Skip to main content

Ray Region: X-rays, Alpha Particles, Gamma-rays, Neutrons, UV

  • Chapter
  • First Online:
Remote Sensing Tools for Exploration

Abstract

Remote measurements of the high energy spectra generated from high energy interactions on planetary surfaces with minimal atmospheres are crucial in determination of a planet’s bulk composition and major geochemical provinces, particularly when combined with in situ surface or sample measurements. Derivable from such measurements are models for planetary origin and geochemical differentiation as well as for the exterior (bombardment) and interior (volcano-tectonic activity) driven processes which shape major terrane and feature formation on planetary surfaces. Inferences about composition can be drawn from visible and infrared data in the form of major mineral components, providing constraints on models of origin. Elemental abundance maps can be derived indirectly from such data, when assumptions are made about elemental abundance ratios in major minerals, but only nuclear and near nuclear particle interactions produce characteristic transitions in the ray region which can be measured to provide direct elemental abundances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, I. and J. Trombka, Geochemical Exploration of the Moon and Planets, Springer, New York, 1970.

    Google Scholar 

  • Adler, I., J. Trombka, J. Gerrard, R. Schmadebeck, P. Lowman, H. Blodgett, L. Yin, E. Eller, R. Lamothe, X-ray fluorescence experiment, X-641-71-421, 1971.

    Google Scholar 

  • Adler, I. and J. Trombka, Orbital chemistry: Lunar surface analysis from X-ray and Gamma-ray remote sensing experiments, Phys. Chem. Earth, X, 17-43, 1977.

    Google Scholar 

  • Adler, I. J. Trombka, J. Gerard, R. Schmadebeck, P. Lowman, H. Blodget, L. Yin, E. Eller, R. Lamothe, P. Gorenstein, P. Bjorkholm, B. Harris, H. Gursky, The Apollo 15 X-ray Fluorescence Experiment, X-641-72-57, 1972.

    Google Scholar 

  • Adler, I., J. Trombka, L. Yin, P. Gorenstein, P. Bjorkholm, J. Gerald, Lunar Composition from Apollo Orbital Measurements, X-641-72-351, 1972.

    Google Scholar 

  • Adler, I., J. Trombka, and L. Yin, Lunar composition from Apollo orbital measurements, in Photon and particle interactions with surfaces in space, Ed. R. Grard, Reidel Publishing CO., Holland, 501-513, 1973.

    Google Scholar 

  • Anders, E. and M. Ebihara, Solar system abundances of the elements, Geochim Cosmochim Acta, 46, 2363-2380, 1982.

    Google Scholar 

  • Andre, C.G., M. Bielefeld, E. Eliason, L. Soderblom, I. Adler, J. Philpotts, Lunar surface chemistry: A new imaging technique, Science, 197, 986, 1977.

    Google Scholar 

  • Armstrong, T., Calculation of the lunar photon albedo from galactic and solar proton bombardment, JGR, 77, 524-536, 1972.

    Google Scholar 

  • Arnold, J. A. Metzger, and R. Reedy, Computer generated maps of lunar composition from Gamma-ray data, Proc. Lun. Sci. Conf. 8th, 945-948, 1977.

    Google Scholar 

  • Arnold, J., W. Boynton, P. Englert, W. Feldman, A. Metzger, R. Reedy, S. Squyres, J. Trombka,

    Google Scholar 

  • H. Wanke, Scientific considerations in the design of the Mars Observer Gamma-ray spectrometer, AIP Conf. Proc. 186, Proc. CHERB, 453-467, 1989. Bard, S., Advanced passive radiator for spaceborne cryogenic cooling, J. Spacecraft Rockets, 21, 150-155, 1984.

    Google Scholar 

  • Bard, S., J. Stein, and S. Petrick, Advanced radiator cooler with angled shields, AIAA Progress in Astronautics and Aeronautics, Spacecraft radiative transfer and temperature control, 83, 249-258, 1982.

    Google Scholar 

  • Batchelor, R. and G. Morrison, Helium-3 Neutron Spectrometers, in Fast Neutron Physics, J. Marion and J. Fowler, Eds., Interscience Publications, New York, 417, 413-439, 1960.

    Google Scholar 

  • Berger, M. and S. Seltzer, Response functions for sodium iodide scintillation detectors, Nuclear Instrum Meth, 104, 317-332, 1972.

    Google Scholar 

  • Blake, D., Chemistry and Mineralogy (CheMin), MSL Science Corner, http://mslscicorner.jpl.nasa.gov/Instruments/CheMin/, visited 2009.

    Google Scholar 

  • Bielefeld, M., R. Reedy, A. Metzger, J. Trombka, and J. Arnold, Surface chemistry of selected lunar regions, Proc Lun Sci Conf 7th, 2661-2676, 1976.

    Google Scholar 

  • Bouwer, D., Intermediate-term epochs in solar soft X-ray emission, JGR, 88, 7823-7830, 1983.

    Google Scholar 

  • Boynton, W., L. Evans, R. Reedy, and J. Trombka, The Composition of Mars and Comets by Remote and In Situ Gamma Ray Spectroscopy, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, p. 395-412, 1993.

    Google Scholar 

  • Boynton, W., A. Sprague, S. Solomon, R. Starr, L. Evans, W. Feldman, J. Trombka, E. Rhodes, MESSENGER and the chemistry of Mercury’s Surface, Space Science Reviews, 131, 1-4, 85-104, 2007a.

    Google Scholar 

  • Boynton, W., G. Taylor, L. Evans, R. Reedy, R. Starr, D. James, K. Kerry, D Drake, K. Kim, R. Williams, M. Crombie, J. Dolm, V. Baker, A. Metzger, S. Karunatillake, J. Keller, H. New-son, J. Arnold, J. Bruckner, P. Englert, O. Gasnault, A. Sprague, I. Mitrofanov, S. Squyres, J. Trombka, L. D’Uston, H. Wanke, and D. Hamara, Concentration of H, Si,, Cl, K, Fe, and Th I the low and mid latitude regions of Mars, JGR Planets, 112, E12S99, doi:10.1029/2007JE002887., 1-15, 2007b.

    Google Scholar 

  • Briggs, D. and M. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, John Wiley and Sons, 1983.

    Google Scholar 

  • Bruckner, J., H. Wanke, and R. Reedy, Neutron-induced gamma-ray spectroscopy: simulations for chemical mapping of planetary surfaces, Proc Lun Plan Sci Conf 17th, JGR, 92, E603E616, 1987.

    Google Scholar 

  • Carpenter, B., M. Dagostino, and J. Yule, Computers in Activation analysis and Gamma-ray Spectroscopy, DOE Symposium Series 49, CONF-780421, NTIS, Springfield, VA. 879 pp, 1979.

    Google Scholar 

  • Clark, P.E., Correction, Correlation, and Theoretical Consideration of Lunar X-ray Fluorescence Intensity Ratios, U. MD. Dissertation, 1979.

    Google Scholar 

  • Clark, P.E. and I. Adler, Utilization of independent solar flux measurements to eliminate non-geochemical variation in X-ray fluorescence data, Proc. Lun. Plan. Sci. Conf. 9th, 3029-3036, 1978.

    Google Scholar 

  • Clark P.E., Eliason E., Andre C., Adler I.A new color correlation method applied to XRF Al/Si ratios and other lunar remote sensing data. Proc Lun Plan Sci Conf 9, 3029-3036, 1978.

    Google Scholar 

  • Clark P.E., Drake D., Reedy R. Lunar neutron flux as a function of typical rock compositions. LPS, 1735.pdf, 2002,

    Google Scholar 

  • Clark, P.E., S. Floyd, and J. Trombka, The effectiveness of the proportional counter as a solar X-ray monitory on the NEAR mission, IEEE CHERBS 1997 0-7803-4335-2/98, 1998.

    Google Scholar 

  • Clark, P.E., K. Gendreau, Z. Arzoumanian, Lunar In Situ Sample Screening and Site Characterization, NASA Lunar Science Forum, Mountain View, CA, 2008.

    Google Scholar 

  • Clark, P.E. and B.R. Hawke, Compositional variation in the Hadley Apennine region, Proc Lun Plan Sci Conf 12th, 727-749, 1981.

    Google Scholar 

  • Clark P.E., Hawke B.R. The relationship between geology and geochemistry in the Undarum/Spumans/Balmer region. EMP 38, 97-112, 1987.

    Google Scholar 

  • Clark, P.E., S. Joerg, R Dehon, Searching the Sinus Amoris: Using profiles of geological units, impact and volcanic features to characterize a major terrane interface on the Moon, EARTH, MOON, AND PLANETS 64, 165-185, 1994.

    Google Scholar 

  • Clark, P.E. and L. McFadden, New results and implications for lunar crustal iron distribution using sensor data fusion techniques, JGR Planets, 105, E2, 4291-4316, 2000.

    Google Scholar 

  • Clark, P.E. and J. Trombka, Remote X-ray spectrometry for NEAR and future missions: Modeling and analyzing X-ray production from source to surface, JGR Plan, 102, 16361-16384, 1997a.

    Google Scholar 

  • Clark, P.E. and J. Trombka, Remote X-ray fluorescence experiments for future missions to Mercury, Plan Space Sci, 45, 1, 57-65, 1997b.

    Google Scholar 

  • Coldwell, R. Iterative codes for fitting complete spectra, Nucl Instrum Meth A242, 455-461, 1986.

    Google Scholar 

  • Cromer, D. and J. Waber, Scattering Factors from relativistic Dirac-Slater wave functions, Acta Crystallog., 18, 104-109, 1965.

    Google Scholar 

  • Crosby, N., M. Aschwanden, and B. Dennis, Frequency distribution and correlations of solar X-ray flare parameters, Solar Phys, 143, 275-299, 1993.

    Google Scholar 

  • Davis. P., Iron and titanium distribution on the Moon from orbital gamma-ray spectrometry with implications for crustal evolutionary models, JGR Planets 85(B6), 3209-324, 1980.

    Google Scholar 

  • Donnelly, R. and D. Bouwer, SMS-GOES solar soft X-ray measurements Pars I and II, NOAA Tech Memo ERL SEL-56 and SEL-57, 1981.

    Google Scholar 

  • Drake, D., W. Feldman, B. Jakosky, Martian neutron leakage spectra, JGR, 93, 6353-6368, 1988.

    Google Scholar 

  • Dyer, C., J. Trombka, S. Seltzer, L. Evans, Calculation of radioactivity induced in Gamma-ray spectrometers during spaceflight, Nucl Instrum Meth, 173, 585-601, 1980.

    Google Scholar 

  • Economou, T. and A. Turkevich, Alpha Particle Instrument with Alpha, Proton, and X-ray Modes for Planetary Chemical Analyses, Nucl Instruments Methods, 134, 2, 391-400, 1976.

    Google Scholar 

  • Eliason, E., and L. Soderblom, An array processing system for lunar geochemical and geophysical data, proc Lun Sci Conf 8th, 1025-1033, 1977.

    Google Scholar 

  • Evans, L., R.Reedy, and J. Trombka, Introduction to Planetary Remote Sensing Gamma Ray Spectroscopy,in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, p. 167-198, 1993.

    Google Scholar 

  • Ellis, D., J. Schweitzer, and J. Ullo, Nuclear techniques for subsurface geology, Ann. Rev. Nucl. Part. Sci. 37, 213-241, 1987.

    Google Scholar 

  • Evans, L., R.Reedy, and J. Trombka, Introduction to Planetary Remote Sensing Gamma Ray Spectroscopy,in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, 167-198, 1993.

    Google Scholar 

  • Evans, L., J. Trombka, and W. Boynton, Elemental analysis of a comet nucleus by passive Gamma-ray spectroscopy from a penetrator, Proc Lun Plan Sci Conf 16th, JGR,91, D525532, 1986.

    Google Scholar 

  • Evans, E. and S. Squyres, Investigation of Martian H2O and CO2 via orbital gamma ray spectrometry, JGR, 92, 9153-9167, 1987.

    Google Scholar 

  • Feldman, W., D. Drake, R. Odell, F. Brinkley, R. Anderson, Gravitational effects on planetary neutron flux spectra, JGR, 94, 513-525, 1989.

    Google Scholar 

  • Feldman, W., W. Boynton, and D. Drake, Planetary Neutron Spectroscopy from Orbit, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and

    Google Scholar 

  • P.A.J. Englert, Cambridge U Press, p. 213-234, 1993.

    Google Scholar 

  • Feldman, W.C., S. Maurice, D. Lawrence, R. Little, S. Lawson, O. Gasnault, R. Wiens, B. Barraclough, R. Elphic, T. Prettyman, J. Steinberg, A. Binder, Evidence for water ice near the lunar poles, JGR Planets, 106, E10, 23231-23251, 2001.

    Google Scholar 

  • Feldman, W.C., T. Prettyman, S. Maurice, S. Nellis, R. Elphic, H. Funsten, O. Gasnault, D. Lawrence, J. Murphy, R. Tokar, D. Vaniman, Topographic control of hydrogen deposits at low latitudes to midlatitudes of Mars, JGR Planets, 110, E11, #E11009, 2005.

    Google Scholar 

  • Fichtel, C. and J. Trombka, Gamma Ray Astrophysics, New Insights into the Universe, NASA SP-453, 401 pp, 1981.

    Google Scholar 

  • Frentrop, A. and H. Sherman, Schlumberger tube for oil well logging, Nucleonics, 18, 72-74, 1960.

    Google Scholar 

  • Gasnault, O., W. Feldman, S. Maurice, I. Genetay, C. D’Uston, T. Prettyman, K. Moore, Composition from fast neutrons: Application to the Moon, GRL, 28, 19, pp. 3797-3800, 2001.

    Google Scholar 

  • Goldsten, J.O., et al., The MESSENGER Gamma-Ray and Neutron Spectrometer, Space Science

    Google Scholar 

  • Reviews, 131, 1-4, 339-391, 2007. Grande, M., B. Kelley, C. Howe, C. Perry, B. Swinyard, S. Dunkin, J. Huovelin, L. Alha, L. D’Uston, S. Maurice, O. Gasnault, S. Couturier-Doux, S. Barabash, K. Joy, I. Crawford, D.

    Google Scholar 

  • Lawrence, V. Fernandes, I. Casanova, M. Wieczorek, N. Thomas, U. Mall, B. Foing, D. Hughes, H. Alleyne, S. Russell, M. Grady, R. Lundin, D. Baker, C. Murray, J. Guest, A. Christou, The D-CIXS X-ray Spectrometer on the SMART-1 mission to the Moon: First results, Plan Space Science, 55, 494-502, 2007.

    Google Scholar 

  • Goettel, K. and S. Barshay, The chemical equilibrium model for condensation in the solar nebular: assumptions, implications and limitations, in The Origin of the Solar System, Ed. S. Dermott, John Wiley, NY, 611-628, 1978.

    Google Scholar 

  • Gorenstein, P., Alpha-Particle Spectrometry of the Moon, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, p. 235-246, 1993.

    Google Scholar 

  • Haines, E., M. Etchegaray-Ramirez, A. Metzger, Thorium concentrations I the lunar surface II: Deconvolution modeling and its application to the region of Aristarchus and Mare Smythii, Proc Lun Plan Sci Conf 9th, 2985-3013, 1978.

    Google Scholar 

  • Haskin, L. and P. Warren, Lunar Chemistry, in Lunar Sourcebook, G. Heiken, D. Vaniman, B. French, Eds., Cambridge U Press, Cambridge, 357-474, 1991.

    Google Scholar 

  • Howell, L. and A. Frosch, Gamma-ray well logging. Geophysics, 4, 106-114, 1939.

    Google Scholar 

  • Hoover, R., R. Thomas, and J. Underwood, Advances in solar and cosmic X-ray astronomy: a survey of experimental techniques and observational results, Adv. Space Sci Tech., 11, 1214, 1972.

    Google Scholar 

  • Hubbell, J., Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 KeV to 100 GeV, US NBS PUBL NSRDS-NBS29, 1969.

    Google Scholar 

  • Hubbell, J., W. Beigele, E. Briggs, R. Brown, D.. Cromer, and R. Howerton, Atomic Form Factors, Incoherent Scattering Functions, and Photon Scattering Cross-Sections, J Phys Chem Ref Data 4, 471-537, 1975.

    Google Scholar 

  • ISRO, Chandrayaan-1: India’s First Scientific Mission to the Moon, http://www.isro.gov.in/Chandrayaan/htmls/home.htm, visited 2009.

    Google Scholar 

  • Johansson, S.A., Introduction to PIXE, in Particle Induced X-ray Emission, S.A. Johansson, J. Campbell, K. Malmquist, Ed., WIley Interscience, New York, 1-18, 1995.

    Google Scholar 

  • Jach, T., J. Small, D. Newbury, Improving energy stability in the NIST microcalorimeter X-ray detector, Powder Diffraction, 20, 2, 134-136, 2005.

    Google Scholar 

  • James, R., T. Schlesinger, P. Siffert, L. Franks, Semiconductors for room temperature radiation detector applications, in Materials Research Society Symposium Proc, 302, 1-2, 1994.

    Google Scholar 

  • JAXA, Kaguya, http://www.kaguya.jaxa.jp/index_e.htm, visited 2009.

    Google Scholar 

  • JPL, http://marsprogram.jpl.nasa.gov/index.html, visited 2009.

    Google Scholar 

  • Kelliher, W.C., I. Carlberg, W. Elam, E. Willard-Schmoe, Performance of a Borehole X-ray fluorescence spectrometer for planetary exploration, IEEE Aerospace Con Proc, 234-238, 2008.

    Google Scholar 

  • Kerridge, J., Iron: Whence it came, where it went, Space Sci Rev, 20, 3-68, 1977.

    Google Scholar 

  • Knoll, G., Radiation Detection and Measurement, Wiley, New York, 754 pp, 1989.

    Google Scholar 

  • Larimer, J. and J. Wasson, Siderophile element fractionation, in Meteorites and the Early Solar System, Ed. J. Kerridge and M. Matthews, U Arizona, Tucson, p. 416-435, 1988.

    Google Scholar 

  • Lawrence, D.J. W. Feldman, B. A. Barraclough, R. Elphic, T. Prettyman, S Maurice, A. Binder, and M. Miller, Thorium abundances on the lunar surface, JGR Planets, 105, E12, 20307, 2000.

    Google Scholar 

  • Lawrence, D., W. Feldman, R. Elphic, R. Little, T. Prettyman, S. Maurice, P. Lucey, A. Binder, Iron abundances on the lunar surface as measured by the Lunar Prospector Gamma-ray and neutron spectrometers, JGR Planets, 107, E12, 5130, 2002.

    Google Scholar 

  • Lapides, J., Planetary gamma-ray spectroscopy: The effects of hydrogen and the macroscopic thermal-neutron absorption cross section on the gamma-ray spectrum, Dissertation, U.MD, 115 pp, 1981.

    Google Scholar 

  • Landini, M. and B. Fossi, Solar radiation from 1 to 100 A, Astro Astrophys, 6, 468-475, 1970.

    Google Scholar 

  • Lewis, J., Metal/Silicate fractionation in the solar system, Earth Plan Sci Lett, 15, 286-292, 1972.

    Google Scholar 

  • Lewis, J., Chemistry of the planets, Ann Rev Phys Chem, 24, 339-351, 1973.

    Google Scholar 

  • Lingenfelter, R., E. Canfield, W. Hess, The lunar neutron flux, JGR, 66, 2554-2671, 1961.

    Google Scholar 

  • Lingenfelter, R., E. Canfield, V. Hampel, The lunar neutron flux revisited, Earth Plan Sci Lett, 16, 355-369, 1972.

    Google Scholar 

  • Maurer, R.H., M. Freeman, M. Martin, D. Roth, Harsh Environments: Space Radiation Environment, Effects, and Mitigation, JHU APL Technical Digest, 28, 1, 17-29, 2008.

    Google Scholar 

  • Metzger, A., E. Haines, R. Parker, R. Radocinski, Thorium concentrations in the lunar surface I: Regional values and crustal content, Proc. Lun Plan. Sci. Conf. 8th, 949-999, 1977.

    Google Scholar 

  • Metzger, A. and R. Parker, The distribution of titanium on the lunar surface, Earth Plan. Sci. Lett, 45, 155-171, 1979.

    Google Scholar 

  • Metzger, A., Composition of the Moon as determined from orbit by Gamma Ray Spectroscopy, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, p. 341-366, 1993.

    Google Scholar 

  • Mewe, R., Calculated solar X-radiation from 1 to 60 A, Solar Phys, 22, 459-491, 1972.

    Google Scholar 

  • Metzger, A. and D. Drake, Identification of lunar rock types and search for polar ice by Gamma-ray spectroscopy, JGR, 95, 449-460, 1990.

    Google Scholar 

  • Metzger, A., J. Trombka, L. Peterson, R. Reedy, and J. Arnold, Lunar surface radioactivity: preliminary results of the Apollo 15 and Apollo 16 Gamma-ray spectrometer experiments, Science, 179, 800-803, 1973.

    Google Scholar 

  • Michette, A. and C. Buckley, X-ray detectors, in X-ray Science and Technology, 207-253, 1993.

    Google Scholar 

  • NIST, X-ray Transition Energy Database, http://physics.nist.gov/PhysRefData/XrayTrans/Html/search.html, visited 2009.

    Google Scholar 

  • Norrell, J. and I. Anderson, High resolution X-ray spectroscopy with a microcalorimeter, DOE JUR, 5, 51-55, 2006.

    Google Scholar 

  • Pehl, R., L. Varnell, and A. Metzger, High energy proton radiation damage of high=purity germanium detectors, IEEE Trans Nucl Sci NS-25, 409-417, 1978a.

    Google Scholar 

  • Pehl, R., N. Madden, J. Elliot, T. Randorf, R. Trammell, L. Darken, Radiation damage resistance reverse electrode of coaxial detectors, LBL, LBL-8307, 1978b.

    Google Scholar 

  • Reedy, R., J. Arnold, J. Trombka, Expected gamma-ray emission from the lunar surface as a function of chemical composition, JGR, 78, 5847, 1973.

    Google Scholar 

  • Reedy, R., Planetary Gamma-ray spectroscopy, Proc Lun Plan Sci Conf 9th, 2961-2984, 1978.

    Google Scholar 

  • Reedy, R. and J. Arnold, Interaction of solar and galactic cosmic ray particles with the Moon, JGR, 77, 537-555, 1972.

    Google Scholar 

  • Reedy, R., J. Arnold, and D. Lai, Cosmic ray record in solar system matter, Science, 219, 127135, 1983.

    Google Scholar 

  • Rester, A. R. Coldwell, F. Dunham, G. Eichron, J. Trombka, R. Starr, G. Lasche, Gamma ray observations on SN 1987A from Antarctica, Astrophys J. Lett, 342, L71-L73, 1989.

    Google Scholar 

  • Ringwood, A., Origin of the Earth and Moon, Springer-Verlag, NY, 1979.

    Google Scholar 

  • Ryan, C.G. and W.L. Griffin, The Nuclear Microprobe as a tool in geology and mineral exploration, Nucl. Instr. Meth., B77, 381-398, 1993.

    Google Scholar 

  • Selzer, S, Calculated response of a 5.5 x 5.5 cm high purity Ge detector to gamma rays with energies up to 20 MeV.. NBS, NBSIR 87-3548, 1987.

    Google Scholar 

  • Simpson, J., Elemental and isotopic composition of the galactic cosmic rays, Ann. Rev. Nucl. Part. Sci., 33, 321-329, 1983.

    Google Scholar 

  • Smith, R., C. Bush, and J Reichardt, Small accelerators as neutron generators for the borehole environment, IEEE Trans Nucl Sci, 35, 859-862, 1988.

    Google Scholar 

  • Schweitzer, J., Subsurface Nuclear Measurements for Geochemical Analysis, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, p. 485-506, 1993.

    Google Scholar 

  • Surkov, Y., L.P. Moskaleva, V.P. Kharyukova, O.S Manvelyan, A. Golovin, Gamma Ray Spectrometry of Mars, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, p. 413-426, 1993.

    Google Scholar 

  • Surkov, Y., O.P. Scheglov, M.L. Ryvkin, O.A. Vinogradova, Neutron Spectrometry, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and

    Google Scholar 

  • P.A.J. Englert, Cambridge U Press, p. 427-436, 1993.

    Google Scholar 

  • Surkov, Y., V. Barsukov, L. Moskaleva, V. Kharyukova, S. Zaitseva, G. Smirnov, O. Manvelyan, Determination of the elemental composition of Martian rocks from Phobos 2, Nature, 341, 595-598, 1989.

    Google Scholar 

  • Taylor, R.S., Planetary compositions, in Meteorites and the Early Solar System, Ed. J. Kerridge and M. Matthews, U Arizona, 512-534, 1988.

    Google Scholar 

  • Trombka, J. and R. Schmadebeck, A numerical least-squares method for resolving complex pulse height spectra, NASA SP-3044, 170 pp, 1968.

    Google Scholar 

  • Trombka, J., W. Boynton, J. Bruckner, S. Squyres, P.E. Clark, L. Evans, S. Floyd, R. Starr, E. Fiore, R. Gold, J. Goldsten, and R. McNutt, The NEAR X-ray/Gamma-ray spectrometer, JGR, 102, 23729-23750, 1997.

    Google Scholar 

  • Turkevich, A., J. Paterson, E. Franzgrote, K. Sowinski, T. Economou, Alpha radioactivity of the lunar surface at the landing sites of Surveyor 5, 6, and 7, Science, 172, 2-4, 1970.

    Google Scholar 

  • Turkevich, A., Comparison of the analytical results form the Surveyor, Apollo, and Luna missions, Proc Lun Sci Conf 2nd, 1209-1215, 1971.

    Google Scholar 

  • White, N. and R. Petre, The Constellation X-ray mission: science goals and mission implementation, Adv Space Research, 34, 2618-2622, 2004.

    Google Scholar 

  • Wollman, D., S. Nam, G. Hilton, K. Irwin, N. Bergen, D. Rudman, J. Martinis, D. Newbury, Microcalorimeter energy-dispersive spectrometry using a low voltage scanning electron microscope, J Microscopy, 199, 1, 37-44, 2000.

    Google Scholar 

  • Woolum, D., D. Burnett, M. Furst, J. Weiss, Measurement of the lunar neutron density profile, Moon, 12, 231-250, 1975.

    Google Scholar 

  • Yadav, J., J. Bruckner, J. Arnold, Weak peak problem in high resolution gamma-ray spectroscopy, Nucl

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Elizabeth Clark Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clark, P.E., Rilee, M.L. (2010). Ray Region: X-rays, Alpha Particles, Gamma-rays, Neutrons, UV. In: Remote Sensing Tools for Exploration. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6830-2_4

Download citation

Publish with us

Policies and ethics