Skip to main content

Cytoskeleton, Axonal Transport, and the Mechanisms of Axonal Neuropathy

  • Chapter
  • First Online:
Cytoskeleton of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 3))

  • 1075 Accesses

Abstract

Axonal neuropathy, or axonopathy, is a major category of neuropathy in the central and peripheral nervous systems. Axonopathy is characterized by axonal degeneration and dysfunctional axonal transport. Peripheral axonopathies are more common than central axonopathies due to their lack of protection from the blood–brain barrier and resultant vulnerability to metabolic challenges. Although the pathogenic mechanisms of peripheral axonal neuropathy are still unclear, the dying-back pattern of the axonal damage suggests axons, rather than neuronal cell bodies, are the primary targets of the disease. Recent studies have revealed that defects of the cytoskeleton and axonal transport are associated with several types of peripheral neuropathy and some central neurological diseases. Direct evidence from genetic studies demonstrates that mutations in major components of the cytoskeleton and axonal transport result in axonal defects in several types of Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis, Alzheimer disease, and other types of genetic neurological disorders. In addition, post-translational modifications of cytoskeleton proteins also result in axonal defects in metabolic diseases like diabetic neuropathy. In this condition, phosphorylation and excess glycation of the axonal cytoskeletal components induce abnormal axonal functions. Advanced glycation end products (AGEs) and their receptors are most likely responsible for the axonal dysfunction. Taken together, understanding the defects in the axonal cytoskeleton and transport mechanisms provides important information for developing new treatments to prevent cytoskeletal damage in axonal neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed N (2005) Advanced glycation endproducts – role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21

    Article  CAS  PubMed  Google Scholar 

  • Almenar-Queralt A, Goldstein LS (2001) Linkers, packages and pathways: new concepts in axonal transport. Curr Opin Neurobiol 11:550–557

    Article  CAS  PubMed  Google Scholar 

  • Arias C, Sharma N, Davies P, Shafit-Zagardo B (1993) Okadaic acid induces early changes in microtubule-associated protein 2 and tau phosphorylation prior to neurodegeneration in cultured cortical neurons. J Neurochem 61:673–682

    Article  CAS  PubMed  Google Scholar 

  • Bach D, Pich S, Soriano FX, Vega N, Baumgartner B et al. (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278:17190–17197

    Article  CAS  PubMed  Google Scholar 

  • Baloh RH (2008) Mitochondrial dynamics and peripheral neuropathy. Neuroscientist 14:12–18

    Article  CAS  PubMed  Google Scholar 

  • Baloh RH, Schmidt RE, Pestronk A, Milbrandt J (2007) Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J Neurosci 27:422–430

    Article  CAS  PubMed  Google Scholar 

  • Ben Othmane K, Middleton LT, Loprest LJ, Wilkinson KM, Lennon F et al. (1993) Localization of a gene (CMT2A) for autosomal dominant Charcot-Marie-Tooth disease type 2 to chromosome 1p and evidence of genetic heterogeneity. Genomics 17:370–375

    Article  CAS  PubMed  Google Scholar 

  • Bhagavati S, Maccabee PJ, Xu W (2009) The neurofilament light chain gene (NEFL) mutation Pro22Ser can be associated with mixed axonal and demyelinating neuropathy. J Clin Neurosci 16:830–831

    Article  CAS  PubMed  Google Scholar 

  • Bierhaus A, Haslbeck KM, Humpert PM, Liliensiek B, Dehmer T et al. (2004) Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J Clin Invest 114:1741–1751

    CAS  PubMed  Google Scholar 

  • Cameron NE, Cotter MA, Dines K, Love A (1992) Effects of aminoguanidine on peripheral nerve function and polyol pathway metabolites in streptozotocin-diabetic rats. Diabetologia 35:946–950

    Article  CAS  PubMed  Google Scholar 

  • Carden MJ, Schlaepfer WW, Lee VM (1985) The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. J Biol Chem 260:9805–9817

    CAS  PubMed  Google Scholar 

  • Chao MV (2003) Retrograde transport redux. Neuron 39:1–2

    Article  CAS  PubMed  Google Scholar 

  • Chen KH, Guo X, Ma D, Guo Y, Li Q et al. (2004) Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol 6:872–883

    Article  CAS  PubMed  Google Scholar 

  • Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev 10:319–332

    CAS  Google Scholar 

  • Conforti L, Dell’Agnello C, Calvaresi N, Tortarolo M, Giorgini A et al. (2003) Kif1Bbeta isoform is enriched in motor neurons but does not change in a mouse model of amyotrophic lateral sclerosis. J Neurosci Res 71:732–739

    Article  CAS  PubMed  Google Scholar 

  • Connell JW, Lindon C, Luzio JP, Reid E (2009) Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic (Copenhagen, Denmark) 10:42–56

    Article  CAS  Google Scholar 

  • Ding J, Allen E, Wang W, Valle A, Wu C et al. (2006) Gene targeting of GAN in mouse causes a toxic accumulation of microtubule-associated protein 8 and impaired retrograde axonal transport. Hum Mol Genet 15:1451–1463

    Article  CAS  PubMed  Google Scholar 

  • Duncan JE, Goldstein LS (2006) The genetics of axonal transport and axonal transport disorders. PLoS Genet 2:e124

    Article  PubMed  Google Scholar 

  • Dyck PJ, Windebank AJ (2002) Diabetic and nondiabetic lumbosacral radiculoplexus neuropathies: new insights into pathophysiology and treatment. Muscle Nerve 25:477–491

    Article  PubMed  Google Scholar 

  • Edwards JL, Vincent AM, Cheng HT, Feldman EL (2008) Diabetic neuropathy: mechanisms to management. Pharmacol Ther 120:1–34

    Article  CAS  PubMed  Google Scholar 

  • Ekestern E (2004) Neurotrophic factors and amyotrophic lateral sclerosis. Neurodegener Dis 1:88–100

    Article  CAS  PubMed  Google Scholar 

  • Fabrizi GM, Cavallaro T, Angiari C, Cabrini I, Taioli F et al. (2007) Charcot-Marie-Tooth disease type 2E, a disorder of the cytoskeleton. Brain 130:394–403

    Article  PubMed  Google Scholar 

  • Fernyhough P, Gallagher A, Averill SA, Priestley JV, Hounsom L et al. (1999) Aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy. Diabetes 48:881–889

    Article  CAS  PubMed  Google Scholar 

  • Fernyhough P, Schmidt RE (2002) Neurofilaments in diabetic neuropathy. Int Rev Neurobiol 50:115–144

    Article  CAS  PubMed  Google Scholar 

  • Fink JK (2006) Hereditary spastic paraplegia. Curr Neurol Neurosci Rep 6:65–76

    Article  CAS  PubMed  Google Scholar 

  • Goldstein LS, Yang Z (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu Rev Neurosci 23:39–71

    Article  CAS  PubMed  Google Scholar 

  • Goryunov D, Nightingale A, Bornfleth L, Leung C, Liem RK (2008) Multiple disease-linked myotubularin mutations cause NFL assembly defects in cultured cells and disrupt myotubularin dimerization. J Neurochem 104:1536–1552

    Article  CAS  PubMed  Google Scholar 

  • Griffin JW, Watson DF (1988) Axonal transport in neurological disease. Ann Neurol 23:3–13

    Article  CAS  PubMed  Google Scholar 

  • Gunawardena S, Goldstein LS (2001) Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32:389–401

    Article  CAS  PubMed  Google Scholar 

  • Gunawardena S, Goldstein LS (2004) Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J Neurobiol 58:258–271

    Article  CAS  PubMed  Google Scholar 

  • Harding AE, Thomas PK (1980) Genetic aspects of hereditary motor and sensory neuropathy (types I and II). J Med Genet 17:329–336

    Article  CAS  PubMed  Google Scholar 

  • Higuchi M, Lee VM, Trojanowski JQ (2002) Tau and axonopathy in neurodegenerative disorders. Neuromolecular Med 2:131–150

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Noda Y (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88:1089–1118

    Article  CAS  PubMed  Google Scholar 

  • Houlden h, Laura M, Warrant-De Vrieze F, Blake J et al. (2008) Mutations in the HSP27 (HSPB1) gene cause dominant, recessive, and sporadic distal HMN I CMT type 2. Neurology 71:1660–8

    Google Scholar 

  • Kamal A, Stokin GB, Yang Z, Xia CH, Goldstein LS (2000) Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28:449–459

    Article  CAS  PubMed  Google Scholar 

  • Kasher PR, De Vos KJ, Wharton SB, Manser C, Bennett EJ et al. (2009) Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem 110:34–44

    Article  CAS  PubMed  Google Scholar 

  • King RH (2001) The role of glycation in the pathogenesis of diabetic polyneuropathy. Mol Pathol 54:400–408

    CAS  PubMed  Google Scholar 

  • LaMonte BH, Wallace KE, Holloway BA, Shelly SS, Ascano J et al. (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34:715–727

    Article  CAS  PubMed  Google Scholar 

  • Lamb JR, Tugendreich S, Hieter P (1995) Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci 20:257–259

    Article  CAS  PubMed  Google Scholar 

  • Lau KK, Ching CK, Mak CM, Chan YW (2009) Hereditary spastic paraplegias. Hong Kong Med J 15:217–220

    CAS  PubMed  Google Scholar 

  • Lee VM, Daughenbaugh R, Trojanowski JQ (1994) Microtubule stabilizing drugs for the treatment of Alzheimer’s disease. Neurobiol Aging 15(Suppl 2):S87–S89

    Article  PubMed  Google Scholar 

  • Lo Giudice M, Neri M, Falco M, Sturnio M, Calzolari E et al. (2006) A missense mutation in the coiled-coil domain of the KIF5A gene and late-onset hereditary spastic paraplegia. Arch Neurol 63:284–287

    Article  PubMed  Google Scholar 

  • Macioce P, Filliatreau G, Figliomeni B, Hassig R, Thiery J et al. (1989) Slow axonal transport impairment of cytoskeletal proteins in streptozocin-induced diabetic neuropathy. J Neurochem 53:1261–1267

    Article  CAS  PubMed  Google Scholar 

  • McLean WG (1997) The role of axonal cytoskeleton in diabetic neuropathy. Neurochem Res 22:951–956

    Article  CAS  PubMed  Google Scholar 

  • McLean WG, Pekiner C, Cullum NA, Casson IF (1992) Posttranslational modifications of nerve cytoskeletal proteins in experimental diabetes. Mol Neurobiol 6:225–237

    Article  CAS  PubMed  Google Scholar 

  • McLean WG, Roberts RE, Mullins FH (1995) Post-translational modifications of microtubule- and growth-associated proteins in nerve regeneration and neuropathy. Biochem Soc Trans 23:76–80

    CAS  PubMed  Google Scholar 

  • Medori R, Autilio-Gambetti L, Jenich H, Gambetti P (1988) Changes in axon size and slow axonal transport are related in experimental diabetic neuropathy. Neurology 38:597–601

    CAS  PubMed  Google Scholar 

  • Medori R, Autilio-Gambetti L, Monaco S, Gambetti P (1985) Experimental diabetic neuropathy: impairment of slow transport with changes in axon cross-sectional area. Proc Natl Acad Sci USA 82:7716–7720

    Article  CAS  PubMed  Google Scholar 

  • Meerwaldt R, Links TP, Graaff R, Hoogenberg K, Lefrandt JD et al. (2005) Increased accumulation of skin advanced glycation end-products precedes and correlates with clinical manifestation of diabetic neuropathy. Diabetologia 48:1637–1644

    Article  CAS  PubMed  Google Scholar 

  • Misur I, Zarkovic K, Barada A, Batelja L, Milicevic Z et al. (2004) Advanced glycation endproducts in peripheral nerve in type 2 diabetes with neuropathy. Acta Diabetol 41:158–166

    Article  CAS  PubMed  Google Scholar 

  • Mohiuddin L, Fernyhough P, Tomlinson DR (1995) Reduced levels of mRNA encoding endoskeletal and growth-associated proteins in sensory ganglia in experimental diabetes. Diabetes 44:25–30

    Article  CAS  PubMed  Google Scholar 

  • Munch C, Sedlmeier R, Meyer T, Homberg V, Sperfeld AD et al. (2004) Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 63:724–726

    CAS  PubMed  Google Scholar 

  • Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R et al. (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79:1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA (1992) Slow axonal transport. Curr Opin Cell Biol 4:8–14

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA (1998) The slow axonal transport of cytoskeletal proteins. Curr Opin Cell biol 10:87–92

    Article  CAS  PubMed  Google Scholar 

  • Pantelidou M, Zographos SE, Lederer CW, Kyriakides T, Pfaffl MW et al. (2007) Differential expression of molecular motors in the motor cortex of sporadic ALS. Neurobiol Dis 26:577–589

    Article  CAS  PubMed  Google Scholar 

  • Pekiner C, Cullum NA, Hughes JN, Hargreaves AJ, Mahon J et al. (1993) Glycation of brain actin in experimental diabetes. J Neurochem 61:436–442

    Article  CAS  PubMed  Google Scholar 

  • Pekiner C, McLean WG (1991) Neurofilament protein phosphorylation in spinal cord of experimentally diabetic rats. J Neurochem 56:1362–1367

    Article  CAS  PubMed  Google Scholar 

  • Perrot R, Berges R, Bocquet A, Eyer J (2008) Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 38:27–65

    Article  CAS  PubMed  Google Scholar 

  • Pestronk A, Watson DF, Yuan CM (1990) Neurofilament phosphorylation in peripheral nerve: changes with axonal length and growth state. J Neurochem 54:977–982

    Article  CAS  PubMed  Google Scholar 

  • Pigino G, Morfini G, Pelsman A, Mattson MP, Brady ST et al. (2003) Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci 23:4499–4508

    CAS  PubMed  Google Scholar 

  • Previtali SC, Zerega B, Sherman DL, Brophy PJ, Dina G et al. (2003) Myotubularin-related 2 protein phosphatase and neurofilament light chain protein, both mutated in CMT neuropathies, interact in peripheral nerve. Hum Mol Genet 12:1713–1723

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AJ, Bartlett SE, Hendry IA (2000) Molecular mechanisms regulating the retrograde axonal transport of neurotrophins. Brain Res Brain Res Rev 33:169–178

    Article  CAS  PubMed  Google Scholar 

  • Rismanchi N, Soderblom C, Stadler J, Zhu PP, Blackstone C (2008) Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum Mol Genet 17:1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Coffee P, Smith G, Liem RK, Brady ST et al. (2000) Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. J Neurosci 20:6849–6861

    CAS  PubMed  Google Scholar 

  • Ryle C, Donaghy M (1995) Non-enzymatic glycation of peripheral nerve proteins in human diabetics. J Neurol Sci 129:62–68

    Article  CAS  PubMed  Google Scholar 

  • Ryle C, Leow CK, Donaghy M (1997) Nonenzymatic glycation of peripheral and central nervous system proteins in experimental diabetes mellitus. Muscle Nerve 20:577–584

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Hayashi Y, Suzuki T, Tanaka.H, Hozumi.I(1997) Linkage mapping of the gene for Charcot-Marie-Tooth disease type 2 to chromosome 1p (CMT2A) and the clinical features of CMT2A. Neurology 49:1630–1635

    CAS  PubMed  Google Scholar 

  • Schindowski K, Belarbi K, Buee L (2008) Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Genes Brain Behav 7(Suppl 1):43–56

    CAS  PubMed  Google Scholar 

  • Sekido H, Suzuki T, Jomori T, Takeuchi M, Yabe-Nishimura C et al. (2004) Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells. Biochem Biophys Res Commun 320:241–248

    Article  CAS  PubMed  Google Scholar 

  • Sell DR, Nagaraj RH, Grandhee SK, Odetti P, Lapolla A et al. (1991) Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diabetes Metab Rev 7:239–251

    Article  CAS  PubMed  Google Scholar 

  • Sharp GA, Shaw G, Weber K (1982) Immunoelectronmicroscopical localization of the three neurofilament triplet proteins along neurofilaments of cultured dorsal root ganglion neurones. Exp Cell Res 137:403–413

    Article  CAS  PubMed  Google Scholar 

  • Shin JS, Chung KW, Cho SY, Yun J, Hwang SJ et al. (2008) NEFL Pro22Arg mutation in Charcot-Marie-Tooth disease type 1. J Hum Genet 53:936–940

    Article  PubMed  Google Scholar 

  • Shy ME (2004) Charcot-Marie-Tooth disease: an update. Curr Opin Neurol 17:579–585

    Article  CAS  PubMed  Google Scholar 

  • Sidenius P, Jakobsen J (1981) Retrograde axonal transport. A possible role in the development of neuropathy. Diabetologia 20:110–112

    Article  CAS  PubMed  Google Scholar 

  • Strom AL, Gal J, Shi P, Kasarskis EJ, Hayward LJ et al. (2008) Retrograde axonal transport and motor neuron disease. J Neurochem 106:495–505

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Nishizawa Y, Horiuchi S, Yagihashi S (1997) Localization in human diabetic peripheral nerve of N(epsilon)-carboxymethyllysine-protein adducts, an advanced glycation endproduct. Diabetologia 40:1380–1387

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Yasujima M, Yagihashi S (2008) Role of advanced glycation end products in diabetic neuropathy. Curr Pharm Des 14:953–961

    Article  CAS  PubMed  Google Scholar 

  • Sullivan KA, Hayes JM, Wiggin TD, Backus C, Oh S et al. (2007) Mouse models of diabetic neuropathy. Neurobiol Dis 28:276–85

    Google Scholar 

  • Takeuchi M, Bucala R, Suzuki T, Ohkubo T, Yamazaki M et al. (2000) Neurotoxicity of advanced glycation end-products for cultured cortical neurons. J Neuropathol Exp Neurol 59:1094–1105

    CAS  PubMed  Google Scholar 

  • Thomas PK, Eliasson S, Dyck PJ, Thomas PK, Lambert EM (1975) Peripheral neuropathy. Saunders, Philadelphia, PA

    Google Scholar 

  • Thomas PK, Ochoa J (1993) Clinical features and differential diagnosis. In: Dyck PJ, Thomas PK Griffin JW, Low PA, Poduslo JF(ed) Peripheral neuropathy, vol 2. Saunders, Philadelphia, PA, pp 749–774

    Google Scholar 

  • Thornalley PJ (2002) Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int Rev Neurobiol 50:37–57

    Article  CAS  PubMed  Google Scholar 

  • Toth C, Martinez J, Zochodne DW (2007) RAGE, diabetes, and the nervous system. Curr Mol Med 7:766–776

    Article  CAS  PubMed  Google Scholar 

  • Toth C, Rong LL, Yang C, Martinez J, Song F et al. (2008) Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Diabetes 57:1002–1017

    Article  CAS  PubMed  Google Scholar 

  • Vincent AM, Perrone L, Sullivan KA, Backus C, Sastry AM et al. (2007) Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 148:548–558

    Article  CAS  PubMed  Google Scholar 

  • Vitadello M, Filliatreau G, Dupont JL, Hassig R, Gorio A et al. (1985) Altered axonal transport of cytoskeletal proteins in the mutant diabetic mouse. J Neurochem 45:860–868

    Article  CAS  PubMed  Google Scholar 

  • Vlassara H, Brownlee M, Cerami A (1981) Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus. Proc Natl Acad Sci USA 78:5190–5192

    Article  CAS  PubMed  Google Scholar 

  • Vlassara H, Li YM, Imani F, Wojciechowicz D, Yang Z et al. (1995) Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGE-receptor complex. Mol Med 1:634–646

    CAS  PubMed  Google Scholar 

  • Vlassara H, Palace MR (2002) Diabetes and advanced glycation endproducts. J Intern Med 251:87–101

    Article  CAS  PubMed  Google Scholar 

  • Wada R, Nishizawa Y, Yagihashi N, Takeuchi M, Ishikawa Y et al. (2001) Effects of OPB-9195, anti-glycation agent, on experimental diabetic neuropathy. Eur J Clin Invest 31:513–520

    Article  CAS  PubMed  Google Scholar 

  • Wada R, Yagihashi S (2005) Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann NY Acad Sci 1043:598–604

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ho CL, Sun D, Liem RK, Brown A (2000) Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat Cell Biol 2:137–141

    Article  CAS  PubMed  Google Scholar 

  • Williams SK, Howarth NL, Devenny JJ, Bitensky MW (1982) Structural and functional consequences of increased tubulin glycosylation in diabetes mellitus. Proc Natl Acad Sci USA 79:6546–6550

    Article  CAS  PubMed  Google Scholar 

  • Xia CH, Roberts EA, Her LS, Liu X, Williams DS et al. (2003) Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J Cell Biol 161:55–66

    Article  CAS  PubMed  Google Scholar 

  • Yagihashi S, Kamijo M, Watanabe K (1990) Reduced myelinated fiber size correlates with loss of axonal neurofilaments in peripheral nerve of chronically streptozotocin diabetic rats. Am J Pathol 136:1365–1373

    CAS  PubMed  Google Scholar 

  • Yang Y, Allen E, Ding J, Wang W (2007) Giant axonal neuropathy. Cell Mol Life Sci 64:601–609

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T et al. (2001) Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105:587–597

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsinlin T. Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cheng, H.T., Callaghan, B., Dauch, J.R., Feldman, E.L. (2011). Cytoskeleton, Axonal Transport, and the Mechanisms of Axonal Neuropathy. In: Nixon, R., Yuan, A. (eds) Cytoskeleton of the Nervous System. Advances in Neurobiology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6787-9_27

Download citation

Publish with us

Policies and ethics