoglobulin M ‘flare’ after rituximab therapy in patients diagnosed with Waldenstrom macroglobulinemia. Cancer. 2004;101:2593–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Kastritis E, Kyrtsonis M-C, Hatjiharissi E, et al. No significant improvement in the outcome of patients with Waldenström’s macroglobulinemia treated over the last 25 years. Am J Hematol. 2011;86:479–83.CrossRefPubMedGoogle Scholar
  62. 62.
    Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98:210–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Treon SP, Soumerai JD, Branagan AR, et al. Thalidomide and rituximab in Waldenstrom macroglobulinemia. Blood. 2008;112:4452–7.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Treon SP, Soumerai JD, Branagan AR, et al. Lenalidomide and rituximab in Waldenstrom’s macroglobulinemia. Clin Cancer Res. 2009;15:355–60.CrossRefPubMedGoogle Scholar
  65. 65.
    Leleu X, Jia X, Runnels J, et al. The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood. 2007;110:4417–26.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ghobrial IM, Gertz M, Laplant B, et al. Phase II trial of the oral mammalian target of rapamycin inhibitor everolimus in relapsed or refractory Waldenstrom macroglobulinemia. J Clin Oncol. 2010;28:1408–14.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ghobrial IM, Poon T, Rourke M, et al. Phase II trial of single agent pabinostat (LBH589) in relapsed or relapsed/refractory Waldenstrom macroglobulinemia. San Diego: American Society of Hematology; 2010.Google Scholar
  68. 68.
    Cheson BD. Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. J Clin Oncol. 2010;28:3525–30.CrossRefPubMedGoogle Scholar
  69. 69.
    Furman RR, Eradat H, DiRienzo CG, et al. A phase II trial of ofatumumab in subjects with Waldenstroms macroblobulinemia. San Diego: American Society for Hematology; 2011.Google Scholar
  70. 70.
    Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N Engl J Med. 2015;372(15):1430–40.CrossRefPubMedGoogle Scholar
  71. 71.
    Kyriakou C, Canals C, Sibon D, et al. High-dose therapy and autologous stem-cell transplantation in Waldenstrom macroglobulinemia: the lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol. 2010;28:2227–32.CrossRefPubMedGoogle Scholar
  72. 72.
    Kyriakou C, Canals C, Cornelissen JJ, et al. Allogeneic stem-cell transplantation in patients with Waldenstrom macroglobulinemia: report from the lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol. 2010;28:4926–34.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Division of Hematology, Department of MedicineMayo ClinicRochesterUSA

Personalised recommendations