Advertisement

Ray Region: X-rays, Alpha Particles, Gamma-rays, Neutrons, UV

  • Pamela Elizabeth Clark
  • Michael Lee Rilee
Chapter

Abstract

Remote measurements of the high energy spectra generated from high energy interactions on planetary surfaces with minimal atmospheres are crucial in determination of a planet’s bulk composition and major geochemical provinces, particularly when combined with in situ surface or sample measurements. Derivable from such measurements are models for planetary origin and geochemical differentiation as well as for the exterior (bombardment) and interior (volcano-tectonic activity) driven processes which shape major terrane and feature formation on planetary surfaces. Inferences about composition can be drawn from visible and infrared data in the form of major mineral components, providing constraints on models of origin. Elemental abundance maps can be derived indirectly from such data, when assumptions are made about elemental abundance ratios in major minerals, but only nuclear and near nuclear particle interactions produce characteristic transitions in the ray region which can be measured to provide direct elemental abundances.

Keywords

Neutron Flux Alpha Particle Lunar Surface Solid State Detector Planetary Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, I. and J. Trombka, Geochemical Exploration of the Moon and Planets, Springer, New York, 1970. Google Scholar
  2. Adler, I., J. Trombka, J. Gerrard, R. Schmadebeck, P. Lowman, H. Blodgett, L. Yin, E. Eller, R. Lamothe, X-ray fluorescence experiment, X-641-71-421, 1971. Google Scholar
  3. Adler, I. and J. Trombka, Orbital chemistry: Lunar surface analysis from X-ray and Gamma-ray remote sensing experiments, Phys. Chem. Earth, X, 17-43, 1977. Google Scholar
  4. Adler, I. J. Trombka, J. Gerard, R. Schmadebeck, P. Lowman, H. Blodget, L. Yin, E. Eller, R. Lamothe, P. Gorenstein, P. Bjorkholm, B. Harris, H. Gursky, The Apollo 15 X-ray Fluorescence Experiment, X-641-72-57, 1972. Google Scholar
  5. Adler, I., J. Trombka, L. Yin, P. Gorenstein, P. Bjorkholm, J. Gerald, Lunar Composition from Apollo Orbital Measurements, X-641-72-351, 1972. Google Scholar
  6. Adler, I., J. Trombka, and L. Yin, Lunar composition from Apollo orbital measurements, in Photon and particle interactions with surfaces in space, Ed. R. Grard, Reidel Publishing CO., Holland, 501-513, 1973. Google Scholar
  7. Anders, E. and M. Ebihara, Solar system abundances of the elements, Geochim Cosmochim Acta, 46, 2363-2380, 1982. Google Scholar
  8. Andre, C.G., M. Bielefeld, E. Eliason, L. Soderblom, I. Adler, J. Philpotts, Lunar surface chemistry: A new imaging technique, Science, 197, 986, 1977. Google Scholar
  9. Armstrong, T., Calculation of the lunar photon albedo from galactic and solar proton bombardment, JGR, 77, 524-536, 1972. Google Scholar
  10. Arnold, J. A. Metzger, and R. Reedy, Computer generated maps of lunar composition from Gamma-ray data, Proc. Lun. Sci. Conf. 8th, 945-948, 1977. Google Scholar
  11. Arnold, J., W. Boynton, P. Englert, W. Feldman, A. Metzger, R. Reedy, S. Squyres, J. Trombka, Google Scholar
  12. H. Wanke, Scientific considerations in the design of the Mars Observer Gamma-ray spectrometer, AIP Conf. Proc. 186, Proc. CHERB, 453-467, 1989. Bard, S., Advanced passive radiator for spaceborne cryogenic cooling, J. Spacecraft Rockets, 21, 150-155, 1984. Google Scholar
  13. Bard, S., J. Stein, and S. Petrick, Advanced radiator cooler with angled shields, AIAA Progress in Astronautics and Aeronautics, Spacecraft radiative transfer and temperature control, 83, 249-258, 1982. Google Scholar
  14. Batchelor, R. and G. Morrison, Helium-3 Neutron Spectrometers, in Fast Neutron Physics, J. Marion and J. Fowler, Eds., Interscience Publications, New York, 417, 413-439, 1960. Google Scholar
  15. Berger, M. and S. Seltzer, Response functions for sodium iodide scintillation detectors, Nuclear Instrum Meth, 104, 317-332, 1972. Google Scholar
  16. Blake, D., Chemistry and Mineralogy (CheMin), MSL Science Corner, http://mslscicorner.jpl.nasa.gov/Instruments/CheMin/, visited 2009. Google Scholar
  17. Bielefeld, M., R. Reedy, A. Metzger, J. Trombka, and J. Arnold, Surface chemistry of selected lunar regions, Proc Lun Sci Conf 7th, 2661-2676, 1976. Google Scholar
  18. Bouwer, D., Intermediate-term epochs in solar soft X-ray emission, JGR, 88, 7823-7830, 1983. Google Scholar
  19. Boynton, W., L. Evans, R. Reedy, and J. Trombka, The Composition of Mars and Comets by Remote and In Situ Gamma Ray Spectroscopy, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, p. 395-412, 1993. Google Scholar
  20. Boynton, W., A. Sprague, S. Solomon, R. Starr, L. Evans, W. Feldman, J. Trombka, E. Rhodes, MESSENGER and the chemistry of Mercury’s Surface, Space Science Reviews, 131, 1-4, 85-104, 2007a. Google Scholar
  21. Boynton, W., G. Taylor, L. Evans, R. Reedy, R. Starr, D. James, K. Kerry, D Drake, K. Kim, R. Williams, M. Crombie, J. Dolm, V. Baker, A. Metzger, S. Karunatillake, J. Keller, H. New-son, J. Arnold, J. Bruckner, P. Englert, O. Gasnault, A. Sprague, I. Mitrofanov, S. Squyres, J. Trombka, L. D’Uston, H. Wanke, and D. Hamara, Concentration of H, Si,, Cl, K, Fe, and Th I the low and mid latitude regions of Mars, JGR Planets, 112, E12S99, doi:10.1029/2007JE002887., 1-15, 2007b. Google Scholar
  22. Briggs, D. and M. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, John Wiley and Sons, 1983. Google Scholar
  23. Bruckner, J., H. Wanke, and R. Reedy, Neutron-induced gamma-ray spectroscopy: simulations for chemical mapping of planetary surfaces, Proc Lun Plan Sci Conf 17th, JGR, 92, E603E616, 1987. Google Scholar
  24. Carpenter, B., M. Dagostino, and J. Yule, Computers in Activation analysis and Gamma-ray Spectroscopy, DOE Symposium Series 49, CONF-780421, NTIS, Springfield, VA. 879 pp, 1979. Google Scholar
  25. Clark, P.E., Correction, Correlation, and Theoretical Consideration of Lunar X-ray Fluorescence Intensity Ratios, U. MD. Dissertation, 1979. Google Scholar
  26. Clark, P.E. and I. Adler, Utilization of independent solar flux measurements to eliminate non-geochemical variation in X-ray fluorescence data, Proc. Lun. Plan. Sci. Conf. 9th, 3029-3036, 1978. Google Scholar
  27. Clark P.E., Eliason E., Andre C., Adler I.A new color correlation method applied to XRF Al/Si ratios and other lunar remote sensing data. Proc Lun Plan Sci Conf 9, 3029-3036, 1978. Google Scholar
  28. Clark P.E., Drake D., Reedy R. Lunar neutron flux as a function of typical rock compositions. LPS, 1735.pdf, 2002, Google Scholar
  29. Clark, P.E., S. Floyd, and J. Trombka, The effectiveness of the proportional counter as a solar X-ray monitory on the NEAR mission, IEEE CHERBS 1997 0-7803-4335-2/98, 1998. Google Scholar
  30. Clark, P.E., K. Gendreau, Z. Arzoumanian, Lunar In Situ Sample Screening and Site Characterization, NASA Lunar Science Forum, Mountain View, CA, 2008. Google Scholar
  31. Clark, P.E. and B.R. Hawke, Compositional variation in the Hadley Apennine region, Proc Lun Plan Sci Conf 12th, 727-749, 1981. Google Scholar
  32. Clark P.E., Hawke B.R. The relationship between geology and geochemistry in the Undarum/Spumans/Balmer region. EMP 38, 97-112, 1987. Google Scholar
  33. Clark, P.E., S. Joerg, R Dehon, Searching the Sinus Amoris: Using profiles of geological units, impact and volcanic features to characterize a major terrane interface on the Moon, EARTH, MOON, AND PLANETS 64, 165-185, 1994. Google Scholar
  34. Clark, P.E. and L. McFadden, New results and implications for lunar crustal iron distribution using sensor data fusion techniques, JGR Planets, 105, E2, 4291-4316, 2000. Google Scholar
  35. Clark, P.E. and J. Trombka, Remote X-ray spectrometry for NEAR and future missions: Modeling and analyzing X-ray production from source to surface, JGR Plan, 102, 16361-16384, 1997a. Google Scholar
  36. Clark, P.E. and J. Trombka, Remote X-ray fluorescence experiments for future missions to Mercury, Plan Space Sci, 45, 1, 57-65, 1997b. Google Scholar
  37. Coldwell, R. Iterative codes for fitting complete spectra, Nucl Instrum Meth A242, 455-461, 1986. Google Scholar
  38. Cromer, D. and J. Waber, Scattering Factors from relativistic Dirac-Slater wave functions, Acta Crystallog., 18, 104-109, 1965. Google Scholar
  39. Crosby, N., M. Aschwanden, and B. Dennis, Frequency distribution and correlations of solar X-ray flare parameters, Solar Phys, 143, 275-299, 1993. Google Scholar
  40. Davis. P., Iron and titanium distribution on the Moon from orbital gamma-ray spectrometry with implications for crustal evolutionary models, JGR Planets 85(B6), 3209-324, 1980. Google Scholar
  41. Donnelly, R. and D. Bouwer, SMS-GOES solar soft X-ray measurements Pars I and II, NOAA Tech Memo ERL SEL-56 and SEL-57, 1981. Google Scholar
  42. Drake, D., W. Feldman, B. Jakosky, Martian neutron leakage spectra, JGR, 93, 6353-6368, 1988. Google Scholar
  43. Dyer, C., J. Trombka, S. Seltzer, L. Evans, Calculation of radioactivity induced in Gamma-ray spectrometers during spaceflight, Nucl Instrum Meth, 173, 585-601, 1980. Google Scholar
  44. Economou, T. and A. Turkevich, Alpha Particle Instrument with Alpha, Proton, and X-ray Modes for Planetary Chemical Analyses, Nucl Instruments Methods, 134, 2, 391-400, 1976. Google Scholar
  45. Eliason, E., and L. Soderblom, An array processing system for lunar geochemical and geophysical data, proc Lun Sci Conf 8th, 1025-1033, 1977. Google Scholar
  46. Evans, L., R.Reedy, and J. Trombka, Introduction to Planetary Remote Sensing Gamma Ray Spectroscopy,in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, p. 167-198, 1993. Google Scholar
  47. Ellis, D., J. Schweitzer, and J. Ullo, Nuclear techniques for subsurface geology, Ann. Rev. Nucl. Part. Sci. 37, 213-241, 1987. Google Scholar
  48. Evans, L., R.Reedy, and J. Trombka, Introduction to Planetary Remote Sensing Gamma Ray Spectroscopy,in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, 167-198, 1993. Google Scholar
  49. Evans, L., J. Trombka, and W. Boynton, Elemental analysis of a comet nucleus by passive Gamma-ray spectroscopy from a penetrator, Proc Lun Plan Sci Conf 16th, JGR,91, D525532, 1986. Google Scholar
  50. Evans, E. and S. Squyres, Investigation of Martian H2O and CO2 via orbital gamma ray spectrometry, JGR, 92, 9153-9167, 1987. Google Scholar
  51. Feldman, W., D. Drake, R. Odell, F. Brinkley, R. Anderson, Gravitational effects on planetary neutron flux spectra, JGR, 94, 513-525, 1989. Google Scholar
  52. Feldman, W., W. Boynton, and D. Drake, Planetary Neutron Spectroscopy from Orbit, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and Google Scholar
  53. P.A.J. Englert, Cambridge U Press, p. 213-234, 1993. Google Scholar
  54. Feldman, W.C., S. Maurice, D. Lawrence, R. Little, S. Lawson, O. Gasnault, R. Wiens, B. Barraclough, R. Elphic, T. Prettyman, J. Steinberg, A. Binder, Evidence for water ice near the lunar poles, JGR Planets, 106, E10, 23231-23251, 2001. Google Scholar
  55. Feldman, W.C., T. Prettyman, S. Maurice, S. Nellis, R. Elphic, H. Funsten, O. Gasnault, D. Lawrence, J. Murphy, R. Tokar, D. Vaniman, Topographic control of hydrogen deposits at low latitudes to midlatitudes of Mars, JGR Planets, 110, E11, #E11009, 2005. Google Scholar
  56. Fichtel, C. and J. Trombka, Gamma Ray Astrophysics, New Insights into the Universe, NASA SP-453, 401 pp, 1981. Google Scholar
  57. Frentrop, A. and H. Sherman, Schlumberger tube for oil well logging, Nucleonics, 18, 72-74, 1960. Google Scholar
  58. Gasnault, O., W. Feldman, S. Maurice, I. Genetay, C. D’Uston, T. Prettyman, K. Moore, Composition from fast neutrons: Application to the Moon, GRL, 28, 19, pp. 3797-3800, 2001.Google Scholar
  59. Goldsten, J.O., et al., The MESSENGER Gamma-Ray and Neutron Spectrometer, Space Science Google Scholar
  60. Reviews, 131, 1-4, 339-391, 2007. Grande, M., B. Kelley, C. Howe, C. Perry, B. Swinyard, S. Dunkin, J. Huovelin, L. Alha, L. D’Uston, S. Maurice, O. Gasnault, S. Couturier-Doux, S. Barabash, K. Joy, I. Crawford, D. Google Scholar
  61. Lawrence, V. Fernandes, I. Casanova, M. Wieczorek, N. Thomas, U. Mall, B. Foing, D. Hughes, H. Alleyne, S. Russell, M. Grady, R. Lundin, D. Baker, C. Murray, J. Guest, A. Christou, The D-CIXS X-ray Spectrometer on the SMART-1 mission to the Moon: First results, Plan Space Science, 55, 494-502, 2007. Google Scholar
  62. Goettel, K. and S. Barshay, The chemical equilibrium model for condensation in the solar nebular: assumptions, implications and limitations, in The Origin of the Solar System, Ed. S. Dermott, John Wiley, NY, 611-628, 1978. Google Scholar
  63. Gorenstein, P., Alpha-Particle Spectrometry of the Moon, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, p. 235-246, 1993. Google Scholar
  64. Haines, E., M. Etchegaray-Ramirez, A. Metzger, Thorium concentrations I the lunar surface II: Deconvolution modeling and its application to the region of Aristarchus and Mare Smythii, Proc Lun Plan Sci Conf 9th, 2985-3013, 1978. Google Scholar
  65. Haskin, L. and P. Warren, Lunar Chemistry, in Lunar Sourcebook, G. Heiken, D. Vaniman, B. French, Eds., Cambridge U Press, Cambridge, 357-474, 1991. Google Scholar
  66. Howell, L. and A. Frosch, Gamma-ray well logging. Geophysics, 4, 106-114, 1939. Google Scholar
  67. Hoover, R., R. Thomas, and J. Underwood, Advances in solar and cosmic X-ray astronomy: a survey of experimental techniques and observational results, Adv. Space Sci Tech., 11, 1214, 1972. Google Scholar
  68. Hubbell, J., Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 KeV to 100 GeV, US NBS PUBL NSRDS-NBS29, 1969. Google Scholar
  69. Hubbell, J., W. Beigele, E. Briggs, R. Brown, D.. Cromer, and R. Howerton, Atomic Form Factors, Incoherent Scattering Functions, and Photon Scattering Cross-Sections, J Phys Chem Ref Data 4, 471-537, 1975. Google Scholar
  70. ISRO, Chandrayaan-1: India’s First Scientific Mission to the Moon, http://www.isro.gov.in/Chandrayaan/htmls/home.htm, visited 2009. Google Scholar
  71. Johansson, S.A., Introduction to PIXE, in Particle Induced X-ray Emission, S.A. Johansson, J. Campbell, K. Malmquist, Ed., WIley Interscience, New York, 1-18, 1995. Google Scholar
  72. Jach, T., J. Small, D. Newbury, Improving energy stability in the NIST microcalorimeter X-ray detector, Powder Diffraction, 20, 2, 134-136, 2005. Google Scholar
  73. James, R., T. Schlesinger, P. Siffert, L. Franks, Semiconductors for room temperature radiation detector applications, in Materials Research Society Symposium Proc, 302, 1-2, 1994. Google Scholar
  74. JAXA, Kaguya, http://www.kaguya.jaxa.jp/index_e.htm, visited 2009. Google Scholar
  75. JPL, http://marsprogram.jpl.nasa.gov/index.html, visited 2009. Google Scholar
  76. Kelliher, W.C., I. Carlberg, W. Elam, E. Willard-Schmoe, Performance of a Borehole X-ray fluorescence spectrometer for planetary exploration, IEEE Aerospace Con Proc, 234-238, 2008. Google Scholar
  77. Kerridge, J., Iron: Whence it came, where it went, Space Sci Rev, 20, 3-68, 1977. Google Scholar
  78. Knoll, G., Radiation Detection and Measurement, Wiley, New York, 754 pp, 1989. Google Scholar
  79. Larimer, J. and J. Wasson, Siderophile element fractionation, in Meteorites and the Early Solar System, Ed. J. Kerridge and M. Matthews, U Arizona, Tucson, p. 416-435, 1988. Google Scholar
  80. Lawrence, D.J. W. Feldman, B. A. Barraclough, R. Elphic, T. Prettyman, S Maurice, A. Binder, and M. Miller, Thorium abundances on the lunar surface, JGR Planets, 105, E12, 20307, 2000. Google Scholar
  81. Lawrence, D., W. Feldman, R. Elphic, R. Little, T. Prettyman, S. Maurice, P. Lucey, A. Binder, Iron abundances on the lunar surface as measured by the Lunar Prospector Gamma-ray and neutron spectrometers, JGR Planets, 107, E12, 5130, 2002. Google Scholar
  82. Lapides, J., Planetary gamma-ray spectroscopy: The effects of hydrogen and the macroscopic thermal-neutron absorption cross section on the gamma-ray spectrum, Dissertation, U.MD, 115 pp, 1981. Google Scholar
  83. Landini, M. and B. Fossi, Solar radiation from 1 to 100 A, Astro Astrophys, 6, 468-475, 1970. Google Scholar
  84. Lewis, J., Metal/Silicate fractionation in the solar system, Earth Plan Sci Lett, 15, 286-292, 1972. Google Scholar
  85. Lewis, J., Chemistry of the planets, Ann Rev Phys Chem, 24, 339-351, 1973. Google Scholar
  86. Lingenfelter, R., E. Canfield, W. Hess, The lunar neutron flux, JGR, 66, 2554-2671, 1961. Google Scholar
  87. Lingenfelter, R., E. Canfield, V. Hampel, The lunar neutron flux revisited, Earth Plan Sci Lett, 16, 355-369, 1972. Google Scholar
  88. Maurer, R.H., M. Freeman, M. Martin, D. Roth, Harsh Environments: Space Radiation Environment, Effects, and Mitigation, JHU APL Technical Digest, 28, 1, 17-29, 2008. Google Scholar
  89. Metzger, A., E. Haines, R. Parker, R. Radocinski, Thorium concentrations in the lunar surface I: Regional values and crustal content, Proc. Lun Plan. Sci. Conf. 8th, 949-999, 1977. Google Scholar
  90. Metzger, A. and R. Parker, The distribution of titanium on the lunar surface, Earth Plan. Sci. Lett, 45, 155-171, 1979. Google Scholar
  91. Metzger, A., Composition of the Moon as determined from orbit by Gamma Ray Spectroscopy, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, p. 341-366, 1993. Google Scholar
  92. Mewe, R., Calculated solar X-radiation from 1 to 60 A, Solar Phys, 22, 459-491, 1972. Google Scholar
  93. Metzger, A. and D. Drake, Identification of lunar rock types and search for polar ice by Gamma-ray spectroscopy, JGR, 95, 449-460, 1990. Google Scholar
  94. Metzger, A., J. Trombka, L. Peterson, R. Reedy, and J. Arnold, Lunar surface radioactivity: preliminary results of the Apollo 15 and Apollo 16 Gamma-ray spectrometer experiments, Science, 179, 800-803, 1973. Google Scholar
  95. Michette, A. and C. Buckley, X-ray detectors, in X-ray Science and Technology, 207-253, 1993. Google Scholar
  96. NIST, X-ray Transition Energy Database, http://physics.nist.gov/PhysRefData/XrayTrans/Html/search.html, visited 2009. Google Scholar
  97. Norrell, J. and I. Anderson, High resolution X-ray spectroscopy with a microcalorimeter, DOE JUR, 5, 51-55, 2006. Google Scholar
  98. Pehl, R., L. Varnell, and A. Metzger, High energy proton radiation damage of high=purity germanium detectors, IEEE Trans Nucl Sci NS-25, 409-417, 1978a. Google Scholar
  99. Pehl, R., N. Madden, J. Elliot, T. Randorf, R. Trammell, L. Darken, Radiation damage resistance reverse electrode of coaxial detectors, LBL, LBL-8307, 1978b. Google Scholar
  100. Reedy, R., J. Arnold, J. Trombka, Expected gamma-ray emission from the lunar surface as a function of chemical composition, JGR, 78, 5847, 1973. Google Scholar
  101. Reedy, R., Planetary Gamma-ray spectroscopy, Proc Lun Plan Sci Conf 9th, 2961-2984, 1978. Google Scholar
  102. Reedy, R. and J. Arnold, Interaction of solar and galactic cosmic ray particles with the Moon, JGR, 77, 537-555, 1972. Google Scholar
  103. Reedy, R., J. Arnold, and D. Lai, Cosmic ray record in solar system matter, Science, 219, 127135, 1983. Google Scholar
  104. Rester, A. R. Coldwell, F. Dunham, G. Eichron, J. Trombka, R. Starr, G. Lasche, Gamma ray observations on SN 1987A from Antarctica, Astrophys J. Lett, 342, L71-L73, 1989. Google Scholar
  105. Ringwood, A., Origin of the Earth and Moon, Springer-Verlag, NY, 1979. Google Scholar
  106. Ryan, C.G. and W.L. Griffin, The Nuclear Microprobe as a tool in geology and mineral exploration, Nucl. Instr. Meth., B77, 381-398, 1993. Google Scholar
  107. Selzer, S, Calculated response of a 5.5 x 5.5 cm high purity Ge detector to gamma rays with energies up to 20 MeV.. NBS, NBSIR 87-3548, 1987. Google Scholar
  108. Simpson, J., Elemental and isotopic composition of the galactic cosmic rays, Ann. Rev. Nucl. Part. Sci., 33, 321-329, 1983. Google Scholar
  109. Smith, R., C. Bush, and J Reichardt, Small accelerators as neutron generators for the borehole environment, IEEE Trans Nucl Sci, 35, 859-862, 1988. Google Scholar
  110. Schweitzer, J., Subsurface Nuclear Measurements for Geochemical Analysis, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, p. 485-506, 1993. Google Scholar
  111. Surkov, Y., L.P. Moskaleva, V.P. Kharyukova, O.S Manvelyan, A. Golovin, Gamma Ray Spectrometry of Mars, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and P.A.J. Englert, Cambridge U Press, p. 413-426, 1993. Google Scholar
  112. Surkov, Y., O.P. Scheglov, M.L. Ryvkin, O.A. Vinogradova, Neutron Spectrometry, in Remote Geochemical Analysis: Elemental and mineralogical Composition, Ed. C.M. Pieters and Google Scholar
  113. P.A.J. Englert, Cambridge U Press, p. 427-436, 1993. Google Scholar
  114. Surkov, Y., V. Barsukov, L. Moskaleva, V. Kharyukova, S. Zaitseva, G. Smirnov, O. Manvelyan, Determination of the elemental composition of Martian rocks from Phobos 2, Nature, 341, 595-598, 1989. Google Scholar
  115. Taylor, R.S., Planetary compositions, in Meteorites and the Early Solar System, Ed. J. Kerridge and M. Matthews, U Arizona, 512-534, 1988. Google Scholar
  116. Trombka, J. and R. Schmadebeck, A numerical least-squares method for resolving complex pulse height spectra, NASA SP-3044, 170 pp, 1968. Google Scholar
  117. Trombka, J., W. Boynton, J. Bruckner, S. Squyres, P.E. Clark, L. Evans, S. Floyd, R. Starr, E. Fiore, R. Gold, J. Goldsten, and R. McNutt, The NEAR X-ray/Gamma-ray spectrometer, JGR, 102, 23729-23750, 1997. Google Scholar
  118. Turkevich, A., J. Paterson, E. Franzgrote, K. Sowinski, T. Economou, Alpha radioactivity of the lunar surface at the landing sites of Surveyor 5, 6, and 7, Science, 172, 2-4, 1970. Google Scholar
  119. Turkevich, A., Comparison of the analytical results form the Surveyor, Apollo, and Luna missions, Proc Lun Sci Conf 2nd, 1209-1215, 1971. Google Scholar
  120. White, N. and R. Petre, The Constellation X-ray mission: science goals and mission implementation, Adv Space Research, 34, 2618-2622, 2004. Google Scholar
  121. Wollman, D., S. Nam, G. Hilton, K. Irwin, N. Bergen, D. Rudman, J. Martinis, D. Newbury, Microcalorimeter energy-dispersive spectrometry using a low voltage scanning electron microscope, J Microscopy, 199, 1, 37-44, 2000. Google Scholar
  122. Woolum, D., D. Burnett, M. Furst, J. Weiss, Measurement of the lunar neutron density profile, Moon, 12, 231-250, 1975. Google Scholar
  123. Yadav, J., J. Bruckner, J. Arnold, Weak peak problem in high resolution gamma-ray spectroscopy, Nucl Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Physics Department NASA/GSFC Code 695.0Catholic University of AmericaGreenbeltUSA
  2. 2.Rilee Systems Technologies LLCHerndonUSA

Personalised recommendations