Skip to main content

Transport of Superthermal Electrons: General Analysis

  • Chapter
  • First Online:
Kinetic Theory of the Inner Magnetospheric Plasma

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 372))

  • 1144 Accesses

Abstract

Superthermal electrons are one of the major energy players in the inner magnetosphere, and are responsible for the formation of self-consistent electric potentials in some space plasma regions. Numerous processes are involved in the determination of their distribution function, and only a kinetic approach provides the proper tool to treat this component of the inner magnetosphere. Because of the relative complexity of the kinetic equation solution, analytical investigations of some simplified kinetic problems are very useful because they help us gain physical insight into how the system responds to various physical processes and external boundary conditions. Solutions to these simplified problems also provide us a convenient method to test the validity of complicated numerical models where superthermal electrons are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfvén, H., Fälthammar, C.-G.: Cosmical Electrodynamics, Fundamental Principles. Oxford University Press, New York (1963)

    MATH  Google Scholar 

  • Ashour-Abdalla, M., Kennel, C.F.: Nonconvective and convective electron cyclotron harmonic instabilities. J. Geophys. Res. 83, 1531–1543 (1978)

    Article  ADS  Google Scholar 

  • Barakat, A.R., Schunk, R.W.: Effect of the hot electrons on the polar wind. J. Geophys. Res. 89, 9771–9783 (1984)

    Article  ADS  Google Scholar 

  • Chiu, Y.T., Schulz, M.: Self-consistent particle and parallel electrostatic field distributions in the magnetospheric–ionospheric auroral region. J. Geophys. Res. 83, 629–642 (1978)

    Article  ADS  Google Scholar 

  • Cushman, G.W., Farwell, L., Godden, G., Rense, W.A.: Solar line profiles of He I 584 A and He II 304 A. J. Geophys. Res. 80, 482–486 (1975)

    Article  ADS  Google Scholar 

  • Davidson, G., Walt, M.: Loss cone distributions of radiation belt electrons. J. Geophys. Res. 82, 48–54 (1977)

    Article  ADS  Google Scholar 

  • Dory, R.A., Guest, G.E., Harris, E.G.: Unstable electrostatic plasma waves propagating perpendicular to a magnetic field. Phys. Rev. Lett. 14, 131–133 (1965)

    Article  ADS  Google Scholar 

  • Etcheto, J., Gendrin, R., Solomon, J., Roux, A.: A self-consistent theory of magnetospheric ELF hiss. J. Geophys. Res. 78, 8150–8166 (1973)

    Article  ADS  Google Scholar 

  • Eviatar, A., Lenchek, A.M., Singer, S.F.: Distribution of density in an ion-exosphere of a non-rotating planet. Phys. Fluids 7, 1775–1779 (1964)

    Article  ADS  Google Scholar 

  • Galperin, Y.I. Mulyarchik, T.M.: On the height distribution of photoelectrons. Kosmich. Issledov. (in Russian) 4, 932–941 (1966)

    Google Scholar 

  • Gastman, I.J.: Theoretical investigation and plasma line measurements of conjugate photoelectrons in the ionosphere. Ph.D. Thesis, University of Michigan, Ann Arbor, MI (1973)

    Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic, New York (1980)

    MATH  Google Scholar 

  • Huang, T.S., Birmingham, T.J.: The polarization electric field and its effects in an anisotropic rotating magnetospheric plasma. J. Geophys. Res. 97, 1511–1519 (1992)

    Article  ADS  Google Scholar 

  • Jasperse, J.R., Smith, E.R.: The photoelectron flux in the Earth’s ionosphere at energies in the vicinity of photoionization peaks. Geophys. Res. Lett. 5, 843–846 (1978)

    Article  ADS  Google Scholar 

  • Kennel, C., Petschek, H.: Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1–28 (1966)

    Article  ADS  Google Scholar 

  • Khazanov, G.V.: The Kinetics of the Electron Plasma Component of the Upper Atmosphere. Nauka, Moscow (1979) [English translation: #80-50707, National Translation Center, Washington, DC (1980)]

    Google Scholar 

  • Khazanov, G.V., Gefan, G.D.: The kinetics of ionosphere–plasmasphere transport of superthermal electrons. Phys. Solariterr. Potsdam 19, 65–80 (1982)

    Google Scholar 

  • Khazanov, G.V., Koen, M.A., Burenkov, S.I.: Analysis of plasmaspheric passage of superthermal electrons. Phys. Solariterr. Potsdam 15, 91–106 (1981)

    Google Scholar 

  • Khazanov, G.V., Gombosi, T.I., Nagy, A.F., Koen, M.A.: Analysis of the ionosphere–plasmasphere transport of superthermal electrons. 1. Transport in the plasmasphere. J. Geophys. Res. 97, 16887–16895 (1992)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Neubert, T., Gefan, G.D.: A unified theory of ionosphere-plasmasphere transport of suprathermal electrons. IEEE Trans. Plasma Sci. 22, 187–198 (1994)

    Google Scholar 

  • Khazanov, G.V., Liemohn, M.W., Moore, T.E.: Photoelectron effects on the self-consistent potential in the collisionless polar wind. J. Geophys. Res. 102, 7509–7521 (1997)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Liemohn, M.W., Krivorutsky, E.N., Moore, T.E.: Generalized kinetic description of a plasma in an arbitrary potential energy structure. J. Geophys. Res. 103, 6871–6889 (1998)

    Article  ADS  Google Scholar 

  • Knight, S.: Parallel electric fields. Planet. Space Sci. 21, 741–750 (1973)

    Article  ADS  Google Scholar 

  • Koen, M.A., Modeling of the ionosphere in applied problems of geophysics, Irkutsk, 1983

    Google Scholar 

  • Krinberg, I.A.: Description of the photoelectron interaction with ambient electrons in the ionosphere. Planet. Space Sci. 21, 523–525 (1973)

    Article  ADS  Google Scholar 

  • Krinberg, I.A.: The Kinetics of Electrons in the Earth’s Ionosphere and Plasmasphere. Nauka, Moscow (1978)

    Google Scholar 

  • Krinberg, I.A., Matafonov, G.K.: Coulomb collision-induced photoelectron trapping by the geomagnetic field and electron gas heating in the plasmasphere. Ann. Geophys. 34, 89–96 (1978)

    Google Scholar 

  • Landau, L.D.: Kinetic equation for Coulomb interactions. Phys. Z. Sowjetunion 10, 154–164 (1936)

    MATH  Google Scholar 

  • Lejeune, J., Wormser, F.: Diffusion of photoelectrons along a field line inside the plasmasphere. J. Geophys. Res. 81, 2900–2916 (1976)

    Article  ADS  Google Scholar 

  • Lemaire, J.: Rotating ion exospheres. Planet. Space Sci. 24, 975–985 (1976)

    Article  ADS  Google Scholar 

  • Lemaire, J., Scherer, M.: Model of the polar ion-exosphere. Planet. Space Sci. 18, 103–120 (1970)

    Article  ADS  Google Scholar 

  • Lemaire, J., Scherer, M.: Simple model for an ion-exosphere in an open magnetic field. Phys. Fluids 14, 1683–1694 (1971)

    Article  ADS  Google Scholar 

  • Lemaire, J., Scherer, M.: Ion-exosphere with asymmetric velocity distribution. Phys. Fluids 15, 760–766 (1972)

    Article  ADS  Google Scholar 

  • Lemaire, J., Scherer, M.: Plasma sheet particle precipitation: A kinetic model. Planet. Space Sci. 21, 281–289 (1973)

    Article  ADS  Google Scholar 

  • Lemaire, J., Scherer, M.: Ionosphere-plasmasheet field-aligned currents and parallel electric fields. Planet. Space Sci. 22, 1485–1490 (1974)

    Article  ADS  Google Scholar 

  • Liemohn, M.W.: Yet another caveat to using the Dessler–Parker–Sckopke relation. J. Geophys. Res. 108, 1251 (2003). doi: 10.1029/2003JA009839

    Article  Google Scholar 

  • Longmire, C.: Plasma Physics. Atomizdat, Moscow (1966)

    Google Scholar 

  • Lummerzheim, D., Rees, M.N., Anderson, H.R.: Angular dependent transport of auroral electrons in the upper atmosphere. Plant. Space Sci. 37, 109–129 (1989)

    Google Scholar 

  • Miller, R.H., Khazanov, G.V.: Self-consistent electrostatic potential due to trapped plasma in the magnetosphere. Geophys. Res. Lett. 20, 1331–1334 (1993)

    Article  ADS  Google Scholar 

  • Mukai, T., Hirao, K.: Rocket measurement of the differential energy spectrum of the photoelectrons. J. Geophys. Res. 78, 8395–8398 (1973)

    Article  ADS  Google Scholar 

  • Nagy, A.F., Banks, P.M.: Photoelectron fluxes in the ionosphere. J. Geophys. Res. 75, 6260–6270 (1970)

    Article  ADS  Google Scholar 

  • Olsen, R.C., Scott, L.J., Boardsen, S.A.: Comparison between Liouville’s theorem and observed latitudinal distributions of trapped ions in the plasmapause region. J. Geophys. Res. 99, 2191–2203 (1994)

    Article  ADS  Google Scholar 

  • Persson, H.: Electric field along a magnetic field line of force in a low-density plasma. Phys. Fluids 6, 1756–1759 (1963)

    Article  ADS  Google Scholar 

  • Pierrard, V., Lemaire, J.: Lorentzian ion exosphere model. J. Geophys. Res. 101, 7923–7934 (1996)

    Article  ADS  Google Scholar 

  • Pierrard, V., Khazanov, G.V., Lemaire, J.: Current–voltage relationship. J. Atmos. Solar-Terr. Phys. 69, 2048–2057 (2007)

    Article  ADS  Google Scholar 

  • Polyakov, V.M., Khazanov, G.V., Koen, M.A.: Ionosphere–plasmasphere photoelectron transport. Phys. Solariterr. Potsdam 10, 93–108 (1979)

    Google Scholar 

  • Popov, G.V., Khazanov, G.V.: A solution of the kinetic equation for ionospheric photoelectrons with consideration of both conjugate regions. Cosmic Res. 12, 218–223 (1974)

    ADS  Google Scholar 

  • Rasmussen, C.E., Sojka, J.J., Schunk, R.W., Wickwar, V.B., de la Beaujardiere, O., Foster, J., Holt, J.: Comparison of simultaneous Chatanika and Millstone Hill temperature measurements with ionospheric model predictions. J. Geophys. Res. 93, 1922–1932 (1988)

    Article  ADS  Google Scholar 

  • Richards, P.G., Torr, D.G.: Auroral Modeling of the 3371 Ã… Emission Rate: Dependence on Characteristic Electron Energy. J. Geophys. Res. 95(A7), 10, 337–10, 344 (1990)

    Google Scholar 

  • Roble, R.G., Ridley, E.C.: An auroral model for the NCAR thermospheric general circulation model (TGCM). Ann. Geophys. 5A, 369–382 (1987)

    ADS  Google Scholar 

  • Sanatani, S., Hanson, W.B.: Plasma temperature in the magnetosphere. J. Geophys. Res. 75, 769–775 (1970)

    Article  ADS  Google Scholar 

  • Schunk, R.W., Hays, P.B.: Photoelectron energy losses to thermal electrons. Planet. Space Sci. 19, 113–117 (1971)

    Article  ADS  Google Scholar 

  • Schunk, R.W., Nagy, A.F.: Ionospheres. Cambridge University Press, New York (2000)

    Book  Google Scholar 

  • Scudder, J.D.: On the causes of temperature change in inhomogeneous low-density astrophysical plasmas. Astrophys. J. 398, 299–318 (1992)

    Article  ADS  Google Scholar 

  • Serizawa, Y., Sato, T.: Generation of large-scale potential difference by currentless plasma jets along the mirror field. Geophys. Res. Lett. 11, 595–598 (1984)

    Article  ADS  Google Scholar 

  • Shkarofsky, I.P., Johnston, T.W., Bachinski, M.P.: The Particle Kinetics of Plasmas. Addison-Wesley, London (1966)

    Google Scholar 

  • Solomon, S.C., Hays, P.B., Abreu, V.J.: The auroral 6300 Ã… emission: Observations and modeling. J. Geophys. Res. 93, 9867-9882 (1988)

    Google Scholar 

  • Stasiewicz, K.: The influence of a turbulent region on the flux of auroral electrons. Planet. Space Sci. 33, 591–596 (1985)

    Article  ADS  Google Scholar 

  • Strickland, D.J., Meier, R.R., Hecht, J.H., Christensen, A.B.: Deducing Composition and Incident Electron Spectra From Ground-Based Auroral Optical Measurements: Theory and Model Results. J. Geophys. Res. 94(A10), 13527–13539, (1989) doi:10.1029/JA094iA10p13527

    Google Scholar 

  • Summers, D., Thorne, R.M.: The modified plasma dispersion function. Phys. Fluids B 3, 1835–1847 (1991)

    Article  ADS  Google Scholar 

  • Takahashi, T.: Energy degradation and transport of photoelectrons escaping from the upper ionosphere. Rept. Ionos. Space Res. Jap. 27, 79–86 (1973)

    Google Scholar 

  • Washimi, H., Katanuma, I.: Numerical BGK-solutions of large scale electrostatic potential in auroral plasmas. Geophys. Res. Lett. 13, 897–900 (1986)

    Article  ADS  Google Scholar 

  • Whipple, E.C.: The signature of parallel electric fields in a collisionless plasma. J. Geophys. Res. 82, 1525–1531 (1977)

    Article  ADS  Google Scholar 

  • Wilson, G.R., Khazanov, G.V., Horwitz, J.L.: Achieving zero current for polar wind outflow on open flux tubes subjected to large photoelectron fluxes. Geophys. Res. Lett. 24, 1183–1186 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George V. Khazanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Khazanov, G.V. (2011). Transport of Superthermal Electrons: General Analysis. In: Kinetic Theory of the Inner Magnetospheric Plasma. Astrophysics and Space Science Library, vol 372. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6797-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6797-8_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6796-1

  • Online ISBN: 978-1-4419-6797-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics