Skip to main content

Crosstalks Between Myelinating Cells and the Axonal Cytoskeleton

  • Chapter
  • First Online:
Cytoskeleton of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 3))

Abstract

A constant and dynamic communication between axons and myelinating cells is necessary for the correct development, function, and maintenance of myelinated fibers. Recently, several studies highlighted the pivotal role of the axonal cytoskeleton in this reciprocal communication. In particular, myelinating cells control the radial axonal growth by regulating the expression, transport, and organization of the axonal cytoskeleton. Conversely, this latter modulates dimensions of the myelin sheath by controlling the axonal caliber. Here, we will review the main investigations contributing to a better understanding of how the axoskeleton and myelinating cells influence each other to optimize conduction properties of myelinated fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerley S, Thornhill P, Grierson AJ, Brownlees J, Anderton BH, Leigh PN, Shaw CE, Miller CC (2003) Neurofilament heavy chain side arm phosphorylation regulates axonal transport of neurofilaments. J Cell Biol 161:489–495

    Article  CAS  PubMed  Google Scholar 

  • Aguayo AJ, Attiwell M, Trecarten J, Perkins S, Bray GM (1977) Abnormal myelination in transplanted trembler mouse Schwann cells. Nature 265:73–75

    Article  CAS  PubMed  Google Scholar 

  • Archer DR, Watson DF, Griffin JW (1994) Phosphorylation-dependent immunoreactivity of neurofilaments and the rate of slow axonal transport in the central and peripheral axons of the rat dorsal root ganglion. J Neurochem 62:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Atanasoski S, Scherer SS, Sirkowski E, Leone D, Garratt AN, Birchmeier C, Suter U (2006) ErbB2 signaling in Schwann cells is mostly dispensable for maintenance of myelinated peripheral nerves and proliferation of adult Schwann cells after injury. J Neurosci 26:2124–2131

    Article  CAS  PubMed  Google Scholar 

  • Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y, Shatz C, Tessier-Lavigne M (2008) PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322:967–970

    Article  CAS  PubMed  Google Scholar 

  • Baker GE, Stryker MP (1990) Retinofugal fibres change conduction velocity and diameter between the optic nerve and tract in ferrets. Nature 344:342–345

    Article  CAS  PubMed  Google Scholar 

  • Bao J, Wolpowitz D, Role LW, Talmage DA (2003) Back signaling by the Nrg-1 intracellular domain. J Cell Biol 161:1133–1141

    Article  CAS  PubMed  Google Scholar 

  • Barres BA, Raff MC (1993) Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361:258–260

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM, Robertson J, Julien JP (1999) Interactions between peripherin and neurofilaments in cultured cells: disruption of peripherin assembly by the NF-M and NF-H subunits. Biochem Cell Biol 77:41–45

    Article  CAS  PubMed  Google Scholar 

  • Brady ST, Tytell M, Lasek RJ (1984) Axonal tubulin and axonal microtubules: biochemical evidence for cold stability. J Cell Biol 99:1716–1724

    Article  CAS  PubMed  Google Scholar 

  • Brady ST, Witt AS, Kirkpatrick LL, de Waegh SM, Readhead C, Tu PH, Lee VM (1999) Formation of compact myelin is required for maturation of the axonal cytoskeleton. J Neurosci 19:7278–7288

    CAS  PubMed  Google Scholar 

  • Brill MH, Waxman SG, Moore JW, Joyner RW (1977) Conduction velocity and spike configuration in myelinated fibres: computed dependence on internode distance. J Neurol Neurosurg Psychiatry 40:769–774

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Muller T, Wende H, Stassart RM, Nawaz S, Humml C, Velanac V, Radyushkin K, Goebbels S, Fischer TM, Franklin RJ, Lai C, Ehrenreich H, Birchmeier C, Schwab MH, Nave KA (2008) Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 59:581–595

    Article  CAS  PubMed  Google Scholar 

  • Campagnoni AT, Macklin WB (1988) Cellular and molecular aspects of myelin protein gene expression. Mol Neurobiol 2:41–89

    Article  CAS  PubMed  Google Scholar 

  • Carden MJ, Trojanowski JQ, Schlaepfer WW, Lee VM (1987) Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J Neurosci 7:3489–3504

    CAS  PubMed  Google Scholar 

  • Carenini S, Montag D, Schachner M, Martini R (1999) Subtle roles of neural cell adhesion molecule and myelin-associated glycoprotein during Schwann cell spiralling in P0-deficient mice. Glia 27:203–212

    Article  CAS  PubMed  Google Scholar 

  • Cole JS, Messing A, Trojanowski JQ, Lee VM (1994) Modulation of axon diameter and neurofilaments by hypomyelinating Schwann cells in transgenic mice. J Neurosci 14:6956–6966

    CAS  PubMed  Google Scholar 

  • Court FA, Sherman DL, Pratt T, Garry EM, Ribchester RR, Cottrell DF, Fleetwood-Walker SM, Brophy PJ (2004) Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves. Nature 431:191–195

    Article  CAS  PubMed  Google Scholar 

  • Dashiell SM, Tanner SL, Pant HC, Quarles RH (2002) Myelin-associated glycoprotein modulates expression and phosphorylation of neuronal cytoskeletal elements and their associated kinases. J Neurochem 81:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • de Waegh S, Brady ST (1990) Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: the trembler as an in vivo model for Schwann cell-axon interactions. J Neurosci 10:1855–1865

    PubMed  Google Scholar 

  • de Waegh SM, Brady ST (1991) Local control of axonal properties by Schwann cells: neurofilaments and axonal transport in homologous and heterologous nerve grafts. J Neurosci Res 30:201–212

    Article  PubMed  Google Scholar 

  • de Waegh SM, Lee VM, Brady ST (1992) Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68:451–463

    Article  PubMed  Google Scholar 

  • Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F, Zalc B, Lubetzki C (1996) Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci USA 93:9887–9892

    Article  CAS  PubMed  Google Scholar 

  • Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang K, Nikulina E, Kimura N, Cai H, Deng K, Gao Y, He Z, Filbin M (2002) Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35:283–290

    Article  CAS  PubMed  Google Scholar 

  • Elder GA, Friedrich VL Jr, Bosco P, Kang C, Gourov A, Tu PH, Lee VM, Lazzarini RA (1998a) Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L), and neurofilament content. J Cell Biol 141:727–739

    Article  CAS  PubMed  Google Scholar 

  • Elder GA, Friedrich VL Jr, Kang C, Bosco P, Gourov A, Tu PH, Zhang B, Lee VM, Lazzarini RA (1998b) Requirement of heavy neurofilament subunit in the development of axons with large calibers. J Cell Biol 143:195–205

    Article  CAS  PubMed  Google Scholar 

  • Elder GA, Friedrich VL Jr, Lazzarini RA (2001) Schwann cells and oligodendrocytes read distinct signals in establishing myelin sheath thickness. J Neurosci Res 65:493–499

    Article  CAS  PubMed  Google Scholar 

  • Eyer J, Peterson A (1994) Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galactosidase fusion protein. Neuron 12:389–405

    Article  CAS  PubMed  Google Scholar 

  • Fraher JP, O’Sullivan AW (2000) Interspecies variation in axon-myelin relationships. Cells Tissues Organs 167:206–213

    Article  CAS  PubMed  Google Scholar 

  • Franzen R, Tanner SL, Dashiell SM, Rottkamp CA, Hammer JA, Quarles RH (2001) Microtubule-associated protein 1B: a neuronal binding partner for myelin-associated glycoprotein. J Cell Biol 155:893–898

    Article  CAS  PubMed  Google Scholar 

  • Fried K, Hildebrand C, Erdelyi G (1982) Myelin sheath thickness and internodal length of nerve fibres in the developing feline inferior alveolar nerve. J Neurol Sci 54:47–57

    Article  CAS  PubMed  Google Scholar 

  • Friede RL, Miyagishi T (1972) Adjustment of the myelin sheath to changes in axon caliber. Anat Rec 172:1–14

    Article  CAS  PubMed  Google Scholar 

  • Friede RL, Samorajski T (1968) Myelin formation in the sciatic nerve of the rat. A quantitative electron microscopic, histochemical and radioautographic study. J Neuropathol Exp Neurol 27:546–570

    Article  CAS  PubMed  Google Scholar 

  • Garcia ML, Lobsiger CS, Shah SB, Deerinck TJ, Crum J, Young D, Ward CM, Crawford TO, Gotow T, Uchiyama Y, Ellisman MH, Calcutt NA, Cleveland DW (2003) NF-M is an essential target for the myelin-directed “outside-in” signaling cascade that mediates radial axonal growth. J Cell Biol 163:1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Garcia ML, Rao MV, Fujimoto J, Garcia VB, Shah SB, Crum J, Gotow T, Uchiyama Y, Ellisman M, Calcutt NA, Cleveland DW (2009) Phosphorylation of highly conserved neurofilament medium KSP repeats is not required for myelin-dependent radial axonal growth. J Neurosci 29:1277–1284

    Article  CAS  PubMed  Google Scholar 

  • Garratt AN, Voiculescu O, Topilko P, Charnay P, Birchmeier C (2000) A dual role of erbB2 in myelination and in expansion of the Schwann cell precursor pool. J Cell Biol 148:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Goh EL, Young JK, Kuwako K, Tessier-Lavigne M, He Z, Griffin JW, Ming GL (2008) beta1-integrin mediates myelin-associated glycoprotein signaling in neuronal growth cones. Mol Brain 1:10

    Article  PubMed  CAS  Google Scholar 

  • Goldman L, Albus JS (1968) Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity-diameter relation. Biophys J 8:596–607

    Article  CAS  PubMed  Google Scholar 

  • Griffin JW, Anthony DC, Fahnestock KE, Hoffman PN, Graham DG (1984) 3,4-Dimethyl-2,5-hexanedione impairs the axonal transport of neurofilament proteins. J Neurosci 4:1516–1526

    CAS  PubMed  Google Scholar 

  • Gyllensten L, Malmfors T (1963) Myelinization of the optic nerve and its dependence on visual function–a quantitative investigation in mice. J Embryol Exp Morphol 11:255–266

    CAS  PubMed  Google Scholar 

  • Hara Y, Shiga T, Abe I, Tsujino A, Ichimura H, Okado N, Ochiai N (2003) P0 mRNA expression increases during gradual nerve elongation in adult rats. Exp Neurol 184:428–435

    Article  CAS  PubMed  Google Scholar 

  • Heath JW, Inuzuka T, Quarles RH, Trapp BD (1991) Distribution of P0 protein and the myelin-associated glycoprotein in peripheral nerves from trembler mice. J Neurocytol 20:439–449

    Article  CAS  PubMed  Google Scholar 

  • Hedstrom KL, Rasband MN (2006) Intrinsic and extrinsic determinants of ion channel localization in neurons. J Neurochem 98:1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand C, Remahl S, Persson H, Bjartmar C (1993) Myelinated nerve fibres in the CNS. Prog Neurobiol 40:319–384

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PN, Lasek RJ, Griffin JW, Price DL (1983) Slowing of the axonal transport of neurofilament proteins during development. J Neurosci 3:1694–1700

    CAS  PubMed  Google Scholar 

  • Hoffman PN, Thompson GW, Griffin JW, Price DL (1985) Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers. J Cell Biol 101:1332–1340

    Article  CAS  PubMed  Google Scholar 

  • Hsieh ST, Kidd GJ, Crawford TO, Xu Z, Lin WM, Trapp BD, Cleveland DW, Griffin JW (1994) Regional modulation of neurofilament organization by myelination in normal axons. J Neurosci 14:6392–6401

    CAS  PubMed  Google Scholar 

  • Jung C, Lee S, Ortiz D, Zhu Q, Julien JP, Shea TB (2005) The high and middle molecular weight neurofilament subunits regulate the association of neurofilaments with kinesin: inhibition by phosphorylation of the high molecular weight subunit. Brain Res Mol Brain Res 141:151–155

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Yabe JT, Shea TB (2000) C-terminal phosphorylation of the high molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity. Brain Res 856:12–19

    Article  CAS  PubMed  Google Scholar 

  • Kaplan MR, Meyer-Franke A, Lambert S, Bennett V, Duncan ID, Levinson SR, Barres BA (1997) Induction of sodium channel clustering by oligodendrocytes. Nature 386:724–728

    Article  CAS  PubMed  Google Scholar 

  • Kerber G, Streif R, Schwaiger FW, Kreutzberg GW, Hager G (2003) Neuregulin-1 isoforms are differentially expressed in the intact and regenerating adult rat nervous system. J Mol Neurosci 21:149–165

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick LL, Brady ST (1994) Modulation of the axonal microtubule cytoskeleton by myelinating Schwann cells. J Neurosci 14:7440–7450

    CAS  PubMed  Google Scholar 

  • Kirkpatrick LL, Witt AS, Payne HR, Shine HD, Brady ST (2001) Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons. J Neurosci 21:2288–2297

    CAS  PubMed  Google Scholar 

  • Komiya Y, Cooper NA, Kidman AD (1986) The long-term effects of a single injection of beta,beta’-iminodipropionitrile on slow axonal transport in the rat. J Biochem 100:1241–1246

    CAS  PubMed  Google Scholar 

  • Lasek RJ, Oblinger MM, Drake PF (1983) Molecular biology of neuronal geometry: expression of neurofilament genes influences axonal diameter. Cold Spring Harb Symp Quant Biol 48(2):731–744

    CAS  PubMed  Google Scholar 

  • Lewis SA, Lee MG, Cowan NJ (1985) Five mouse tubulin isotypes and their regulated expression during development. J Cell Biol 101:852–861

    Article  CAS  PubMed  Google Scholar 

  • Li C, Tropak MB, Gerlai R, Clapoff S, Abramow-Newerly W, Trapp B, Peterson A, Roder J (1994) Myelination in the absence of myelin-associated glycoprotein. Nature 369:747–750

    Article  CAS  PubMed  Google Scholar 

  • Liu BP, Fournier A, GrandPre T, Strittmatter SM (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297:1190–1193

    Article  CAS  PubMed  Google Scholar 

  • Lunn MP, Crawford TO, Hughes RA, Griffin JW, Sheikh KA (2002) Anti-myelin-associated glycoprotein antibodies alter neurofilament spacing. Brain 125:904–911

    Article  PubMed  Google Scholar 

  • Mata M, Kupina N, Fink DJ (1992) Phosphorylation-dependent neurofilament epitopes are reduced at the node of Ranvier. J Neurocytol 21:199–210

    Article  CAS  PubMed  Google Scholar 

  • Matthews MA (1968) An electron microscopic study of the relationship between axon diameter and the initiation of myelin production in the peripheral nervous system. Anat Rec 161:337–351

    Article  CAS  PubMed  Google Scholar 

  • Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C, Role L, Lai C, Schwab MH, Nave KA (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304:700–703

    Article  CAS  PubMed  Google Scholar 

  • Monaco S, Autilio-Gambetti L, Zabel D, Gambetti P (1985) Giant axonal neuropathy: acceleration of neurofilament transport in optic axons. Proc Natl Acad Sci USA 82:920–924

    Article  CAS  PubMed  Google Scholar 

  • Montag D, Giese KP, Bartsch U, Martini R, Lang Y, Bluthmann H, Karthigasan J, Kirschner DA, Wintergerst ES, Nave KA et al. (1994) Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 13:229–246

    Article  CAS  PubMed  Google Scholar 

  • Pachter JS, Liem RK (1984) The differential appearance of neurofilament triplet polypeptides in the developing rat optic nerve. Dev Biol 103:200–210

    Article  CAS  PubMed  Google Scholar 

  • Paivalainen S, Heape AM (2007) Myelin-associated glycoprotein and galactosylcerebroside expression in Schwann cells during myelination. Mol Cell Neurosci 35:436–446

    Article  PubMed  CAS  Google Scholar 

  • Pan B, Fromholt SE, Hess EJ, Crawford TO, Griffin JW, Sheikh KA, Schnaar RL (2005) Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp Neurol 195:208–217

    Article  CAS  PubMed  Google Scholar 

  • Pant AC, Veeranna, Pant HC, Amin N (1997) Phosphorylation of human high molecular weight neurofilament protein (hNF-H) by neuronal cyclin-dependent kinase 5 (cdk5). Brain Res 765:259–266

    Article  CAS  PubMed  Google Scholar 

  • Perkins CS, Aguayo AJ, Bray GM (1981) Behavior of Schwann cells from trembler mouse unmyelinated fibers transplanted into myelinated nerves. Exp Neurol 71:515–526

    Article  CAS  PubMed  Google Scholar 

  • Perrin-Tricaud C, Rutishauser U, Tricaud N (2007) P120 catenin is required for thickening of Schwann cell myelin. Mol Cell Neurosci 35:120–129

    Article  CAS  PubMed  Google Scholar 

  • Perrot R, Berges R, Bocquet A, Eyer J (2008) Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 38:27–65

    Article  CAS  PubMed  Google Scholar 

  • Perrot R, Lonchampt P, Peterson AC, Eyer J (2007) Axonal neurofilaments control multiple fiber properties but do not influence structure or spacing of nodes of Ranvier. J Neurosci 27:9573–9584

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Muir AR (1959) The relationship between axons and Schwann cells during development of peripheral nerves in the rat. Q J Exp Physiol Cogn Med Sci 44:117–130

    CAS  PubMed  Google Scholar 

  • Pollard JD, McLeod JG (1980) Nerve grafts in the Trembler mouse. An electrophysiological and histological study. J Neurol Sci 46:373–383

    Article  CAS  PubMed  Google Scholar 

  • Poltorak M, Sadoul R, Keilhauer G, Landa C, Fahrig T, Schachner M (1987) Myelin-associated glycoprotein, a member of the L2/HNK-1 family of neural cell adhesion molecules, is involved in neuron-oligodendrocyte and oligodendrocyte-oligodendrocyte interaction. J Cell Biol 105:1893–1899

    Article  CAS  PubMed  Google Scholar 

  • Popko B, Puckett C, Lai E, Shine HD, Readhead C, Takahashi N, Hunt SW 3rd, Sidman RL, Hood L (1987) Myelin deficient mice: expression of myelin basic protein and generation of mice with varying levels of myelin. Cell 48:713–721

    Article  CAS  PubMed  Google Scholar 

  • Quarles RH (2009) A hypothesis about the relationship of myelin-associated glycoprotein’s function in myelinated axons to its capacity to inhibit neurite outgrowth. Neurochem Res 34:79–86

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Campbell J, Yuan A, Kumar A, Gotow T, Uchiyama Y, Nixon RA (2003) The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate. J Cell Biol 163:1021–1031

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Garcia ML, Miyazaki Y, Gotow T, Yuan A, Mattina S, Ward CM, Calcutt NA, Uchiyama Y, Nixon RA, Cleveland DW (2002) Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. J Cell Biol 158:681–693

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Houseweart MK, Williamson TL, Crawford TO, Folmer J, Cleveland DW (1998) Neurofilament-dependent radial growth of motor axons and axonal organization of neurofilaments does not require the neurofilament heavy subunit (NF-H) or its phosphorylation. J Cell Biol 143:171–181

    Article  CAS  PubMed  Google Scholar 

  • Readhead C, Hood L (1990) The dysmyelinating mouse mutations shiverer (shi) and myelin deficient (shimld). Behav Genet 20:213–234

    Article  CAS  PubMed  Google Scholar 

  • Readhead C, Popko B, Takahashi N, Shine HD, Saavedra RA, Sidman RL, Hood L (1987) Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell 48:703–712

    Article  CAS  PubMed  Google Scholar 

  • Reles A, Friede RL (1991) Axonal cytoskeleton at the nodes of Ranvier. J Neurocytol 20:450–458

    Article  CAS  PubMed  Google Scholar 

  • Roach A, Takahashi N, Pravtcheva D, Ruddle F, Hood L (1985) Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell 42:149–155

    Article  CAS  PubMed  Google Scholar 

  • Rosenbluth J (1980) Peripheral myelin in the mouse mutant Shiverer. J Comp Neurol 193:729–739

    Article  CAS  PubMed  Google Scholar 

  • Rushton WA (1951) A theory of the effects of fibre size in medullated nerve. J Physiol 115:101–122

    CAS  PubMed  Google Scholar 

  • Sadoul R, Fahrig T, Bartsch U, Schachner M (1990) Binding properties of liposomes containing the myelin-associated glycoprotein MAG to neural cell cultures. J Neurosci Res 25:1–13

    Article  CAS  PubMed  Google Scholar 

  • Sahenk Z (1999) Abnormal Schwann cell-axon interactions in CMT neuropathies. The effects of mutant Schwann cells on the axonal cytoskeleton and regeneration-associated myelination. Ann NY Acad Sci 883:415–426

    Article  CAS  PubMed  Google Scholar 

  • Sahenk Z, Chen L (1998) Abnormalities in the axonal cytoskeleton induced by a connexin32 mutation in nerve xenografts. J Neurosci Res 51:174–184

    Article  CAS  PubMed  Google Scholar 

  • Sanchez I, Hassinger L, Paskevich PA, Shine HD, Nixon RA (1996) Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. J Neurosci 16:5095–5105

    CAS  PubMed  Google Scholar 

  • Schwab ME, Caroni P (1988) Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci 8:2381–2393

    CAS  PubMed  Google Scholar 

  • Shaw G, Weber K (1982) Differential expression of neurofilament triplet proteins in brain development. Nature 298:277–279

    Article  CAS  PubMed  Google Scholar 

  • Stampfli R (1954) Saltatory conduction in nerve. Physiol Rev 34:101–112

    CAS  PubMed  Google Scholar 

  • Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868

    Article  CAS  PubMed  Google Scholar 

  • Tauber H, Waehneldt TV, Neuhoff V (1980) Myelination in rabbit optic nerves is accelerated by artificial eye opening. Neurosci Lett 16:235–238

    Article  CAS  PubMed  Google Scholar 

  • Taveggia C, Thaker P, Petrylak A, Caporaso GL, Toews A, Falls DL, Einheber S, Salzer JL (2008) Type III neuregulin-1 promotes oligodendrocyte myelination. Glia 56:284–293

    Article  PubMed  Google Scholar 

  • Veeranna, Amin ND, Ahn NG, Jaffe H, Winters CA, Grant P, Pant HC (1998) Mitogen-activated protein kinases (Erk1,2) phosphorylate Lys-Ser-Pro (KSP) repeats in neurofilament proteins NF-H and NF-M. J Neurosci 18:4008–4021

    CAS  PubMed  Google Scholar 

  • Vidal-Sanz M, Bray GM, Villegas-Perez MP, Thanos S, Aguayo AJ (1987) Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J Neurosci 7:2894–2909

    CAS  PubMed  Google Scholar 

  • Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang J, Schachner M, Schnaar RL (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci USA 99:8412–8417

    Article  CAS  PubMed  Google Scholar 

  • Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420:74–78

    Article  CAS  PubMed  Google Scholar 

  • Watson DF, Nachtman FN, Kuncl RW, Griffin JW (1994) Altered neurofilament phosphorylation and beta tubulin isotypes in Charcot-Marie-Tooth disease type 1. Neurology 44:2383–2387

    CAS  PubMed  Google Scholar 

  • Willard M, Simon C (1983) Modulations of neurofilament axonal transport during the development of rabbit retinal ganglion cells. Cell 35:551–559

    Article  CAS  PubMed  Google Scholar 

  • Williams RW, Chalupa LM (1983) An analysis of axon caliber within the optic nerve of the cat: evidence of size groupings and regional organization. J Neurosci 3:1554–1564

    CAS  PubMed  Google Scholar 

  • Windebank AJ, Wood P, Bunge RP, Dyck PJ (1985) Myelination determines the caliber of dorsal root ganglion neurons in culture. J Neurosci 5:1563–1569

    CAS  PubMed  Google Scholar 

  • Wong ST, Henley JR, Kanning KC, Huang KH, Bothwell M, Poo MM (2002) A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci 5:1302–1308

    Article  CAS  PubMed  Google Scholar 

  • Wu YJ, Tang YF, Xiao ZC, Bao ZM, He BP (2008) NG2 cells response to axonal alteration in the spinal cord white matter in mice with genetic disruption of neurofilament light subunit expression. Mol Neurodegener 3:18

    Article  PubMed  CAS  Google Scholar 

  • Yabe JT, Jung C, Chan WK, Shea TB (2000) Phospho-dependent association of neurofilament proteins with kinesin in situ. Cell Motil Cytoskeleton 45:249–262

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Higuchi H, Tohyama M (2002) The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol 157:565–570

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Jensen K, Brown A (2007) The polypeptide composition of moving and stationary neurofilaments in cultured sympathetic neurons. Cell Motil Cytoskeleton 64:299–309

    Article  CAS  PubMed  Google Scholar 

  • Yang LJ, Zeller CB, Shaper NL, Kiso M, Hasegawa A, Shapiro RE, Schnaar RL (1996) Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci USA 93:814–818

    Article  CAS  PubMed  Google Scholar 

  • Yates DM, Manser C, De Vos KJ, Shaw CE, McLoughlin DM, Miller CC (2009) Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments. Eur J Cell Biol 88:193–202

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Crawford TO, Griffin JW, Tu P, Lee VM, Li C, Roder J, Trapp BD (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 18:1953–1962

    CAS  PubMed  Google Scholar 

  • Yuan A, Rao MV, Sasaki T, Chen Y, Kumar A, Veeranna, Liem RK, Eyer J, Peterson AC, Julien JP, Nixon RA (2006) Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 26:10006–10019

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Couillard-Despres S, Julien JP (1997) Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol. 148:299–316

    Google Scholar 

  • Zhu Q, Lindenbaum M, Levavasseur F, Jacomy H, Julien JP (1998) Disruption of the NF-H gene increases axonal microtubule content and velocity of neurofilament transport: relief of axonopathy resulting from the toxin beta,beta’-iminodipropionitrile. J Cell Biol 143:183–193

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Eyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Perrot, R., Eyer, J. (2011). Crosstalks Between Myelinating Cells and the Axonal Cytoskeleton. In: Nixon, R., Yuan, A. (eds) Cytoskeleton of the Nervous System. Advances in Neurobiology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6787-9_25

Download citation

Publish with us

Policies and ethics