Skip to main content

MODIS Land Surface Temperature and Emissivity

  • Chapter
  • First Online:
Land Remote Sensing and Global Environmental Change

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 11))

Abstract

Land surface temperature (LST) is a key parameter in the physics of land surface processes at regional and global scales, combining the results of all surface–­atmosphere interactions and energy fluxes between the atmosphere and the ground (Mannstein 1987; Sellers et al. 1988). The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua platforms produce high-quality LST products from data, which possess a number of strengths. They include global coverage, high radiometric resolution and wide dynamic ranges, accurate geolocation (Wolfe et al. 2002), and high-quality thermal infrared (TIR) calibration accuracy used in the LST retrieval (Barnes et al. 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnes WL, Pagano TS, Salomonson VV (1998) Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans Geosci Remote Sens 36:1088–1100

    Article  ADS  Google Scholar 

  • Becker F, Li Z-L (1990) Toward a local split-window method over land surface. Int J Remote Sens 3:369–393

    Article  Google Scholar 

  • Berk A, Anderson GP, Bernstein LS, Acharya PK, Dothe H, Matthew MW, Adler-Golden SM, Chetwynd JH Jr, Richtmeier SC, Pukall B, Allred CL, Jeong LS, Hoke ML (1999) MODTRAN4 radiative transfer modeling for atmospheric correction. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III. Proc SPIE 3756:348–353

    Article  ADS  Google Scholar 

  • Coll C, Caselles V, Galve JM, Valor E, Niclòs R, Sánchez JM, Rivas R (2005) Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sens Environ 97:288–300

    Article  Google Scholar 

  • Elvidge CD (1988) Thermal infrared reflectance of dry plant materials: 2.5–20.0 µm. Remote Sens Environ 26:265–285

    Article  Google Scholar 

  • French AN, Schmugge, TJ, Kustas WP (2000) Discrimination of senescent vegetation using thermal emissivity contrast. Remote Sens Environ 74:2), 249–254

    Article  Google Scholar 

  • Li Z-L, Becker F (1993) Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sens Environ 43:67–85

    Article  Google Scholar 

  • Mannstein H (1987) Surface energy budget, surface temperature and thermal inertia. In: Vaughan RA, Reidel D (eds) Remote sensing applications in meteorology and climatology, Reidel, 1987, NATO ASI Ser. C: Math. Phys. Sci., vol. 201. Dordrecht, The Netherlands, pp 391–410

    Google Scholar 

  • Masuoka E, Fleig A, Wolfe RE, Patt F (1998) Key characteristics of MODIS data products. IEEE Trans Geosci Remote Sens 36:1313–1323

    Article  ADS  Google Scholar 

  • Salisbury JW, D’Aria DM (1992) Emissivity of terrestrial materials in the 8–14 µm atmospheric window. Remote Sens Environ 42:83–106

    Article  ADS  Google Scholar 

  • Sellers PJ, Hall FG, Asrar G, Strebel, DE, Murphy RE (1988) The first ISLSCP field experiment (FIFE). Bull Am Meteorol Soc 69(1):22–27

    Article  Google Scholar 

  • Snyder WC, Wan Z, Zhang Y, Feng Y-Z (1998) Classification-based emissivity for land surface temperature measurement from space. Int J Remote Sens 19:2753–2574

    Article  Google Scholar 

  • Wan Z (2008) New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens Environ 112:59–74

    Article  Google Scholar 

  • Wan Z, Dozier J (1996) A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans Geosci Remote Sens 34:892–905

    Article  ADS  Google Scholar 

  • Wan Z, Li Z-L (1997) A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans Geosci Remote Sens 35:980–996

    Article  ADS  Google Scholar 

  • Wan Z, Wang P, Li X (2004a) Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the Great Plains, USA. Int J Remote Sens 25:61–72

    Article  Google Scholar 

  • Wan Z, Zhang Y, Li Z-L, Wang R, Salomonson VV, Yves A, Bosseno R, Hanocq JF (2002a) Preliminary estimate of calibration of the Moderate Resolution Imaging Spectroradiometer thermal infrared data using Lake Titicaca. Remote Sens Environ 80:497–515

    Article  Google Scholar 

  • Wan Z, Zhang Y, Zhang YQ, Li Z-L (2002b) Validation of the land-surface temperature products retrieved from Moderate Resolution Imaging Spectroradiometer data. Remote Sens Environ 83:163–180

    Article  Google Scholar 

  • Wan Z, Zhang Y, Zhang YQ, Li Z-L (2004b) Quality assessment and validation of the global land surface temperature. Int J Remote Sens 25:261–274

    Article  Google Scholar 

  • Wang K, Wan Z, Wang P, Sparrow M, Liu J, Zhou X, Haginoya S (2005) Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. J Geophys Res 110:D11109, doi:10.1029/2004JD005566

    Article  ADS  Google Scholar 

  • Wang K, Li Z, Cribb M (2006) Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: a new method to determine the Priestley-Taylor parameter. Remote Sens Environ 102:293–305

    Article  Google Scholar 

  • Wolfe RE, Nishihama M, Fleig AJ, Kuyper JA, Roy DP, Storey JC, Patt FS (2002) Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens Environ 83:31–49

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by EOS Program contracts NAS5-31370 and NNG04HZ15C of the National Aeronautics and Space Administration. Dr. Li’s work is partly supported by China’s National Natural Science Foundation under Grant 40425012, and the “Hundred Talent” program of the Chinese Academy of Sciences. Larry Zangwill performed the spectral measurements of ivy leaf samples in the laboratory of the UCSB MODIS LST Group and participated in LST validation field campaigns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengming Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wan, Z., Li, ZL. (2010). MODIS Land Surface Temperature and Emissivity. In: Ramachandran, B., Justice, C., Abrams, M. (eds) Land Remote Sensing and Global Environmental Change. Remote Sensing and Digital Image Processing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6749-7_25

Download citation

Publish with us

Policies and ethics