Skip to main content

Radioisotope Decay Rate Based Counting Clock

  • Chapter
  • First Online:
Radioisotope Thin-Film Powered Microsystems

Part of the book series: MEMS Reference Shelf ((MEMSRS,volume 6))

Abstract

Precise timing and frequency sources are vital in a wide range electronic-based systems such as communication networks and global positioning systems. These applications constantly demand reductions in size, weight and power (SWaP) while improving the precision of time or frequency references. Historically, clocks based on electromagnetic oscillations of atoms have provided the most precise method of timing events lasting longer than a few minutes.These oscillations are so precise that in 1967 the unit of time the second – was redefined to be the time taken for a Cs atom in a particular quantum state to undergo exactly 9,192,631,770 oscillations. While the long-term precision of atomic clocks is unsurpassed, the size and power required to run these devices has prevented their use in a variety of areas, particularly in those applications requiring portability or battery operation. The NIST 17 F-1 primary standard, for example, occupies a large optical table and requires many hundreds of watts to operate. The state-of-the-art in compact commercial atomic frequency references are Rb vapor-cell devices with volumes near 100 cm3 that operate on a few tens of watts of power and cost about 1–3 thousand dollars.The long-term stability of atomic clocks including is based onthe ability to interrogate a fundamental time constant – the hyperfine resonance frequency of ground level transitions1. It is thus natural to extend this idea of interrogating other time constants to realize clocks with good long-term stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Duggirala .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Duggirala, R., Lal, A., Radhakrishnan, S. (2010). Radioisotope Decay Rate Based Counting Clock. In: Radioisotope Thin-Film Powered Microsystems. MEMS Reference Shelf, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6763-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6763-3_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6762-6

  • Online ISBN: 978-1-4419-6763-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics