Skip to main content

Neurofilament Changes in Multiple Sclerosis

  • Chapter
  • First Online:
Cytoskeleton of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 3))

  • 1036 Accesses

Abstract

Multiple sclerosis is a disease of the central nervous system usually characterised by relapsing episodes of neurological dysfunction, often followed some years later by progressive and irreversible decline. Lesions of multiple sclerosis are characterised by varying degrees of inflammation, myelin and oligodendrocyte loss, astrogliosis and axonal pathology. Axonal loss is seen in progressive phases of the disease and appears to correlate well with clinical disability. Prior to loss of axons, pathological specimens have revealed changes in the immunohistochemical phenotype of axons. Specifically, there may be evidence of dephosphorylation of neurofilaments within axons and transection of axons leading to the formation of axonal spheroids which are rich in dephosphorylated neurofilaments. Evidence of axonal transport defects may also be found in lesions with accumulation of amyloid precursor protein within the axon. Mechanisms of axonal pathology in multiple sclerosis remain unknown, but inflammation in the acute disease phases is likely to cause significant damage. There is also evidence that axonal loss may continue even in the absence of inflammation. It has been postulated that axonal loss in this situation occurs due to loss of trophic support from myelin and oligodendrocytes. Oligodendrocytes and myelin are known to provide trophic support for axons and specifically can influence phosphorylated neurofilament levels. The precise mechanisms are unknown, but recent evidence suggests a combination of contact mediated and soluble factors may increase neurofilament phosphorylation and promote axonal protection. Knowledge of such mechanisms may lead to improved therapies to prevent progressive disease. This chapter will discuss axonal changes in multiple sclerosis, specifically alterations in neurofilament phosphorylation states, and potential mechanisms of axonal protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDNF:

Brain-derived neurotrophic factor

CNPase:

2′,3′-Cyclic nucleotide 3′-phosphodiesterase

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

GDNF:

Glial cell-line derived neurotrophic factor

IF:

Intermediate filament

IGF-1:

Insulin-like growth factor type-1

MAG:

Myelin associated glycoprotein

MBP:

Myelin basic protein

MOG:

Myelin-oligodendrocyte glycoprotein

NF:

Neurofilament

NGF:

Nerve growth factor

NO:

Nitric oxide

PLP:

Proteolipid protein

ROS:

Reactive oxygen species

References

  • Aboul-Enein F, Weiser P, Hoftberger R, Lassmann H, Bradl M (2006) Transient axonal injury in the absence of demyelination: a correlate of clinical disease in acute experimental autoimmune encephalomyelitis. Acta Neuropathol 111:539–547

    PubMed  Google Scholar 

  • Andrews H, White K, Thomson C, Edgar J, Bates D, Griffiths I, Turnbull D, Nichols P (2006) Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer mouse. J Neurosci Res 83:1533–1539

    CAS  PubMed  Google Scholar 

  • Anthony DC, Ferguson B, Matyzak MK, Miller KM, Esiri MM, Perry VH (1997) Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke. Neuropathol Appl Neurobiol 23:406–415

    CAS  PubMed  Google Scholar 

  • Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F, Liu Y, Chang A, Trapp BD, Bebo BF Jr, Rao MS, Sherman LS (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972

    CAS  PubMed  Google Scholar 

  • Bagasra O, Michaels FH, Zheng YM, Bobroski LE, Spitsin SV, Fu ZF, Tawadros R, Koprowski H (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci USA 92:12041–12045

    CAS  PubMed  Google Scholar 

  • Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21:6480–6491

    CAS  PubMed  Google Scholar 

  • Barres BA, Jacobson MD, Schmid R, Sendtner M, Raff MC (1993) Does oligodendrocyte survival depend on axons? Curr Biol 3:489–497

    CAS  PubMed  Google Scholar 

  • Barres BA, Raff MC (1999) Axonal control of oligodendrocyte development. J Cell Biol 147:1123–1128

    CAS  PubMed  Google Scholar 

  • Barry DM, Millecamps S, Julien JP, Garcia ML (2007) New movements in neurofilament transport, turnover and disease. Exp Cell Res 313:2110–2120

    CAS  PubMed  Google Scholar 

  • Beaulieu JM, Robertson J, Julien JP (1999) Interactions between peripherin and neurofilaments in cultured cells: disruption of peripherin assembly by the NF-M and NF-H subunits. Biochem Cell Biol 77:41–45

    CAS  PubMed  Google Scholar 

  • Bechtold DA, Kapoor R, Smith KJ (2004) Axonal protection using flecainide in experimental autoimmune encephalomyelitis. Ann Neurol 55:607–616

    CAS  PubMed  Google Scholar 

  • Bechtold DA, Miller SJ, Dawson AC, Sun Y, Kapoor R, Berry D, Smith KJ (2006) Axonal protection achieved in a model of multiple sclerosis using lamotrigine. J Neurol 253:1542–1551

    PubMed  Google Scholar 

  • Bechtold DA, Smith KJ (2005) Sodium-mediated axonal degeneration in inflammatory demyelinating disease. J Neurol Sci 233:27–35

    CAS  PubMed  Google Scholar 

  • Bechtold DA, Yue X, Evans RM, Davies M, Gregson NA, Smith KJ (2005) Axonal protection in experimental autoimmune neuritis by the sodium channel blocking agent flecainide. Brain 128:18–28

    PubMed  Google Scholar 

  • Benveniste EN (1998) Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 9:259–275

    CAS  PubMed  Google Scholar 

  • Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123(6):1174–1183

    PubMed  Google Scholar 

  • Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD (2000) Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 48:893–901

    CAS  PubMed  Google Scholar 

  • Bjartmar C, Kinkel RP, Kidd G, Rudick RA, Trapp BD (2001) Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology 57:1248–1252

    CAS  PubMed  Google Scholar 

  • Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271–278

    CAS  PubMed  Google Scholar 

  • Bjartmar C, Wujek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 206:165–171

    CAS  PubMed  Google Scholar 

  • Bjartmar C, Yin X, Trapp BD (1999) Axonal pathology in myelin disorders. J Neurocytol 28:383–395

    CAS  PubMed  Google Scholar 

  • Black JA, Newcombe J, Trapp BD, Waxman SG (2007) Sodium channel expression within chronic multiple sclerosis plaques. J Neuropathol Exp Neurol 66:828–837

    CAS  PubMed  Google Scholar 

  • Blakemore WF, Gilson JM, Crang AJ (2003) The presence of astrocytes in areas of demyelination influences remyelination following transplantation of oligodendrocyte progenitors. Exp Neurol 184:955–963

    PubMed  Google Scholar 

  • Bogler O, Wren D, Barnett SC, Land H, Noble M (1990) Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Proc Natl Acad Sci USA 87:6368–6372

    CAS  PubMed  Google Scholar 

  • Bolanos JP, Almeida A, Stewart V, Peuchen S, Land JM, Clark JB, Heales SJ (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 68:2227–2240

    CAS  PubMed  Google Scholar 

  • Brady ST, Witt AS, Kirkpatrick LL, de Waegh SM, Readhead C, Tu PH, Lee VM (1999) Formation of compact myelin is required for maturation of the axonal cytoskeleton. J Neurosci 19:7278–7288

    CAS  PubMed  Google Scholar 

  • Brand-Schieber E, Werner P (2004) Calcium channel blockers ameliorate disease in a mouse model of multiple sclerosis. Exp Neurol 189:5–9

    CAS  PubMed  Google Scholar 

  • Breij EC, Brink BP, Veerhuis R, van den Berg C, Vloet R, Yan R, Dijkstra CD, van der Valk P, Bo L (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63:16–25

    CAS  PubMed  Google Scholar 

  • Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Muller T, Wende H, Stassart RM, Nawaz S, Humml C, Velanac V, Radyushkin K, Goebbels S, Fischer TM, Franklin RJ, Lai C, Ehrenreich H, Birchmeier C, Schwab MH, Nave KA (2008) Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 59:581–595

    CAS  PubMed  Google Scholar 

  • Brown GC, Borutaite V (2002) Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic Biol Med 33:1440–1450

    CAS  PubMed  Google Scholar 

  • Byravan S, Foster LM, Phan T, Verity AN, Campagnoni AT (1994) Murine oligodendroglial cells express nerve growth factor. Proc Natl Acad Sci USA 91:8812–8816

    CAS  PubMed  Google Scholar 

  • Cader S, Johansen-Berg H, Wylezinska M, Palace J, Behrens TE, Smith S, Matthews PM (2007) Discordant white matter N-acetylasparate and diffusion MRI measures suggest that chronic metabolic dysfunction contributes to axonal pathology in multiple sclerosis. Neuroimage 36:19–27

    CAS  PubMed  Google Scholar 

  • Canoll PD, Musacchio JM, Hardy R, Reynolds R, Marchionni MA, Salzer JL (1996) GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 17:229–243

    CAS  PubMed  Google Scholar 

  • Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD (2000) NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 20:6404–6412

    CAS  PubMed  Google Scholar 

  • Cifelli A, Arridge M, Jezzard P, Esiri MM, Palace J, Matthews PM (2002) Thalamic neurodegeneration in multiple sclerosis. Ann Neurol 52:650–653

    PubMed  Google Scholar 

  • Cole JS, Messing A, Trojanowski JQ, Lee VM (1994) Modulation of axon diameter and neurofilaments by hypomyelinating Schwann cells in transgenic mice. J Neurosci 14:6956–6966

    CAS  PubMed  Google Scholar 

  • Coles AJ, Wing MG, Molyneux P, Paolillo A, Davie CM, Hale G, Miller D, Waldmann H, Compston A (1999) Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 46:296–304

    CAS  PubMed  Google Scholar 

  • Coman I, Aigrot MS, Seilhean D, Reynolds R, Girault JA, Zalc B, Lubetzki C (2006) Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain 129:3186–3195

    CAS  PubMed  Google Scholar 

  • Compston A (2006) Making progress on the natural history of multiple sclerosis. Brain 129:561–563

    PubMed  Google Scholar 

  • Compston A, Coles A (2002) Multiple sclerosis. Lancet 359:1221–1231

    PubMed  Google Scholar 

  • Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    CAS  PubMed  Google Scholar 

  • Confavreux C, Vukusic S (2006) Natural history of multiple sclerosis: a unifying concept. Brain 129:606–616

    PubMed  Google Scholar 

  • Confavreux C, Vukusic S, Moreau T, Adeleine P (2000) Relapses and progression of disability in multiple sclerosis. N Engl J Med 343:1430–1438

    CAS  PubMed  Google Scholar 

  • Craner MJ, Hains BC, Lo AC, Black JA, Waxman SG (2004a) Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain 127:294–303

    PubMed  Google Scholar 

  • Craner MJ, Lo AC, Black JA, Waxman SG (2003) Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination. Brain 126:1552–1561

    PubMed  Google Scholar 

  • Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG (2004b) Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc Natl Acad Sci USA 101:8168–8173

    CAS  PubMed  Google Scholar 

  • Dai X, Lercher LD, Clinton PM, Du Y, Livingston DL, Vieira C, Yang L, Shen MM, Dreyfus CF (2003) The trophic role of oligodendrocytes in the basal forebrain. J Neurosci 23:5846–5853

    CAS  PubMed  Google Scholar 

  • Dashiell SM, Tanner SL, Pant HC, Quarles RH (2002) Myelin-associated glycoprotein modulates expression and phosphorylation of neuronal cytoskeletal elements and their associated kinases. J Neurochem 81:1263–1272

    CAS  PubMed  Google Scholar 

  • David S, Miller RH, Patel R, Raff MC (1984) Effects of neonatal transection on glial cell development in the rat optic nerve: evidence that the oligodendrocyte-type 2 astrocyte cell lineage depends on axons for its survival. J Neurocytol 13:961–974

    CAS  PubMed  Google Scholar 

  • Davie CA, Barker GJ, Thompson AJ, Tofts PS, McDonald WI, Miller DH (1997) 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry 63:736–742

    CAS  PubMed  Google Scholar 

  • DeLuca GC, Ebers GC, Esiri MM (2004) Axonal loss in multiple sclerosis: a pathological survey of the corticospinal and sensory tracts. Brain 127:1009–1018

    CAS  PubMed  Google Scholar 

  • DeLuca GC, Williams K, Evangelou N, Ebers GC, Esiri MM (2006) The contribution of demyelination to axonal loss in multiple sclerosis. Brain 129:1507–1516

    CAS  PubMed  Google Scholar 

  • Diczfalusy U (1994) Beta-oxidation of eicosanoids. Prog Lipid Res 33:403–428

    CAS  PubMed  Google Scholar 

  • Du Y, Dreyfus CF (2002) Oligodendrocytes as providers of growth factors. J Neurosci Res 68:647–654

    CAS  PubMed  Google Scholar 

  • Dubois-Dalcq M, Ffrench-Constant C, Franklin RJ (2005) Enhancing central nervous system remyelination in multiple sclerosis. Neuron 48:9–12

    CAS  PubMed  Google Scholar 

  • Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes 53(Suppl 1):S96–S102

    CAS  PubMed  Google Scholar 

  • Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    CAS  PubMed  Google Scholar 

  • Dutta R, Trapp BD (2007) Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology 68:S22–S31; discussion S43–54

    PubMed  Google Scholar 

  • Edan G, Miller D, Clanet M, Confavreux C, Lyon-Caen O, Lubetzki C, Brochet B, Berry I, Rolland Y, Froment JC, Cabanis E, Iba-Zizen MT, Gandon JM, Lai HM, Moseley I, Sabouraud O (1997) Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: a randomised multicentre study of active disease using MRI and clinical criteria. J Neurol Neurosurg Psychiatry 62:112–118

    CAS  PubMed  Google Scholar 

  • Edgar JM, McLaughlin M, Barrie JA, McCulloch MC, Garbern J, Griffiths IR (2004a) Age-related axonal and myelin changes in the rumpshaker mutation of the Plp gene. Acta Neuropathol 107:331–335

    CAS  PubMed  Google Scholar 

  • Edgar JM, McLaughlin M, Yool D, Zhang SC, Fowler JH, Montague P, Barrie JA, McCulloch MC, Duncan ID, Garbern J, Nave KA, Griffiths IR (2004b) Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. J Cell Biol 166:121–131

    CAS  PubMed  Google Scholar 

  • Einheber S, Bhat MA, Salzer JL (2006) Disrupted axo-glial junctions result in accumulation of abnormal mitochondria at nodes of ranvier. Neuron Glia Biol 2:165–174

    PubMed  Google Scholar 

  • Elhanany E, Jaffe H, Link WT, Sheeley DM, Gainer H, Pant HC (1994) Identification of endogenously phosphorylated KSP sites in the high-molecular-weight rat neurofilament protein. J Neurochem 63:2324–2335

    CAS  PubMed  Google Scholar 

  • Evangelou N, Esiri MM, Smith S, Palace J, Matthews PM (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47:391–395

    CAS  PubMed  Google Scholar 

  • Fabricius C, Berthold CH, Rydmark M (1993) Axoplasmic organelles at nodes of Ranvier. II. Occurrence and distribution in large myelinated spinal cord axons of the adult cat. J Neurocytol 22:941–954

    CAS  PubMed  Google Scholar 

  • Felts PA, Baker TA, Smith KJ (1997) Conduction in segmentally demyelinated mammalian central axons. J Neurosci 17:7267–7277

    CAS  PubMed  Google Scholar 

  • Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120(3):393–399

    PubMed  Google Scholar 

  • Fernandez PA, Tang DG, Cheng L, Prochiantz A, Mudge AW, Raff MC (2000) Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. Neuron 28:81–90

    CAS  PubMed  Google Scholar 

  • Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3:705–714

    CAS  PubMed  Google Scholar 

  • Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855

    CAS  PubMed  Google Scholar 

  • Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis–the plaque and its pathogenesis. N Engl J Med 354:942–955

    CAS  PubMed  Google Scholar 

  • Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 63:345–382

    CAS  PubMed  Google Scholar 

  • Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    CAS  PubMed  Google Scholar 

  • Garthwaite G, Goodwin DA, Batchelor AM, Leeming K, Garthwaite J (2002) Nitric oxide toxicity in CNS white matter: an in vitro study using rat optic nerve. Neuroscience 109:145–155

    CAS  PubMed  Google Scholar 

  • Gendelman HE, Pezeshkpour GH, Pressman NJ, Wolinsky JS, Quarles RH, Dobersen MJ, Trapp BD, Kitt CA, Aksamit A, Johnson RT (1985) A quantitation of myelin-associated glycoprotein and myelin basic protein loss in different demyelinating diseases. Ann Neurol 18:324–328

    CAS  PubMed  Google Scholar 

  • Ghatan S, Larner S, Kinoshita Y, Hetman M, Patel L, Xia Z, Youle RJ, Morrison RS (2000) p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol 150:335–347

    CAS  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Panet H, Holdengreber V, Mosberg-Galili R, Offen D (2003) Axonal damage is reduced following glatiramer acetate treatment in C57/bl mice with chronic-induced experimental autoimmune encephalomyelitis. Neurosci Res 47:201–207

    CAS  PubMed  Google Scholar 

  • Glicksman MA, Soppet D, Willard MB (1987) Posttranslational modification of neurofilament polypeptides in rabbit retina. J Neurobiol 18:167–196

    CAS  PubMed  Google Scholar 

  • Golde S, Chandran S, Brown GC, Compston A (2002) Different pathways for iNOS-mediated toxicity in vitro dependent on neuronal maturation and NMDA receptor expression. J Neurochem 82:269–282

    CAS  PubMed  Google Scholar 

  • Goldstein ME, Sternberger NH, Sternberger LA (1987) Phosphorylation protects neurofilaments against proteolysis. J Neuroimmunol 14:149–160

    CAS  PubMed  Google Scholar 

  • Goodarzi K, Goodarzi M, Tager AM, Luster AD, von Andrian UH (2003) Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat Immunol 4:965–973

    CAS  PubMed  Google Scholar 

  • Grant P, Pant HC (2000) Neurofilament protein synthesis and phosphorylation. J Neurocytol 29:843–872

    CAS  PubMed  Google Scholar 

  • Gray E, Thomas TL, Betmouni S, Scolding N, Love S (2008) Elevated activity and microglial expression of myeloperoxidase in demyelinated cerebral cortex in multiple sclerosis. Brain Pathol 18:86–95

    PubMed  Google Scholar 

  • Gresle MM, Shaw G, Jarrott B, Alexandrou EN, Friedhuber A, Kilpatrick TJ, Butzkueven H (2008) Validation of a novel biomarker for acute axonal injury in experimental autoimmune encephalomyelitis. J Neurosci Res 86:3548–3555

    CAS  PubMed  Google Scholar 

  • Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab MH, Schneider A, Zimmermann F, McCulloch M, Nadon N, Nave KA (1998) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280:1610–1613

    CAS  PubMed  Google Scholar 

  • Hartung HP, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey SP, Krapf H, Zwingers T (2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360:2018–2025

    PubMed  Google Scholar 

  • Herrero-Herranz E, Pardo LA, Gold R, Linker RA (2008) Pattern of axonal injury in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Neurobiol Dis 30:162–173

    CAS  PubMed  Google Scholar 

  • Herzog RI, Cummins TR, Ghassemi F, Dib-Hajj SD, Waxman SG (2003) Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. J Physiol 551:741–750

    CAS  PubMed  Google Scholar 

  • Hill KE, Zollinger LV, Watt HE, Carlson NG, Rose JW (2004) Inducible nitric oxide synthase in chronic active multiple sclerosis plaques: distribution, cellular expression and association with myelin damage. J Neuroimmunol 151:171–179

    CAS  PubMed  Google Scholar 

  • Hirokawa N, Glicksman MA, Willard MB (1984) Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J Cell Biol 98:1523–1536

    CAS  PubMed  Google Scholar 

  • Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419

    CAS  PubMed  Google Scholar 

  • Irvine KA, Blakemore WF (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131:1464–1477

    CAS  PubMed  Google Scholar 

  • Itoyama Y, Webster HD, Sternberger NH, Richardson EP Jr, Walker DL, Quarles RH, Padgett BL (1982) Distribution of papovavirus, myelin-associated glycoprotein, and myelin basic protein in progressive multifocal leukoencephalopathy lesions. Ann Neurol 11:396–407

    CAS  PubMed  Google Scholar 

  • Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM, Murray TJ, Simonian NA, Slasor PJ, Sandrock AW (2000) Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med 343:898–904

    CAS  PubMed  Google Scholar 

  • Julien JP, Mushynski WE (1998) Neurofilaments in health and disease. Prog Nucleic Acid Res Mol Biol 61:1–23

    CAS  PubMed  Google Scholar 

  • Kapoor R, Davies M, Blaker PA, Hall SM, Smith KJ (2003) Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol 53:174–180

    CAS  PubMed  Google Scholar 

  • Kappos L (2004) Effect of drugs in secondary disease progression in patients with multiple sclerosis. Mult Scler 10(Suppl 1):S46–S54; discussion S54–45

    CAS  PubMed  Google Scholar 

  • Kassmann CM, Lappe-Siefke C, Baes M, Brugger B, Mildner A, Werner HB, Natt O, Michaelis T, Prinz M, Frahm J, Nave KA (2007) Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet 39:969–976

    CAS  PubMed  Google Scholar 

  • Kassmann CM, Nave KA (2008) Oligodendroglial impact on axonal function and survival – a hypothesis. Curr Opin Neurol 21:235–241

    PubMed  Google Scholar 

  • Keegan M, Konig F, McClelland R, Bruck W, Morales Y, Bitsch A, Panitch H, Lassmann H, Weinshenker B, Rodriguez M, Parisi J, Lucchinetti CF (2005) Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366:579–582

    PubMed  Google Scholar 

  • Kirkpatrick LL, Witt AS, Payne HR, Shine HD, Brady ST (2001) Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons. J Neurosci 21:2288–2297

    CAS  PubMed  Google Scholar 

  • Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267–276

    CAS  PubMed  Google Scholar 

  • Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212

    PubMed  Google Scholar 

  • Kuhlmann T, Miron V, Cuo Q, Wegner C, Antel J, Bruck W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131:1749–1758

    CAS  PubMed  Google Scholar 

  • Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    PubMed  Google Scholar 

  • Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33:366–374

    CAS  PubMed  Google Scholar 

  • Lassmann H (1998) Pathology of multiple sclerosis. McAlpine’s Multiple Sclerosis, 3rd edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Lassmann H (2003) Axonal injury in multiple sclerosis. J Neurol Neurosurg Psychiatry 74:695–697

    CAS  PubMed  Google Scholar 

  • Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7:115–121

    CAS  PubMed  Google Scholar 

  • Lassmann H, Wekerle H (2006) The pathology of mulitple sclerosis. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Le Page E, Leray E, Taurin G, Coustans M, Chaperon J, Morrissey SP, Edan G (2008) Mitoxantrone as induction treatment in aggressive relapsing remitting multiple sclerosis: treatment response factors in a 5 year follow-up observational study of 100 consecutive patients. J Neurol Neurosurg Psychiatry 79:52–56

    PubMed  Google Scholar 

  • Leary SM, Davie CA, Parker GJ, Stevenson VL, Wang L, Barker GJ, Miller DH, Thompson AJ (1999) 1H magnetic resonance spectroscopy of normal appearing white matter in primary progressive multiple sclerosis. J Neurol 246:1023–1026

    CAS  PubMed  Google Scholar 

  • Leterrier JF, Kas J, Hartwig J, Vegners R, Janmey PA (1996) Mechanical effects of neurofilament cross-bridges. Modulation by phosphorylation, lipids, and interactions with F-actin. J Biol Chem 271:15687–15694

    CAS  PubMed  Google Scholar 

  • Li C, Tropak MB, Gerlai R, Clapoff S, Abramow-Newerly W, Trapp B, Peterson A, Roder J (1994) Myelination in the absence of myelin-associated glycoprotein. Nature 369:747–750

    CAS  PubMed  Google Scholar 

  • Li BS, Veeranna, Grant P, Pant HC (1999a) Calcium influx and membrane depolarization induce phosphorylation of neurofilament (NF-M) KSP repeats in PC12 cells. Brain Res Mol Brain Res 70:84–91

    CAS  PubMed  Google Scholar 

  • Li BS, Veeranna, Gu J, Grant P, Pant HC (1999b) Activation of mitogen-activated protein kinases (Erk1 and Erk2) cascade results in phosphorylation of NF-M tail domains in transfected NIH 3T3 cells. Eur J Biochem 262:211–217

    CAS  PubMed  Google Scholar 

  • Li BS, Zhang L, Gu J, Amin ND, Pant HC (2000) Integrin alpha(1) beta(1)-mediated activation of cyclin-dependent kinase 5 activity is involved in neurite outgrowth and human neurofilament protein H Lys-Ser-Pro tail domain phosphorylation. J Neurosci 20:6055–6062

    CAS  PubMed  Google Scholar 

  • Linker RA, Maurer M, Gaupp S, Martini R, Holtmann B, Giess R, Rieckmann P, Lassmann H, Toyka KV, Sendtner M, Gold R (2002) CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med 8:620–624

    CAS  PubMed  Google Scholar 

  • Lo AC, Saab CY, Black JA, Waxman SG (2003) Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. J Neurophysiol 90:3566–3571

    CAS  PubMed  Google Scholar 

  • Lovas G, Szilagyi N, Majtenyi K, Palkovits M, Komoly S (2000) Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain 123(2):308–317

    PubMed  Google Scholar 

  • Lu F, Selak M, O’Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 177:95–103

    CAS  PubMed  Google Scholar 

  • Lubetzki C, Williams A, Stankoff B (2005) Promoting repair in multiple sclerosis: problems and prospects. Curr Opin Neurol 18:237–244

    CAS  PubMed  Google Scholar 

  • Lucchinetti CF, Bruck W, Lassmann H (2004) Evidence for pathogenic heterogeneity in multiple sclerosis. Ann Neurol 56:308

    PubMed  Google Scholar 

  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    CAS  PubMed  Google Scholar 

  • Lucchinetti CF, Brueck W, Rodriguez M, Lassmann H (1998) Multiple sclerosis: lessons from neuropathology. Semin Neurol 18:337–349

    CAS  PubMed  Google Scholar 

  • Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, Trebst C, Weinshenker B, Wingerchuk D, Parisi JE, Lassmann H (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125:1450–1461

    PubMed  Google Scholar 

  • Matthews PM, De Stefano N, Narayanan S, Francis GS, Wolinsky JS, Antel JP, Arnold DL (1998) Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis. Semin Neurol 18:327–336

    CAS  PubMed  Google Scholar 

  • Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15:805–819

    CAS  PubMed  Google Scholar 

  • Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C, Role L, Lai C, Schwab MH, Nave KA (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304:700–703

    CAS  PubMed  Google Scholar 

  • Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW (2007) Imaging axonal transport of mitochondria in vivo. Nat Methods 4:559–561

    CAS  PubMed  Google Scholar 

  • Mutsaers SE, Carroll WM (1998) Focal accumulation of intra-axonal mitochondria in demyelination of the cat optic nerve. Acta Neuropathol 96:139–143

    CAS  PubMed  Google Scholar 

  • Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    CAS  PubMed  Google Scholar 

  • Nixon RA (1993) The regulation of neurofilament protein dynamics by phosphorylation: clues to neurofibrillary pathobiology. Brain Pathol 3:29–38

    CAS  PubMed  Google Scholar 

  • Nixon RA (1998) The slow axonal transport of cytoskeletal proteins. Curr Opin Cell Biol 10:87–92

    CAS  PubMed  Google Scholar 

  • Nixon RA, Lewis SE (1986) Differential turnover of phosphate groups on neurofilament subunits in mammalian neurons in vivo. J Biol Chem 261:16298–16301

    CAS  PubMed  Google Scholar 

  • Nixon RA, Lewis SE, Dahl D, Marotta CA, Drager UC (1989) Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal sites and time course in relation to subunit polymerization and axonal transport. Brain Res Mol Brain Res 5:93–108

    CAS  PubMed  Google Scholar 

  • Nixon RA, Lewis SE, Marotta CA (1987) Posttranslational modification of neurofilament proteins by phosphate during axoplasmic transport in retinal ganglion cell neurons. J Neurosci 7:1145–1158

    CAS  PubMed  Google Scholar 

  • Nixon RA, Paskevich PA, Sihag RK, Thayer CY (1994) Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J Cell Biol 126:1031–1046

    CAS  PubMed  Google Scholar 

  • Nixon RA, Shea TB (1992) Dynamics of neuronal intermediate filaments: a developmental perspective. Cell Motil Cytoskeleton 22:81–91

    CAS  PubMed  Google Scholar 

  • Nixon RA, Sihag RK (1991) Neurofilament phosphorylation: a new look at regulation and function. Trends Neurosci 14:501–506

    CAS  PubMed  Google Scholar 

  • Oblinger MM, Brady ST, McQuarrie IG, Lasek RJ (1987) Cytotypic differences in the protein composition of the axonally transported cytoskeleton in mammalian neurons. J Neurosci 7:453–462

    CAS  PubMed  Google Scholar 

  • Okuda Y, Sakoda S, Fujimura H, Yanagihara T (1997) Nitric oxide via an inducible isoform of nitric oxide synthase is a possible factor to eliminate inflammatory cells from the central nervous system of mice with experimental allergic encephalomyelitis. J Neuroimmunol 73:107–116

    CAS  PubMed  Google Scholar 

  • O’Malley HA, Shreiner AB, Chen GH, Huffnagle GB, Isom LL (2009) Loss of Na+ channel beta2 subunits is neuroprotective in a mouse model of multiple sclerosis. Mol Cell Neurosci 40:143–155

    PubMed  Google Scholar 

  • Pang L, Sawada T, Decker SJ, Saltiel AR (1995) Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J Biol Chem 270:13585–13588

    CAS  PubMed  Google Scholar 

  • Patani R, Balaratnam M, Vora A, Reynolds R (2007) Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol 33:277–287

    CAS  PubMed  Google Scholar 

  • Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Bruck W, Lucchinetti C, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172

    PubMed  Google Scholar 

  • Pelletier J, Suchet L, Witjas T, Habib M, Guttmann CR, Salamon G, Lyon-Caen O, Cherif AA (2001) A longitudinal study of callosal atrophy and interhemispheric dysfunction in relapsing-remitting multiple sclerosis. Arch Neurol 58:105–111

    CAS  PubMed  Google Scholar 

  • Perrot R, Berges R, Bocquet A, Eyer J (2008) Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 38:27–65

    CAS  PubMed  Google Scholar 

  • Peterson JW, Bo L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400

    CAS  PubMed  Google Scholar 

  • Petzold A (2005) Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci 233:183–198

    CAS  PubMed  Google Scholar 

  • Petzold A, Eikelenboom MJ, Keir G, Grant D, Lazeron RH, Polman CH, Uitdehaag BM, Thompson EJ, Giovannoni G (2005) Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study. J Neurol Neurosurg Psychiatry 76:206–211

    CAS  PubMed  Google Scholar 

  • Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70

    CAS  PubMed  Google Scholar 

  • Pittock SJ, Lucchinetti CF (2007) The pathology of MS: new insights and potential clinical applications. Neurologist 13:45–56

    PubMed  Google Scholar 

  • Rasband MN, Tayler J, Kaga Y, Yang Y, Lappe-Siefke C, Nave KA, Bansal R (2005) CNP is required for maintenance of axon–glia interactions at nodes of Ranvier in the CNS. Glia 50:86–90

    PubMed  Google Scholar 

  • Reynolds R, Dawson M, Papadopoulos D, Polito A, Di Bello IC, Pham-Dinh D, Levine J (2002) The response of NG2-expressing oligodendrocyte progenitors to demyelination in MOG-EAE and MS. J Neurocytol 31:523–536

    PubMed  Google Scholar 

  • Rosin C, Bates TE, Skaper SD (2004) Excitatory amino acid induced oligodendrocyte cell death in vitro: receptor-dependent and -independent mechanisms. J Neurochem 90:1173–1185

    CAS  PubMed  Google Scholar 

  • Roy S, Coffee P, Smith G, Liem RK, Brady ST, Black MM (2000) Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. J Neurosci 20:6849–6861

    CAS  PubMed  Google Scholar 

  • Rush AM, Dib-Hajj SD, Waxman SG (2005) Electrophysiological properties of two axonal sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones. J Physiol 564:803–815

    CAS  PubMed  Google Scholar 

  • Ruuls SR, Bauer J, Sontrop K, Huitinga I, t Hart BA, Dijkstra CD (1995) Reactive oxygen species are involved in the pathogenesis of experimental allergic encephalomyelitis in Lewis rats. J Neuroimmunol 56:207–217

    CAS  PubMed  Google Scholar 

  • Sadahiro S, Yoshikawa H, Yagi N, Yamamoto Y, Yanagihara T, Kimura M, Sakoda S (2000) Morphometric analysis of the myelin-associated oligodendrocytic basic protein-deficient mouse reveals a possible role for myelin-associated oligodendrocytic basic protein in regulating axonal diameter. Neuroscience 98:361–367

    CAS  PubMed  Google Scholar 

  • Sahenk Z, Chen L, Mendell JR (1999) Effects of PMP22 duplication and deletions on the axonal cytoskeleton. Ann Neurol 45:16–24

    CAS  PubMed  Google Scholar 

  • Sanchez I, Hassinger L, Sihag RK, Cleveland DW, Mohan P, Nixon RA (2000) Local control of neurofilament accumulation during radial growth of myelinating axons in vivo. Selective role of site-specific phosphorylation. J Cell Biol 151:1013–1024

    CAS  PubMed  Google Scholar 

  • Schneider A, Montague P, Griffiths I, Fanarraga M, Kennedy P, Brophy P, Nave KA (1992) Uncoupling of hypomyelination and glial cell death by a mutation in the proteolipid protein gene. Nature 358:758–761

    CAS  PubMed  Google Scholar 

  • Scolding N (2005) Devic’s disease and autoantibodies. Lancet Neurol 4:136–137

    PubMed  Google Scholar 

  • Shah JV, Flanagan LA, Janmey PA, Leterrier JF (2000) Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol Biol Cell 11:3495–3508

    CAS  PubMed  Google Scholar 

  • Shinar Y, McMorris FA (1995) Developing oligodendroglia express mRNA for insulin-like growth factor-I, a regulator of oligodendrocyte development. J Neurosci Res 42:516–527

    CAS  PubMed  Google Scholar 

  • Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC (2007) Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313:2098–2109

    CAS  PubMed  Google Scholar 

  • Smith KJ (2006) Axonal protection in multiple sclerosis–a particular need during remyelination? Brain 129:3147–3149

    PubMed  Google Scholar 

  • Smith KJ (2007) Sodium channels and multiple sclerosis: roles in symptom production, damage and therapy. Brain Pathol 17:230–242

    CAS  PubMed  Google Scholar 

  • Smith KJ, Kapoor R, Hall SM, Davies M (2001) Electrically active axons degenerate when exposed to nitric oxide. Ann Neurol 49:470–476

    CAS  PubMed  Google Scholar 

  • Smith KJ, Lassmann H (2002) The role of nitric oxide in multiple sclerosis. Lancet Neurol 1:232–241

    CAS  PubMed  Google Scholar 

  • Smith MR, Smith RD, Plummer NW, Meisler MH, Goldin AL (1998) Functional analysis of the mouse Scn8a sodium channel. J Neurosci 18:6093–6102

    CAS  PubMed  Google Scholar 

  • Spencer PS, Sabri MI, Schaumburg HH, Moore CL (1979) Does a defect of energy metabolism in the nerve fiber underlie axonal degeneration in polyneuropathies? Ann Neurol 5:501–507

    CAS  PubMed  Google Scholar 

  • Stadelmann C, Bruck W (2008) Interplay between mechanisms of damage and repair in multiple sclerosis. J Neurol 255(Suppl 1):12–18

    CAS  PubMed  Google Scholar 

  • Steffensen I, Waxman SG, Mills L, Stys PK (1997) Immunolocalization of the Na(+)-Ca2+ exchanger in mammalian myelinated axons. Brain Res 776:1–9

    CAS  PubMed  Google Scholar 

  • Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80:6126–6130

    CAS  PubMed  Google Scholar 

  • Strelau J, Unsicker K (1999) GDNF family members and their receptors: expression and functions in two oligodendroglial cell lines representing distinct stages of oligodendroglial development. Glia 26:291–301

    CAS  PubMed  Google Scholar 

  • Stys PK (2004) White matter injury mechanisms. Curr Mol Med 4:113–130

    CAS  PubMed  Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    CAS  PubMed  Google Scholar 

  • Trapp BD, Ransohoff R, Rudick R (1999) Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 12:295–302

    CAS  PubMed  Google Scholar 

  • Veeranna, Amin ND, Ahn NG, Jaffe H, Winters CA, Grant P, Pant HC (1998) Mitogen-activated protein kinases (Erk1,2) phosphorylate Lys-Ser-Pro (KSP) repeats in neurofilament proteins NF-H and NF-M. J Neurosci 18:4008–4021

    CAS  PubMed  Google Scholar 

  • Vercellino M, Plano F, Votta B, Mutani R, Giordana MT, Cavalla P (2005) Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 64:1101–1107

    PubMed  Google Scholar 

  • Wang L, Ho CL, Sun D, Liem RK, Brown A (2000) Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat Cell Biol 2:137–141

    CAS  PubMed  Google Scholar 

  • Waxman SG (1998) Demyelinating diseases–new pathological insights, new therapeutic targets. N Engl J Med 338:323–325

    CAS  PubMed  Google Scholar 

  • Waxman SG (2002) Sodium channels as molecular targets in multiple sclerosis. J Rehabil Res Dev 39:233–242

    PubMed  Google Scholar 

  • Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 7:932–941

    CAS  PubMed  Google Scholar 

  • Waxman SG (2008a) Axonal dysfunction in chronic multiple sclerosis: meltdown in the membrane. Ann Neurol 63:411–413

    PubMed  Google Scholar 

  • Waxman SG (2008b) Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis – current status. Nat Clin Pract Neurol 4:159–169

    CAS  PubMed  Google Scholar 

  • Waxman SG, Craner MJ, Black JA (2004) Na+ channel expression along axons in multiple sclerosis and its models. Trends Pharmacol Sci 25:584–591

    CAS  PubMed  Google Scholar 

  • Webster HD (1997) Growth factors and myelin regeneration in multiple sclerosis. Mult Scler 3:113–120

    CAS  PubMed  Google Scholar 

  • Werner HB, Kuhlmann K, Shen S, Uecker M, Schardt A, Dimova K, Orfaniotou F, Dhaunchak A, Brinkmann BG, Mobius W, Guarente L, Casaccia-Bonnefil P, Jahn O, Nave KA (2007) Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J Neurosci 27:7717–7730

    CAS  PubMed  Google Scholar 

  • Wilkins A, Chandran S, Compston A (2001) A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia 36:48–57

    CAS  PubMed  Google Scholar 

  • Wilkins A, Compston A (2005) Trophic factors attenuate nitric oxide mediated neuronal and axonal injury in vitro: roles and interactions of mitogen-activated protein kinase signalling pathways. J Neurochem 92:1487–1496

    CAS  PubMed  Google Scholar 

  • Wilkins A, Majed H, Layfield R, Compston A, Chandran S (2003) Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci 23:4967–4974

    CAS  PubMed  Google Scholar 

  • Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18:601–609

    CAS  PubMed  Google Scholar 

  • Yabe JT, Chan WK, Chylinski TM, Lee S, Pimenta AF, Shea TB (2001) The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation, and maturation. Cell Motil Cytoskeleton 48:61–83

    CAS  PubMed  Google Scholar 

  • Yin X, Baek RC, Kirschner DA, Peterson A, Fujii Y, Nave KA, Macklin WB, Trapp BD (2006) Evolution of a neuroprotective function of central nervous system myelin. J Cell Biol 172:469–478

    CAS  PubMed  Google Scholar 

  • Yin X, Crawford TO, Griffin JW, Tu P, Lee VM, Li C, Roder J, Trapp BD (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 18:1953–1962

    CAS  PubMed  Google Scholar 

  • Yool DA, Klugmann M, McLaughlin M, Vouyiouklis DA, Dimou L, Barrie JA, McCulloch MC, Nave KA, Griffiths IR (2001) Myelin proteolipid proteins promote the interaction of oligodendrocytes and axons. J Neurosci Res 63:151–164

    CAS  PubMed  Google Scholar 

  • Yoshikawa H (2001) Myelin-associated oligodendrocytic basic protein modulates the arrangement of radial growth of the axon and the radial component of myelin. Med Electron Microsc 34:160–164

    CAS  PubMed  Google Scholar 

  • Yuan A, Rao MV, Kumar A, Julien JP, Nixon RA (2003) Neurofilament transport in vivo minimally requires hetero-oligomer formation. J Neurosci 23:9452–9458

    CAS  PubMed  Google Scholar 

  • Yuan A, Rao MV, Sasaki T, Chen Y, Kumar A, Veeranna, Liem RK, Eyer J, Peterson AC, Julien JP, Nixon RA (2006) Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 26:10006–10019

    CAS  PubMed  Google Scholar 

  • Zhao C, Fancy SP, Magy L, Urwin JE, Franklin RJ (2005) Stem cells, progenitors and myelin repair. J Anat 207:251–258

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

EG is supported by a Junior Fellowship from the Multiple Sclerosis Society (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair Wilkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gray, E., Wilkins, A. (2011). Neurofilament Changes in Multiple Sclerosis. In: Nixon, R., Yuan, A. (eds) Cytoskeleton of the Nervous System. Advances in Neurobiology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6787-9_16

Download citation

Publish with us

Policies and ethics