Skip to main content

Monitoring Urban Change with ASTER Data

  • Chapter
  • First Online:
  • 3684 Accesses

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 11))

Abstract

The appearance of urban areas manifested by human congregation and concentration is a phenomenon characteristic of the development of modern humankind. Historically, every ancient high culture was based on large agglomerations of people (e.g., Angkor Wat, Machu Picchu, Alexandria). Human concentration in urban areas offer a lot of advantages to those in areas with less benefits, especially rural areas. Urban areas provide economic welfare, efficient communication and transportation paths, a dense social and healthcare network, and numerous entertainment opportunities compared to remote and sparsely settled areas. Urban areas today provide home to more than 50% of the people worldwide. Urban areas display strong growth trends, especially in less-developed countries, where a rapid growth of unplanned informal settlements are evident.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alberti M, Waddell P (2000) An integrated urban development and ecological simulation model. Integr Assess 1:215–227

    Article  Google Scholar 

  • Avissar R (1996) Potential effects of vegetation on the urban thermal environment. Atmos Environ 30(3):437–448; Conference on the Urban Thermal Environment Studies in Tohwa, Japan, pp 437–448

    Google Scholar 

  • Barnsley MJ, Barr SL (2000) Monitoring urban land use by Earth observation. Surv Geophys 21:269–289

    Article  ADS  Google Scholar 

  • Ben-Dor E (2001) Imaging spectrometry for urban applications. In: Van der Meer FD, De Jong SM (eds) Imaging spectrometry: basic principles and prospective applications. Kluwer, Dordrecht

    Google Scholar 

  • Benz U, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens 58:239–258

    Article  ADS  Google Scholar 

  • Blaschke T, Strobl J (2001) What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. In: Proceedings of GIS – Zeitschrift für Geoinformationsysteme, vol. 6, pp 12–17

    Google Scholar 

  • Braun M, Herold M (2003) Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn Region (Germany). In: Proceedings of the SPIE 10th International Symposium on Remote Sensing, Barcelona, Spain, 8–12 September 2003

    Google Scholar 

  • Burnett C, Blaschke T (2003) A multi-scale segmentation/object relationship modelling methodo­logy for landscape analysis. Ecol Model 168(3):233–249

    Article  Google Scholar 

  • Buyantuyev A, Brazel A, Eisinger C (2006) Estimating heat fluxes and the Urban Heat Island (UHI) of Phoenix with remote sensing and meteorological data. In: Poster presented at the 8th Annual Central Arizona – Phoenix Long-Term Ecological Research Poster Symposium

    Google Scholar 

  • Cadenasso ML, Pickett STA, Schwarz K (2007) Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Front Ecol Environ 5(2):80–88

    Article  Google Scholar 

  • Chrysoulakis N (2002) Energy in the urban environment: use of Terra/ASTER imagery as a tool in urban planning. J Indian Soc Remote Sens 30:245–254

    Article  Google Scholar 

  • Dousset B, Gourmelon F (2003) Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS J Photogramm Remote Sens 58(1–2):43–54; Algorithms and Techniques for Multi-Source Data Fusion in Urban Areas

    Google Scholar 

  • Fukui Y, Hirose Y, Mushiake N (2002) A study on the surface temperature distribution and the urban structure in Tokyo with ASTER and LIDAR data. In: Proceedings of Geoscience and Remote Sensing Symposium (IGARSS’02), vol. 4, pp 24–28

    Google Scholar 

  • Gluch R, Quattrochi DA, Luvall JC (2006) A multi-scale approach to urban thermal analysis. Remote Sens Environ 104(2):123–132

    Article  Google Scholar 

  • Grimm NB, Grove JM, Pickett STA, Redman CL (2008) Integrated approaches to long-term studies of urban ecological systems. In: Marzluff JM, Shulenberger E, Endlicher W, Alberti M, Bradley G, Ryan C, Simon U, ZumBrunnen C (eds) Urban ecology. Springer, New York, pp 123–141

    Chapter  Google Scholar 

  • Grove JM, Cadenasso ML, Burch WR Jr, Pickett ST, Schwarz K, O’Neil-Dunne J, Wilson M, Troy A, Boone C (2006) Data and methods comparing social structure and vegetation structure of urban neighborhoods in Baltimore, Maryland. Soc Nat Resour 19:117–136

    Article  Google Scholar 

  • Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L (2006) Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med 63(11):2847–2863

    Article  Google Scholar 

  • Hartz DA, Prashad L, Hedquist BC, Golden J, Brazel AJ (2006) Linking satellite images and hand-held infrared thermography to observed neighborhood climate conditions. Remote Sens Environ 104(2):190–200

    Article  Google Scholar 

  • Heiden U, Segl K, Roessner S, Kaufmann H (2007) Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sens Environ 111(4):537–552

    Article  Google Scholar 

  • Herold M, Scepan J, Clarke KC (2002) The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ Plann A 34(8):1443–1458

    Article  Google Scholar 

  • Herold M, Roberts DA, Gardner ME, Dennison PE (2004) Spectrometry for urban area remote sensing – development and analysis of a spectral library from 350 to 2400 nm. Remote Sens Environ 91:304–319

    Article  Google Scholar 

  • Hook SJ (1998) ASTER Spectral Library. Available online: http://speclib.jpl.nasa.gov

  • Hope D, Gries C, Zhu W, Fagan WF, Redman CL, Grimm NB, Nelson AL, Martin C, Kinzig A (2003) Socioeconomics drive urban plant diversity. Proc Natl Acad Sci USA 100(15):8788–8792

    Article  ADS  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309

    Google Scholar 

  • Huete A, Justice C, Liu H (1994) Development of vegetation and soil indices for MODIS-EOS. Remote Sens Environ 49(3):224–234

    Article  Google Scholar 

  • Jenerette GD, Harlan SL, Brazel A, Jones N, Larsen L, Stefanov WL (2007) Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc Ecol 22:353–365

    Article  Google Scholar 

  • Kato S, Yamaguchi Y (2005) Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sens Environ 99(1–2):44–54

    Google Scholar 

  • Keitt TH, Urban DL, Milne BT (1997) Detecting critical scales in fragmented landscapes. Conserv Ecol 1:4

    Google Scholar 

  • Lacherade S, Miesch C, Lemaitre F, Briottet X, Le Men H, Boldo D, Valorge C (2005) Analysis of the spectral variability of urban materials for classification. A case study over Toulouse (France). In: Proceedings of URBAN 2005 and URS 2005, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, Part 8/W27, ISSN 1682-1777 (on CD)

    Google Scholar 

  • Lang S, Langanke T (2006) Object-based mapping and object-relationship modeling for land use classes and habitats. Photogramm Fernerkund Geoinf 1–2006:5–18

    Google Scholar 

  • Lu D, Weng Q (2006) Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sens Environ 104(2):157–167

    Article  Google Scholar 

  • McGarigal K, Marks BJ (1994) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Oregon State University, Corvallis

    Google Scholar 

  • Möller M (2004) Monitoring long term transition processes of a metropolitan area with remote sensing. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Anchorage, AK

    Google Scholar 

  • Möller M (2005) Remote sensing for the monitoring of urban growth patterns. In: Proceedings of the International Society for Photogrammetry and Remote Sensing, Joint Conference

    Google Scholar 

  • Nakamura M, Hirano Y, Ochi S, Yasuoka Y (2002) Characterization of urban heat radia­tion flux using remote sensing imagery. http://www.gisdevelopment.net/aars/acrs/2002/urb/216.pdf

  • Neer JT (1999) High resolution imaging from space – a commercial perspective on a changing landscape. Int Arch Photogramm Remote Sens 32(7C2):132–143

    Google Scholar 

  • Netzband M, Stefanov WL (2003) Assessment of urban spatial variation using ASTER data. Int Arch Photogramm Remote Sens Spatial Inf Sci 34(7/W9):138–143

    Google Scholar 

  • Netzband M, Stefanov WL (2004) Urban land cover and spatial variation observations using ASTER and MODIS satellite image data. Int Arch Photogramm Remote Sens Spatial Inf Sci 35(B7):1348–1353

    Google Scholar 

  • Nichol J, Hang LK, Wai-Shun AY (2003) A comparison of daytime and night-time thermal satellite images of Hong Kong for urban climate studies. In: Proceedings Map Asia 2003. http://www.gisdevelopment.net/application/environment/climate/envwm001.htm

  • Ogawa K, Schmugge T, Jacob F, French A (2003) Estimation of land surface window (8–12 mm) emissivity from multispectral thermal infrared remote sensing – a case study in a part of Sahara Desert. Geophys Res Lett 30(2)

    Google Scholar 

  • Oke TR (1973) City size and the urban heat island. Atmos Environ 7(8):769–779

    Article  Google Scholar 

  • Price JC (1995) Examples of high resolution visible to near-infrared reflectance and a standardized collection for remote sensing studies. Int J Remote Sens 16:993–1000

    Article  Google Scholar 

  • Quattrochi DA, Goodchild MF (1997) Scale in remote sensing and GIS. CRC, Boca Raton, FL, p 406

    Google Scholar 

  • Quattrochi DA, Ridd MK (1998) Analysis of vegetation within a semi-arid urban environment using high spatial resolution airborne thermal infrared remote sensing data. Atmos Environ 32(1):19–33; Conference on the Benefits of the Urban Forest

    Article  Google Scholar 

  • Rainis R (2003) Application of GIS and landscape metrics in monitoring urban land use change. In: Hashim NM, Rainis R (eds) Urban ecosystem studies in Malaysia – a study of change. Universal Publishers, Parkland, pp 267–278

    Google Scholar 

  • Ramsey MS (2003) Mapping the city landscape from space: the advanced spaceborne thermal emission and reflectance radiometer (ASTER) urban environmental monitoring program. In: Heiken G, Fakundiny R, Sutter J (eds) Earth science in the city: a reader. American Geophysical Union, Washington, DC, pp 337–361

    Chapter  Google Scholar 

  • Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation indices. Remote Sens Environ 55(2):95–107

    Article  Google Scholar 

  • Roy P, Brumfield JO, Vaseashta A (2007) Smog analysis in urban areas using ASTER data and its analysis of variance with in-situ sensors data. In: Technical Proceedings of the 2007 Nanotechnology Conference and Trade Show, vol. 2

    Google Scholar 

  • Schmugge TJ, Kustas WP, Humes KS (1998) Monitoring land surface fluxes using ASTER observations. IEEE Trans Geosci Remote Sens 36(5):1421–1430

    Google Scholar 

  • Schöpfer E, Moeller MS (2006) Comparing metropolitan areas – a transferable object-based image analysis approach. Photogramm Fernerkund Geoinf 1/2006:277–286

    Google Scholar 

  • Small C (2003) High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens Environ 88:170–186

    Article  Google Scholar 

  • Small C, Lu J (2006) Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis. Remote Sens Environ 100:441–456

    Article  Google Scholar 

  • Stefanov WL, Netzband M (2005) Assessment of ASTER land cover and MODIS NDVI data at multiple scales for ecological characterization of an arid urban center. Remote Sens Environ 99(1–2):31–43

    Article  Google Scholar 

  • Stefanov WL, Netzband M (2010) Characterization and monitoring of urban/peri-urban ecological function and landscape structure using satellite data. In: Rashed T, Jürgens C (eds) Remote sensing of urban and suburban areas. Springer, New York

    Google Scholar 

  • Stefanov WL, Ramsey MS, Christensen PR (2001) Monitoring the urban environment: an expert system approach to land cover classification of semiarid to arid urban centers. Remote Sens Environ 77(2):173–185

    Article  Google Scholar 

  • Turner MG, O’Neill R, Gardner RH, Milne BT (1989) Effects of changing spatial scale on the analysis of landscape pattern. Landsc Ecol 3:153–162

    Article  Google Scholar 

  • Wentz E, Nelson D, Rahman A, Stefanov WL, Roy SS (2008) Expert system classification of urban land use/cover for Delhi, India. Int J Remote Sens 29(15):4405–4427

    Article  Google Scholar 

  • Whitford V, Ennos AR, Handley JF (2001) City form and natural process – indicators for the ecological performance of urban areas and their application to Merseyside, UK.. Landsc Urban Plann 57:91–103

    Article  Google Scholar 

  • Wu J, Jelinski DE, Luck M, Tueller PT (2000) Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics. Geogr Inf Sci 6:6–19

    Google Scholar 

  • Yamaguchi Y, Kato S, Okamoto K (2004) Surface heat flux analysis in urban areas using ASTER and MODIS data. In: International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences

    Google Scholar 

  • Zhu G, Bian F, Zhang M (2003) A flexible method for urban vegetation cover measurement based on remote sensing images. In: Proceedings Joint ISPRS/EARSeL Workshop: High Resolution Mapping from Space 2003, October 6–8

    Google Scholar 

  • Zipperer WC, Wu J, Pouyat RV, Pickett STA (2000) The application of ecological principles to urban and urbanizing landscapes. Ecol Appl 10(3):685–688

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by a NASA EOS/ASTER Team Member Investigation grant to P.R. Christensen. Additional funding was provided by a National Science Foundation Long Term Ecological Research grant to N.B. Grimm and C.L. Redman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Netzband .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Netzband, M., Schöpfer, E., Möller, M.S. (2010). Monitoring Urban Change with ASTER Data. In: Ramachandran, B., Justice, C., Abrams, M. (eds) Land Remote Sensing and Global Environmental Change. Remote Sensing and Digital Image Processing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6749-7_17

Download citation

Publish with us

Policies and ethics