Skip to main content

Hydrodynamic Description of Space Plasma

  • Chapter
  • First Online:
  • 1145 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 372))

Abstract

Because of its complexity, major difficulties are encountered in the use of the kinetic equation in the study of various processes in plasma. Thus, the class of problems that can be solved using the kinetic approach is quite limited. Additionally, for a large number of problems, the detailed kinetic description is excessive and only macroscopic parameters like density, bulk velocity, pressure, viscosity tensor, and heat flux are important. These quantities are defined as the corresponding moments of the velocity distribution function. The plasma kinetic description could thus be replaced by a system of velocity moment equations. These moment equations are usually called hydrodynamic or transport equations. The transport equation approach has received a lot of attention because it can handle the core plasma particle and energy flow conditions in the solar–terrestrial environment. Many of the highly nonequilibrium flows found in space plasma are characterized by appreciable temperature anisotropies, i.e., unequal species temperatures parallel and perpendicular to the magnetic field direction. Also, wave–particle interaction processes can dramatically contribute to the formation of these nonequilibrium plasma flows. Therefore, it is necessary to trace the derivation of the different sets of the transport equations in order to understand the applicability of space plasma hydrodynamic theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akhiezer, A.I., Akhiezer, I.A., Polovin, R.V., Sitenko, A.G., Stepanov, K.N.: Plasma Electrodynamics, vol. 1. Pergamon, Tarrytown, NY (1975)

    Google Scholar 

  • Alexandrov, A.F., Bogdankevich, L.S. Rukhadze, A.A.: Fundamentals of Electrodynamics of Plasma. Nauka, Moscow (1988)

    Google Scholar 

  • Banks, P.: Collision frequencies and energy transfer: Electrons. Planet. Space Sci. 14, 1085–1103 (1966)

    Article  ADS  Google Scholar 

  • Banks, P.M., Holzer, T.E.: Charge exchange and ion diffusion for thermal nonequilibrium conditions. Planet. Space Sci. 16, 1019–1022 (1968)

    Article  ADS  Google Scholar 

  • Banks, P.M., Kockarts, G.: Aeronomy. Academic, New York (1973)

    Google Scholar 

  • Barakat, A.R., Schunk, R.W.: Momentum and energy exchange collision terms for interpenetrating bi-Maxwellian gases. J. Phys. D: Appl. Phys. 14, 421–438 (1981)

    Article  ADS  Google Scholar 

  • Barakat, A.R., Schunk, R.W.: Comparison of transport equations based on Maxwellian and bi-Maxwellian distributions for anisotropic plasmas. J. Phys. D: Appl. Phys. 15, 1195–1216 (1982a)

    Article  ADS  Google Scholar 

  • Barakat, A.R., Schunk, R.W.: Transport equations for multicomponent anisotropic space plasma: A review. Plasma Phys. 24, 389–418 (1982b)

    Article  MathSciNet  ADS  Google Scholar 

  • Barakat, A.R., Schunk, R.W., St.-Maurice, J.P.: Monte Carlo calculations of the O+ velocity distribution in the auroral ionosphere. J. Geophys. Res. 88, 3237–3241 (1983)

    Article  ADS  Google Scholar 

  • Belikov, V.S., Kolesnichenko, Ya.I., Oraevskii, V.N.: Nonlinear theory of the thermonuclear Alfven plasma instability. Sov. Phys. JETP 39, 828–831 (1974)

    ADS  Google Scholar 

  • Braginskii, S.I.: Transport processes in a plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 1, pp. 205–311. Consultants Bureau, New York (1965)

    Google Scholar 

  • Breig, E.L., Lin, C.C.: Excitation of the spin multiplets of the ground state of oxygen by slow electrons. Phys. Rev. 151, 67–79 (1966)

    Article  ADS  Google Scholar 

  • Burgers, J.M.: Flow Equations for Composite Gases. Academic, New York (1969)

    MATH  Google Scholar 

  • Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, London (1958)

    Google Scholar 

  • Chew, G.F., Goldberger, M.L., Low, F.E.: The Boltzmann equation and one-fluid hydromagnetic equations in the absence of particle collisions. Proc. R. Soc. A 236, 112–118 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chodura, R., Pohl, F.: Hydrodynamic equations for anisotropic plasmas in magnetic fields. II. Transport equations including collisions. Plasma Phys. 13, 645–658 (1971)

    Article  ADS  Google Scholar 

  • Chodura, R., Oraevskii, V., Pohl, F.: Transport coefficients for an anisotropic plasma. In: Geavit, M., Ghica, I., Popescu, A., Nastase, L. (eds.) Proceedings of the 9th International Conference on Phenomena in Ionized Gases, p. 406. Academia RSR, Bucharest (1969)

    Google Scholar 

  • Clark, D.H., Raitt, W.J., Willmore, A.P.: A measured anisotropy in the ionospheric electron temperature. J. Atmos. Terr. Phys. 35, 63–76 (1973)

    Article  ADS  Google Scholar 

  • Dalgarno, A., McDowell, M.R., Williams, A.: The mobilities of ions in the unlike gases. Philos. Trans. R. Soc. Lond. A 250, 411–425 (1958)

    Article  ADS  MATH  Google Scholar 

  • Demars, H.G., Schunk, R.W.: Transport equations for multispecies plasmas based on individual bi-Maxwellian distributions. J. Phys. D: Appl. Phys. 12, 1051–1077 (1979)

    Article  ADS  Google Scholar 

  • Gamayunov, K.V., Krivorutsky, E.N., Khazanov, G.V.: Hydrodynamic description of magnetosphere plasma with due regard to the wave activity of Alfven and fast magnetosonic waves. Planet. Space Sci. 39, 1097–1105 (1991)

    Article  ADS  Google Scholar 

  • Gerjoy, E., Stein, S.: Rotational excitation by slow electrons. Phys. Rev. 97, 1671–1679 (1955)

    Article  ADS  Google Scholar 

  • Gombosi, T.I., Rasmussen, C.E.: Transport of gyration dominated space plasmas of thermal origin. I. Generalized transport equations. J. Geophys. Res. 96, 7759–7778 (1991)

    Article  ADS  Google Scholar 

  • Gorbachev, O.A., Khazanov, G.V., Gamayunov, K.V., Krivorutsky, E.N.: A theoretical model for the ring current interaction with the Earth’s plasmasphere. Planet. Space Sci. 40, 859–872 (1992)

    Article  ADS  Google Scholar 

  • Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  • Gurevich, A.V.: Nonlinear Phenomena in the Ionosphere. Springer, New York (1978)

    Book  Google Scholar 

  • Horwitz, J., Banks, P.M.: Ion momentum and energy transfer rates for charge exchange collisions. Planet. Space Sci. 21, 1975–1981 (1973)

    Article  ADS  Google Scholar 

  • Hubert, D.: Convergence and approximation of auroral ion velocity distribution function. J. Geophys. Res. 87, 8255–8262 (1982)

    Article  ADS  Google Scholar 

  • Khazanov, G.V.: The Kinetics of the Electron Plasma Component of the Upper Atmosphere. Nauka, Moscow (1979) [English translation: #80-50707, National Translation Center, Washington, DC (1980)]

    Google Scholar 

  • Khazanov, G.V., Koen, M.A., Konikov, Yu.V., Sidorov, I.M.: Simulation of ionosphere–plasmasphere coupling taking into account ion inertia and temperature anisotropy. Planet. Space Sci. 32, 585–598 (1984)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Gombosi, T.I., Gorbachev, O.A., Trukhan, A.A., Miller, R.H.: Thermodynamic effects of the ion-sound instability in the ionosphere. J. Geophys. Res. 99, 5721–5726 (1994)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Kozyra, J.U., Gorbachev, O.A.: Magnetospheric convection and the effects of wave–particle interaction on the plasma temperature anisotropy in the equatorial plasma sphere. Adv. Space Res. 17(10) 117–128 (1996)

    Article  ADS  Google Scholar 

  • Kogan, M.N.: Dynamics of Rarified Gas. Nauka, Moscow (1967)

    Google Scholar 

  • Konikov, Yu.V.: Hydrodynamic equations in 16-moment approximation allowing for interactions of thermal electrons with ion cyclotron waves in the Earth’s outer plasma sphere. Planet. Space Sci. 38, 709–721 (1990)

    Article  ADS  Google Scholar 

  • Konikov, Yu.V., Khazanov, G.V.: Estimation of anisotropy of the electron temperature in the midlatitude ionosphere and plasmasphere of the Earth. Geomagn. Aeron. 21, 999–1003 (1981)

    ADS  Google Scholar 

  • Konikov, Yu.V., Khazanov, G.V.: Equations of anisotropic hydrodynamics for aeronomy. Phys. Solariterr. Potsdam 19, 103–117 (1982)

    Google Scholar 

  • Konikov, Yu.V., Khazanov, G.V.: Equations of anisotropic hydrodynamics for electron component of the ionospheric plasma. Planet. Space Sci. 31, 91–98 (1983)

    Article  ADS  Google Scholar 

  • Konikov, Yu.V., Sidorov, I.M., Khazanov, G.V.: Modeling of ionosphere-plasmasphere interaction with the account of temperature anisotropy. Geomagnetism and Aeronomy 23, 190–193 (1983)

    Google Scholar 

  • Konikov, Yu.V., Kuzivanov, V.I., Khazanov, G.V.: Hydrodynamics equations for anisotropic plasma. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa (in Russian), vol. 50, pp. 164–179. Nauka, Moscow (1980)

    Google Scholar 

  • Konikov, Yu.V., Gorbachev, O.A., Khazanov, G.V., Chernov, A.A.: Hydrodynamical equations for thermal electrons taking into account their scattering on ion cyclotron waves in the outer plasmasphere of the Earth. Planet. Space Sci. 37, 1157–1168 (1989)

    Article  ADS  Google Scholar 

  • Korth, A., Kremser, G., Perraut, S., Roux, A.: Interaction of particles with ion-cyclotron waves and magnetosonic waves. Observations from GEOS1 and GEOS2. Planet. Space Sci. 32, 1393–1406 (1984)

    Article  ADS  Google Scholar 

  • Likhter Ja.I., Larkina, V.I., Mikhailov, Yu.M., Afonin, V.V., Gdalevich, G.L., Serafimov, K.B., Bankov, L.G., Dachev, Ts.P., Trendafilov, N.S., Jiricek, F., Smilauer, J., Triska, P., Voita, J.: ELF–VLF emissions, ion density fluctuations and electron temperature in the ionospheric trough. Space Res. 19, 339–362 (1979)

    Google Scholar 

  • Mintzer, D.: Generalized orthogonal polynomial solutions of the Boltzmann equation. Phys. Fluids 8, 1076–1090 (1965)

    Article  ADS  MATH  Google Scholar 

  • Mitchell, Jr., H.G., Palmadesso, P.J.: A dynamic model for the auroral field line plasma in the presence of field-aligned current. J. Geophys. Res. 88, 2131–2139 (1983)

    Article  ADS  Google Scholar 

  • Oraevskii, V.N., Chodura, R., Feneberg, W.: Hydrodynamic equations for plasmas in magnetic fields: Collisionless approximation. Plasma Phys. 10, 819–828 (1968)

    Article  ADS  Google Scholar 

  • Oraevskii, V.N., Konikov, YU.V., Khazanov, G.V.: Transport Processes in Anisotropic Near-Earth Plasmas. Nauka, Moscow (1985)

    Google Scholar 

  • Schunk, R.W.: Transport equations for aeronomy. Planet. Space Sci. 23, 437–485 (1975)

    Article  ADS  Google Scholar 

  • Schunk, R.W.: Mathematical structure of transport equations for multispecies flows. Rev. Geophys. Space Phys. 15, 429–445 (1977)

    Article  ADS  Google Scholar 

  • Schunk, R.W., Nagy, A.F.: Electron temperature in the F region of the Ionosphere: Theory and observations. Rev. Geophys. 16, 355–399 (1978)

    Article  ADS  Google Scholar 

  • Schunk, R.W, Nagy, A.F.: Ionospheres. Cambridge University Press, New York (2000)

    Book  Google Scholar 

  • Schunk, R.W., Watkins, D.S.: Comparison of solutions to the thirteen-moment and standard transport equations for low speed thermal proton flows. Planet. Space Sci. 27, 433–444 (1979)

    Article  ADS  Google Scholar 

  • Schunk, R.W., Watkins, D.S.: Electron temperature anisotropy in the polar wind. J. Geophys. Res. 86, 91–102 (1981)

    Article  ADS  Google Scholar 

  • Schunk, R.W., Watkins, D.S.: Proton temperature anisotropy in the polar wind. J. Geophys. Res. 87, 171–180 (1982)

    Article  ADS  Google Scholar 

  • Shkarofsky, I.P., Johnston, T.W., Bachynski, M.P.: The Particle Kinetics of Plasmas. Addison-Wesley, Reading, MA (1966)

    Google Scholar 

  • Silin, V.P.: Introduction to the Kinetic Theory of Gases. Nauka, Moscow (1971)

    Google Scholar 

  • St.-Maurice, J.P., Schunk, R.W.: Use of generalized orthogonal polynomial solutions of Boltzmann’s equations in certain aeronomy problems: Auroral ion velocity distributions. J. Geophys. Res. 81, 2145–2154 (1976)

    Article  ADS  Google Scholar 

  • St.-Maurice, J.P., Schunk, R.W.: Auroral ion velocity distributions for a polarization collision model. Planet. Space Sci. 25, 243–260 (1977)

    Article  ADS  Google Scholar 

  • St.-Maurice, J.P., Schunk, R.W.: Ion velocity distributions in the high-latitude ionosphere. Rev. Geophys. Space Phys. 17, 99–134 (1979)

    Article  ADS  Google Scholar 

  • Takayanagi, K., Itikawa, Y.: Elementary processes involving electrons in the ionosphere. Space Sci. Rev. 11, 380–450 (1970)

    Article  ADS  Google Scholar 

  • Tanenbaum, B.S.: Plasma Physics. McGraw-Hill, New York (1967)

    Google Scholar 

  • Tsytovich, V.N.: The Theory of Turbulent Plasma. Atomizdat, Moscow (1971)

    Google Scholar 

  • Young, D.T., Perraut, S., Roux, A., de Villedary, C., Gendrin, R., Korth, A., Kremser, G., Jones, D.: Wave–particle interactions near \({\Omega _{{\rm{H}}{{\rm{e}}^ + }}}\) observed on GEOS 1 and 2, 1. Propagation of ion cyclotron waves in the He+ rich plasma. J. Geophys. Res. 86, 6755–6772 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George V. Khazanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Khazanov, G.V. (2011). Hydrodynamic Description of Space Plasma. In: Kinetic Theory of the Inner Magnetospheric Plasma. Astrophysics and Space Science Library, vol 372. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6797-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6797-8_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6796-1

  • Online ISBN: 978-1-4419-6797-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics